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This book is intended primarily for use by students and teachers of Higher Level
Mathematics in the International Baccalaureate Diploma Programme, but will also be of
use to students on other courses.

Detailed coverage is provided for the core part of this syllabus and provides excellent
preparation for the final examination. The book provides guidance on areas of the
syllabus that may be examined differently depending on whether a graphical calculator
is used or not.

Points of theory are presented and explained concisely and are illustrated by worked
examples which identify the key skills and techniques. Where appropriate, information
and methods are highlighted and margin notes provide further tips and important
reminders. These are supported by varied and graded exercises, which consolidate the
theory, thus enabling the reader to practise basic skills and challenging exam-style
questions. Each chapter concludes with a review exercise that covers all of the skills
within the chapter, with a clear distinction between questions where a calculator is 

allowed and ones where it is not. The icon is used to indicate where a calculator 

may be used, and indicates where it may not. Many of these questions are from
past IB papers and we would like to thank the International Baccalaureate for permission
to reproduce these questions.

Throughout the text, we have aimed to produce chapters that have been sequenced in
a logical teaching order with major topics grouped together. However, we have also
built in flexibility and in some cases the order in which chapters are used can be
changed. For example we have split differential and integral calculus, but these can be
taught as one section. Although many students will use this book in a teacher-led
environment, it has also been designed to be accessible to students for self-study.

The book is accompanied by a CD. As well as containing an electronic version of the
entire book, there is a presumed knowledge chapter covering basic skills, revision
exercises of the whole syllabus grouped into six sections, and twenty extended 
exam-style questions.

We would like extend our thanks to family, friends, colleagues and students who
supported and encouraged us throughout the process of writing this book and
especially to those closest to each of us, for their patience and understanding.

Bill Roberts
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The study of trigonometry is not new. Its roots come from the Babylonians around
300 BC.This area of mathematics was further developed by the Ancient Greeks around
100 BC. Hipparchus, Ptolemy and Menelaus are considered to have founded
trigonometry as we now know it. It was originally used to aid the study of astronomy.

In the modern world trigonometry can be used to answer questions like “How far
apart are each of the 32 pods on the London Eye?” and “What would a graph of
someone’s height on the London Eye look like?”

1.1 Circle problems
Radians
It is likely that up until now you have measured angles in degrees, but as for most
measurements, there is more than one unit that can be used.

Consider a circle with radius 1 unit. 

1 Trigonometry 1

Although most people
connect trigonometry
with the study of 
triangles, it is from the
circle that this area of
mathematics originates.



That is, dividing the angle by 360°, the arc length by the circumference, and the sector
area by the circle area gives the same fraction.

This is very useful when solving problems related to circles.

Changing the angles to radians gives formulae for the length of an arc and the area of a
sector:

sector area �
1
2

 r2
˛u1

u

2p
�

sector area
pr2

arc length � ru1

u

2p
�

arc length

2pr

x°

360°
�

arc length

2pr
�

sector area
pr2

1  Trigonometry 1

3

As increases, the arc length increases. For a particular
value of the arc will be the same length as the radius.
When this occurs, the angle is defined to be 1 radian.

The circumference of a circle is given by so
when 

As there are 360° at the centre of a circle, and 1 radian is defined to be the angle
subtended by an arc of length 1,

Hence 1 radian �
360°

2p
� 57.3°.

2p radians � 360°

r � 1, C � 2p.
C � 2pr,

u,
u

1  Trigonometry 1

2

arc

�
1 1

Method for converting between degrees and radians

To convert degrees to radians, multiply by 

To convert radians to degrees, multiply by 
360°

2p
�

180°
p

.

2p
360°

�
p

180°
.

Example

Convert radians into degrees.

p

3
� 60° 1see table 2  so 

2p
3

� 60° � 2 � 120°.

2p
3

Where an angle is given
without units, assume it
is in radians.

Example

Convert 250° into radians.

This is not one of the commonly used angles (nor a multiple), so use the method
for converting degrees to radians.

250° �
p

180°
�

25p
18

� 4.36

Circle sectors and segments

Sector

chord

Segment
Arc

x�

arc

Considering the infinite rotational symmetry of the circle,

These formulae only
work if is in radians.u

Example

What is the area of the sector shown below?

 � 33.5 cm2

 �
1
2

� 82 �
p

3

 Sector area �
1
2

 r2
˛u

�
3

8 cm

Example

The fairground ride shown below moves through an angle of 50° from point
A to point B. What is the length of the arc AB?

Start by converting 50° into radians. 

 � 13.96 m
 Hence arc length � ru � 16 � 0.872 p

 � 0.872 p

 u �
50°

360°
� 2p

BA

50� 16 m

Degrees 0° 15° 30° 45° 60° 90° 180° 270° 360°

Radians 0 2p
3p
2

p
p

2
p

3
p

4
p

6
p

12

Some angles measured in radians can be written as simple fractions of 

You must learn these.

p.
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3 Express each angle in radians, giving your answer to 3 sf.

a 35° b 100° c 300°
d 80° e 132° f 278°

4 Find the area of each shaded sector.
a b

c d

5 Find the length of each arc.

a b

c d

6 Find the perimeter of each shape.

a b c

7 The diagram below shows a windscreen wiper cleaning a car windscreen.
a What is the length of the arc swept out?
b What area of the windscreen is not cleared?

8 Find the area of the shaded segment.

8 cm55�

3 m
�
3

20 cm

140�
Fan 50�

60 cm

30� 12cm

7 m
18
7�

260�

65 cm

100�

25 mm

26 cm
125�

70 cm

16 mm

60 mm

45 cm
55 cm

100 cm

9
8�

60�

24 cm

1 Express each angle in degrees.

a b c d e f

g h 2 i 1.5 j 4 k 3.6 l 0.4

2 Express each angle in radians, giving your answer in terms of 
a 30° b 210° c 135° d 315°
e 240° f 70° g 72° h 54°

p.

11p
18

p

8
7p
12

5p
6

2p
5

p

9
3p
4

1  Trigonometry 1
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Example

What is the volume of water lying in this pipe of radius 2.5 m?

In this example, we need to find the area of a segment. The method for doing
this is:

First find the angle at the centre in radians:   

Volume � 2.79 p � 15 � 41.9 m3

� 2.79 p m2

Area of segment � Area of sector � Area of triangle � 5.79 p � 3

 � 5.79 p m2

 Area of sector �
1
2

 r2
˛u �

1
2

� 2.52 � 0.972 p � 2

 � 3 m2

 Area of triangle �
1
2

� 4 � 1.5

 � 0.927 p

 
1
2

 u � sin�1
 

2
2.5

4 m 15 m

7.5

2

�1
2

It is important to 
remember this.

Use Pythagoras to find
the height of the
triangle.

Exercise  1

Area of segment � Area of sector � Area of triangle
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1.2 Trigonometric ratios
This unit circle can be used to define the trigonometric ratios.

�
0

y

x�1

�1

1

1
P(x,y)

�

Hyp Opp

Adj

The x-coordinate is defined to be 

The y-coordinate is defined to be 

The results for a right-angled triangle follow from the definitions of the x- and y-
coordinates in the unit circle.

 tan u �
Opp

Adj
1  tan u �

y

x

sin u.

cos u.

 tan u �
Opposite

Adjacent

 cos u �
Adjacent

Hypotenuse

 sin u �
Opposite

Hypotenuse

More work will be 
done on trigonometric
identities in Chapter 7.

�

1
Hyp

y
Opp

Adj
x

This is the definition of and is a useful identity.

Using the definition of and from the unit circle, we can see that these
trigonometric ratios are defined not only for acute angles, but for any angle. For example,

(3 sf).

As the x-coordinate is and the y-coordinate is for obtuse angles is
positive and is negative.

Exact values
You need to learn sin, cos and tan of the angles given in the table overleaf for non-calculator
examinations.

cos u
sin usin u,cos u

sin 120° � 0.866

cos usin u

tan u

You should already know that for a right-angled triangle

 1 tan u �
sin u
cos u

�

0

y

x

9 What is the area of this shape?

5 m

10

Area of 
What is the angle at the centre of the sector?

sector � 1787 cm2

Radius � 32 cm

Diameter � 8 m

11 Find the perimeter of this segment.

6 cm

�
4

12 A sector has an area of and an arc length of 62.8 cm. What is

the radius of the circle?

942.5 cm2

r

13 Two circles are used to form the logo for a company as shown below. One
circle is of radius 12 cm. The other is of radius 9 cm. Their centres are 15 cm
apart. What is the perimeter of the logo?

14 What is the ratio of the areas of the major sector in diagram A to the minor
sector in diagram B?

150�

r

60�r

15 Two circular table mats, each of radius 12 cm, are laid on a table with their
centres 16 cm apart. Find
a the length of the common chord
b the area common to the two mats.

A B
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1 Find the value of each of these.
a sin 150° b sin 170° c cos 135° d cos 175°

e f g h cos 2.4(radians)

2 Without using a calculator, find the value of each of these.

a b c d

e f sin 135° g cos 315° h sin 180°

i cos 180° j cos 270°

3 Find the possible values of x°, given that 

a b c

d e f

4 Find the possible values of given that 

a b c

d e f

g h sin u � 0.7cos u �
4
11

sin u �
2
7

cos u �
23
2

sin u � 2

cos u �
1

22
sin u �

23
2

cos u �
1
2

0 � u 6 2p.u,

cos x° �
4
7

sin x° �
3
8

cos x° �
1
6

sin x° �
2
3

cos x° �
1
3

sin x° �
1
2

0° � x° 6 360°.

cos 

5p
3

sin 

2p
3

tan 
p

4
cos 

p

3
sin 

p

6

cos 

5p
6

sin 

3p
4

sin 

2p
3

Example

Solve for 

 1 u �
p

3
 or u �

5p
3

 1 u �
p

3
 or u � 2p �

p

3

 1 u � cos�1¢1
2
≤

 cos u �
1
2

0 � u 6 2p.cos u �
1
2

y

x0 1
2

Exercise  2

1.3 Solving triangles

Vertices are given capital
letters. The side opposite
a vertex is labelled with
the corresponding
lower-case letter.B C

A

a

c b

(in radians) 0

(in degrees) 0° 30° 45° 60° 90°

0 1

1 0

0 1 undefined

These values can also be remembered using the triangles shown below.

23
1

23
tan U

1
2

1

22

23
2

cos U

23
2

1

22

1
2

sin U

U

p

2
p

3
p

4
p

6
U

The last row is given 

by tan u �
sin u
cos u

.

45�

45�

1

1

�2

60�

30�
2

1

�3

Finding an angle
When solving right-angled triangles, you found an acute angle.

This is recognizing the
symmetry of the circle.

Example

However, has two possible solutions:

 1 u � 23.6° or 154.6°

 sin u �
2
5

sin u �
2
5

 1 u � 23.6°

 1 u � sin�1 ¢2
5
≤

 sin u �
2
5

�

5 2

y

x0

2
5
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Putting these results together gives the sine rule:

Look at this obtuse-angled triangle:

a
sin A

�
b

sin B
�

c
sin C

�

A

B C

If we consider the unit circle, it is clear that and hence
So the result is the same.

Use the sine rule in this form when finding a side:

Use the sine rule in this form when finding an angle:

sin A
a

�
sin B

b
�

sin C
c

a
sin A

�
b

sin B
�

c
sin C

sin u � sin B.
sin u � sin1180° � u 2

This is dealt with in
more detail later in the
chapter in relation to
trigonometric graphs.

Example

Find x.

 1 x � 5.94 m

 1 x �
8 sin 40°

sin 60°

 1

x
sin 40°

�
8

sin 60°

 
a

sin A
�

b
sin B

A

B

C
60� 40�

x 8 m

Example

Find angle P.

 1 P � 41.0°
 1  sin P � 0.656 p

 1  sin P �
8 sin 100°

12

 1

sin P
8

�
sin 100°

12

 
sin P

p
�

sin Q
q

P

Q

R100�
8

12

Area of a triangle

We know that the area of a triangle is given by the formula

To be able to use this formula, it is necessary to know the perpendicular height. This
height can be found using trigonometry.

So the area of the triangle is given by

This formula is equivalent to of angle between.
1
2

� one side � another side � sine

Area �
1
2

 ab sin C

 1 h � b sin C

 sin C �
h
b

A �
1
2

� base � perpendicular height

base

h

h

B Ca

b

A

Example

Find the area of this triangle.

 � 13.5 cm2

 Area �
1
2

� 6 � 7 �  sin 40°

7 cm

6 cm

40�

Sine rule
Not all triangle problems can be solved using right-angled trigonometry. A formula
called the sine rule is used in these problems.

Drawing a line perpendicular to AC from B provides a similar result: 
a

sin A
�

c
sin C

 1

b
sin B

�
c

sin C

 1 c sin B � b sin C

 1 AD � b sin C 1 AD � c sin B

 1 AD � AC �  sin C 1 AD � AB �  sin B

 sin C �
AD
AC

 sin B �
AD
AB

h

B
D

C
a

c b

A
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This situation is similar to the area of the triangle formula. The different forms do not
need to be remembered: it is best thought of as two sides and the angle in between.

 1 b2 � a2 	 c2 � 2ac cos B

 1 c2 � b2 � a2 	 2ac cos B

 1 x � �c cos B

 � �cos B

 � cos1180° � B 2

 Now 
x
c

� cos u

We will return to this
later in the chapter.

Example

Find x.

 x � 6.39 m
 x2 � 40.829 p

 x2 � 82 	 112 � 2 � 8 � 11 �  cos 35°

35�

11 m

8 m x

Pythagoras’ theorem can
be considered a special
case of the cosine rule.
This is the case where
A � 90° 1  cos A � 0.

The cosine rule can be rearranged to find an angle:

1  cos A �
b2 	 c2 � a2

2bc

 1 2bc cos A � b2 	 c2 � a2

 a2 � b2 	 c2 � 2bc cos A

This is only one form.
It may be useful to 
re-label the vertices in
the triangle.

Example

Find angle A.

 1 A � 44.2°
 � 0.716 p

 1  cos A �
172 	 142 � 122

2 � 17 � 14

 cos A �
b2 	 c2 � a2

2bc

14

17 12

A

Example

A ship sails on a bearing of 065° for 8 km,
then changes direction at Q to a bearing of
120° for 13 km. Find the distance and
bearing of R from P.65�

120�
8 km

13 km
Q

P

R
x

N

N

When the given angle is acute and it is opposite the shorter of two given sides, there are
two possible triangles.

Example

In a triangle, angle and Find angle B.

Hence it is possible to draw two different triangles with this information:

 1 B � 68.1° or B � 180° � 68.1° � 111.9°
 1  sin B � 0.928 p

 1  sin B �
13 sin 40°

9

 
sin 40°

9
�

sin B
13

b � 13.A � 40°, a � 9

A
b

a

A C

B

9

13

68.1�

40�
A C

B

9

13
40�

111.9�

Cosine rule
The sine rule is useful for solving triangle problems but it cannot be used in every
situation. If you know two sides and the angle between them, and want to find the third
side, the cosine rule is useful.

The cosine rule is

We can prove this using an acute-angled triangle:

We know that and 

Hence  

Now 

Drawing the perpendicular from the other vertices provides different versions of the rule:

The proof for an obtuse-angled triangle is similar:

In triangle ABD, In triangle ACD,

 1 c2 � b2 � a2 � 2ax

 1 c2 � x2 � b2 � a2 � 2ax � x2

 � b2 � a2 � 2ax � x2

 h2 � b2 � 1a 	 x 22h2 � c2 � x2

 b2 � a2 	 c2 � 2ac cos B

 a2 � b2 	 c2 � 2bc cos A

 1 c2 � a2 	 b2 � 2ab cos C

 1 x � b cos C

 cos C �
x
b

 1 c2 � a2 	 b2 � 2ax

 b2 � x2 � c2 � a2 	 2ax � x2

h2 � b2 � x2.h2 � c2 � 1a � x 22 � c2 � a2 	 2ax � x2

a2 � b2 	 c2 � 2bc cos A

B
Da � x x

a

C

A

hc b

B
D ax C

A

h c b

�
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c d

2 Three roads intersect as shown, with a triangular building plot between
them. Calculate the area of the building plot.

3 A design is created by an equilateral triangle of side 14 cm at the centre of a circle.
a Find the area of the triangle.
b Hence find the area of the segments.

4 An extension to a house is built as shown.
What is the volume of the extension?

125�
17 cm

23 cm

6 m 10 m
3
π

70 m 25
0 m

PLOT
110�

65°
2 m 3 m

5.5 m

3.5 m

5 Find the area of this campsite.

6 Use the sine rule to find the marked side.

a b

c d

e

20°
100° 37 m

7 m

29 m

80°

55°
7cm

A C

B

x

20°75°

18 cm

P

Q

R

x

40°

125°

6 cm
S

U

T

x
9 cm

N

R

M

n

π
4

π
3

18 mm

x

A C

B

52� 37�

Decision making about triangle problems
It is worth remembering that Pythagoras’ theorem and right-angled trigonometry can be
applied to right-angled triangles, and they should not need the use of the sine rule or
the cosine rule.

For non-right angled triangles, use this decision tree.

To find the distance x, angle Q is needed.

As the north lines are parallel, we can find
angle Q.

So 

Using the cosine rule, 

We can now find the bearing of R from P.

Using the sine rule, 

Bearing of R from P is 65 	 34.5 � 099.5°.

 1 P � 34.5°

 1  sin P �
13 sin 125°

18.8
� 0.566 p

 
sin P
13

�
sin 125°

18.8

 1 x � 18.8 km
 x2 � 352.3 p

 x2 � 82 	 132 � 2 � 8 � 13 �  cos 125°

Q � 125°

1  Trigonometry 1

65�
65� 60�

120�Q

P

N

N

65�

P

R

N

side angle

otherwise otherwiseknow two sides and
the angle between

know all three sides

cosine rule cosine rulesine rule sine rule

a2 � b2 	 c2 � 2bc cos A b2 	 c2 � a2

2bc
cos A �

a
sin A

b
sin B

�
c

sin C
�

sin A
a

sin B
b

�
sin C

c
�

1 Calculate the area of each triangle.

a b

Once two angles in a 
triangle are known, the
third angle can be found
by subtracting the other
two angles from 180°.

Exercise  3

30�
12 cm

8 cm 80�
7 m 6 m
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d e

x�

107 km

131 km88 km

Q R

P

19 cm

80�

55�
U T

S

x

29 cm
45�

100�

J L

K

x

200 km

JFK

N

170 km

40� 50�

16 A plane flies from New York JFK airport on a bearing of 205° for 200 km.
Another plane also leaves from JFK and flies for 170 km on a bearing of
320°. What distance are the two planes now apart?

E

F

C
B

A D

G

H
9 m

8 m

6 m

19 Find the area of triangle SWV.

W
V

T

S
R

U

QP

24 cm

15 cm

8 cm

1.4 Trigonometric functions and graphs
is defined as the y-coordinate of points on the unit circle.

0° 30° 45° 60° 90° 180° 270° 360°

0 1 0 0�1
23
2

1

22

1
2

sin U

U

sin u

7 Use the sine rule to find the marked angle.

a b

8 Triangle LMN has sides and with 
Find the possible values for 

9 Triangle ABC has sides and and 
Calculate 

10 Use the cosine rule to find the marked side.

a b

c d

11 A golfer is standing 15 m from the hole. She putts 7° off-line and the ball 
travels 13 m. How far is her ball from the hole?

12 Use the cosine rule to find the marked angle.

a b

13 Calculate the size of the largest angle in triangle TUV.

14 Find the size of all the angles in triangle ABC.

15 Calculate x in each triangle.
a b c

�BCA.
�BAC � 20°.BC � 6 kmAB � 11 km

�MLN.
LNM � 40°MN � 35 mLM � 32 m

10 cm

7 cm
A C

B

50�

x�

12

19

Q R

P

30�

x�

17 m

22 m

x

R

S

T

70�

6 cm 7 cm

T

U

V

55�

x

195 mm

210 mmB

p

A

C

140� 9.6 cm

t

68�

15 m

13 m

7�

23 cm

38 cm
17 cm

B

A

C

2.2 m

2.5 m1.7 m

Q

P R

101 mm

88 mm91 mm

T

U

V

0.8 m

0.7 m1.1 m

A

B

C

x

8.2 m6.3 m

W

Y

Z

62� x�

26 cm

29 cm

E F

D

60�

17 Twins Anna and Tanya, who are both 1.75 m tall, both look at the top of
Cleopatra’s Needle in Central Park, New York. If they are standing 7 m apart,
how tall is the Needle?

18 Find the size of angle ACE.
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y � cos u

1

�1
0

y

��2� 2� 4� 6�

Repeating at regular intervals is known as periodicity. The period is the interval
between repetitions.

For the period is 360° or 

Graph of tan x°

We have defined This allows us to draw its graph.

0° 30° 45° 60° 90° 180° 270° 360°

0 1 0 0

1 0 0 1

0 1 undefined 0 undefined 0

There is a problem when because there is a zero on the denominator.
This is undefined (or infinity). Graphically, this creates a vertical asymptote. This is
created by an x-value where the function is not defined. The definition of an asymptote
is that it is a line associated with a curve such that as a point moves along a branch of
the curve, the distance between the line and the curve approaches zero. By examining
either side of the vertical asymptote, we can obtain the behaviour of the function
around the asymptote.

As (x° approaches 90°) tan x° increases and approaches (infinity):

etc.

On the other side of the asymptote, tan x° decreases and approaches 

etc.

The graph of is shown below.

It is clear that this graph is also periodic, and the period is 180°.

y � tan x°

tan 90.1° � �573tan 91° � �57.3,tan 95° � �11.4,

�q:

tan 89.9° � 573tan 89° � 57.3,tan 85° � 11.4,

qx° S 90°

x° � 90°, 270° p

23
1

23
tan U

�1
1
2

1

22

23
2

cos U

�1
23
2

1

22

1
2

sin U

U

tan u as 
sin u
cos u

.

2p.y � sin u and y � cos u,

The vertical asymptote is
a line: there are other
types of asymptote that
we will meet later.

0

y

x�

180� 360�270�90�

is defined as the x-coordinate of points on the unit circle.

0° 30° 45° 60° 90° 180° 270° 360°

1 0 0 1

These functions are plotted below.

Periodicity
When considering angles in the circle, it is clear that any angle has an equivalent angle
in the domain 

For example, an angle of 440° is equivalent to an angle of 80°.

440° � 360° 	 80°

0 � x° 6 360°.

�1
1
2

1

22

23
2

cos U

U

cos u

1

�1

90� 180� 270� 360�

x�

y

y � cosx�

y � sinx�

0

Both graphs only have 
y-values of �1 � y � 1.

y

x�0

This is also true for negative angles.

�120° � 240°

y

x�0

240�

�120�

This means that the sine and cosine graphs are infinite but repeat every 360° or 

y � sin u

2p.

1

�1
0

y

��2� 2� 4� These graphs can be
drawn using degrees or
radians.

y

x0 1

1

�1

�1

�
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Composite graphs
Using your graphing calculator, draw the following graphs to observe the effects of the
transformations.

1. 

2. 

3. 

4. 

5. 

6. 

The table summarizes the effects.

Effect Notes

A sin x, A cos x, Vertical stretch
A tan x

sin Bx, cos Bx, Horizontal stretch/ This is the only 
tan Bx compression transformation that 

affects the period of 
the graph

Reflection in x-axis

Reflection in y-axis

Vertical shift

Horizontal shift Positive D left, 
negative D right

sin1x 	 D 2 , cos1x 	 D 2 , tan1x 	 D 2

sin x 	 C, cos x 	 C, tan x 	 C

sin1�x 2 , cos1�x 2 , tan1�x 2

�sin x, �cos x, �tan x

y �

 y � cos ¢u 	
p

3
≤

 y � sin ¢u 	
p

3
≤

 y � cos1x � 30 2°
 y � sin1x � 30 2°

 y � cos x° � 1
 y � sin x° � 1
 y � cos x° 	 2
 y � sin x° 	 2

 y � tan1�x° 2

 y � cos1�x° 2

 y � sin1�x° 2

 y � �tan x°
 y � �cos x°
 y � �sin x°

 y � cos 

1
2

 x°

 y � sin 5x°
 y � cos 3x°
 y � sin 2x°

 y �
1
2

 sin x°

 y � 5 sin x°
 y � 3 cos x°
 y � 2 sin x°

Reciprocal trigonometric functions
There are three more trigonometrical functions, defined as the reciprocal trigonometric
functions – secant, cosecant and cotangent. Secant is the reciprocal function to cosine,
cosecant is the reciprocal function to sine, and cotangent is the reciprocal function to
tangent. These are abbreviated as follows:

In order to obtain the graph of consider the table below.

0° 30° 45° 60° 90° 180° 270° 360°

0 1 0 0

2 1

The roots (zeros) of the original function become vertical asymptotes in the reciprocal
function.

This function is also periodic with a period of 360°.

Similarly we can obtain the graphs of and 

y � cot u

y � sec u

y � cot u:y � sec u

y � csc u

q�1q

2

23
22qcsc U �

1
sin U

�1
23
2

1

22

1
2

sin U

U

f˛1x 2 � csc u,

sec u �
1

cos u
,   csc u �

1
sin u

 1or cosec u 2   cot u �
1

tan u

y

180� 360�

1

�1

y

90��90��180� 270�0

y

90��90� 270�

1

�1

The general method for
plotting reciprocal
graphs will be addressed
in Chapter 8.
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1 What is the period of each function?

a b c
d e f
g h i
j

2 Draw the graphs of these functions for 

a b c
d e f

3 Draw the graphs of these functions for 

a b c

d e

4 Draw the graphs of these functions for 

a b c
d e f

5 Draw the graphs of these functions for 

a b c

d e

6 Draw the graph of for 

7 Draw the graph of for 

8 Draw the graph of for 

9 Find the equation of each graph.
a b

0 � u 6

p

2
.y � 8 � 3 sin 4u

0° � x° 6 12°.y � 6 cos 30x°

0° � x° 6 720°.y � 4 sin 2x° � 3

y � tan ¢2u �
p

3
≤y � cot 3u

y � 7 � 4 cos uy � 3 sin 4u � 5y � 6 cos u 	 2

0 � u 6 p.

y � 3 cos 2x° � 1y � 2 tan1x 	 30 2°y � 6 sin 10x°

y � 3 sec 2x°y � 2 sin 4x°y � cos 3x°

0° � x° 6 180°.

y � 3 � 5 sin uy � csc1�u 2

y � 4 cos u � 2y � cot ¢u 	
p

3
≤y � �sin 2u

0 � u 6 2p.

y � sec x° 	 2y � tan1x � 30 2°y � 4 csc x
y � sin1�x° 2y � �cos x°y � sin 3x°

0° � x° 6 360°.

y � 8 tan 60x°
y � 9 sin 10x°y � 7 � 3 sin 4uy � 5 csc 2x° 	 3
y � 2 cos 3x° � 3y � sec x°y � tan 2x°
y � cos 4u 	 1y � cos 3x°y � sin 2x°

Since it is “upside down” there is a reflection in the x axis
There is a period of and so there are two full waves in
There is a difference of 6 between the max and min values. There would 
normally be a difference of 2 and hence there is a vertical stretch

The min and max values are 1, 7 so there is a shift up of 4 

So the equation of this graph is y � �3 cos 2u 	 4.

1 y � �3 cos 2u 	 4

1 y � �3 cos 2u
� 3

2p1 y � �cos 2up

1 y � �cos u

Exercise  4

0

4

�4

y

�2� 3600

1

2
y

x�

Example

Draw the graph of for 

This is a vertical stretch and a vertical
shift 	1.

� 2

0 � u 6 2p.y � 2 cos u 	 1

�1

3

�

y

0 2�

The domain tells you
how much of the
graph to draw and
whether to work in 
degrees or radians.

Example

Draw the graph of for 

This is a horizontal shift of 90° to the right
and a vertical shift 	1.

0° � x° 6 180°.y � csc1x � 90 2° 	 1

2

x�

y

0 180�

Example

Draw the graph of for 

In this case, there are two full waves in 360°.
There is a reflection in the x-axis and a vertical
stretch � 3.

0° � x° 6 360°.y � �3 sin 2x°

3

�3

x�

y

90� 180� 270� 360�0

Example

What is the equation of this graph?

We assume that, because of the shape, it is either a
sine or cosine graph. Since it begins at a minimum
point, we will make the assumption that it is a
cosine graph. (We could use sine but this would
involve a horizontal shift, making the question more
complicated.) y �cos u

1

7

� �

y

O

22
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y � tan x°y � cos x°y � sin x°

These graphs can be split into four quadrants, each of 90°. We can see that in the first
quadrant all three graphs are above the x-axis (positive).

In each of the other three quadrants, only one of the functions is positive.

This is summarised in the following diagram.

x�

y

90�0 270�180� 360�

1

�1

x�

y

90�0 270�180� 360�

1

�1

Sin

90�

180� 0�

270�

All

180 � x� x�

180 	 x� 360 � x�

Tan Cos

The diagram shows two important features. First, it shows where each function is
positive. Second, for every acute angle, there is a related angle in each of the other three
quadrants. These related angles give the same numerical value for each trigonometric
function, ignoring the sign. This diagram is sometimes known as the bow-tie diagram.

By taking an example of 25°, we can see all of the information that the bow-tie diagram
provides:

Related angles
25°

Using we can say that

 tan 335° � �tan 25°

 tan 205° � tan 25°

 tan 155° � �tan 25°

 cos 335° � cos 25°

 cos 205° � �cos 25°

 cos 155° � �cos 25°

 sin 335° � �sin 25°

 sin 205° � �sin 25°

 sin 155° � sin 25°

 360 � 25 � 335°

 180 	 25 � 205°

 180 � 25 � 155°
25�

25�

25�

25�

S A

T C

c d

0

y

�� 0
360�

�2

6

y

x�

e f

0
�2

8
y

�� 0

�7

y

x�90�

g h

0

1

y

x�123 0

5

11

y

�
6

�

i j

0

2

�2

y

120� x� 0

3

�3

y

�
3

�

1.5 Related angles
To be able to solve trigonometric equations algebraically we need to consider properties
of the trigonometric graphs. Each graph takes a specific y-value for an infinite number
of x-values. Within this curriculum, we consider this only within a finite domain.
Consider the graphs below, which have a domain 0° � x° 6 360°.

x�

y

90� 270�180� 360�

1

�1
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1 Find the exact value of each of these.
a cos 120° b tan 135° c sin 150° d cos 300°
e tan 225° f cos 210° g tan 300° h sin 240°
i cos 330° j cos 150°

2 Find the exact value of each of these.

a b c d

e f g h

i j

3 Express the following angles, using the bow-tie diagram, in terms of the related
acute angle.
a sin 137° b cos 310° c tan 200°
d sin 230° e cos 157° f tan 146°
g cos 195° h sin 340° i tan 314°

4 State two possible values for x° given that 

a b

c d

5 State two possible values for given that 

a b

c d cos u � �
23
2

cos u �
1
2

tan u �
1

23
sin u �

23
2

0 � u 6 2p.u

tan x° � �1tan x° � 23

cos x° �
23
2

sin x° �
1
2

0° � x° 6 360°.

8 cos 

11p
6

2 sin 

5p
6

sin 

5p
3

cos 

3p
2

tan 

5p
6

sin 

5p
4

tan 

5p
3

cos 

11p
6

sin 

3p
4

tan 

7p
6

Exercise  5

1.6 Trigonometric equations
We can use related angles to help solve trigonometric equations, especially without a
calculator.

Example

Solve for 

Thinking of the graph of sin x°, it is clear these are the only two answers:

 1 x° � 30°, 150°
 1 x° � 30°, 1180 � 30 2°

 1  sin x° �
1
2

 1 2 sin x° � 1
 2 sin x° 	 3 � 4

0° � x° 6 360°.2 sin x° 	 3 � 4

30�
S A

T C

It is very important to take
account of the domain.

y y � sin x�

x�

Example

Find the exact value of and 

This is the bow-tie diagram in radians:

tan 

7p
4

.cos 

4p
3

, sin 

7p
6

S A

0

� � ��

� �� 	 

�

�2   � 

T C

2
�

2
�3

For we need to find the related acute angle.

Since is in the third quadrant, is negative.

So 

Considering 

Since is in the third quadrant, is negative.

So 

Considering 

Since is in the fourth quadrant, is negative.

So tan 

7p
4

� �tan 

p

4
� �1

tan 

7p
4

7p
4

 1 u �
p

4

 2p � u �
7p
4

tan 

7p
4

:

sin 

7p
6

� �sin 

p

6
� �

1
2

sin 

7p
6

7p
6

 1 u �
p

6

 p 	 u �
7p
6

sin 

7p
6

:

cos 

4p
3

� �cos 

p

3
� �

1
2

cos 

4p
3

4p
3

 1 u �
p

3

 p 	 u �
4p
3

cos 

4p
3

,

S A

T C

S A

T C

S A

T C
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The algebraic method can be used in conjunction with a calculator to solve any equation.

Example

Solve for 

u � 2.21, 5.36

0 � u 6 2p.7 � 3 tan u � 11

Example

Solve for 

Noting the domain, x° � 131.8°

0° � x° 6 180°.5 � 2 sec x° � 8

Example

Solve for 

Use a calculator to find 

Cos is negative in the second and third quadrants.

 1 u � 0.637, 1.46
 1 3u � 1.91, 4.37
 1 3u � p � 1.23, p 	 1.23

cos�1¢1
3
≤ � 1.23

 1  cos 3u � �
1
3

 1 3 cos 3u � �1
 3 cos 3u 	 5 � 4

0 � u 6 2p.3 cos 3u 	 5 � 4

S A

T C

A graphical method can also be used to solve trigonometric equations, using a
calculator.

Example

Solve for 

We know that and cos is negative in

the second and third quadrants.

 1 u �
5p
6

, 
7p
6

 1 u � ¢p �
p

6
≤, ¢p 	

p

6
≤

cos 

p

6
�
23
2

 1  cos u � �
23
2

 2 cos u 	 23 � 0

0 � u 6 2p.2 cos u 	 23 � 0

�/6
S A

T C

Example

Solve for 

We know that 3x means three full waves in 360° and so the period is 120°.

The other solutions can be found by adding on the period to these initial values:
x° � 25°, 105°, 145°, 225°, 265°, 345°

 1  x° � 25° or 105°
 1  3x° � 75° or 315°

 1 13x � 15 2° � 60° or 300°

 1 cos13x � 15 2° �
1
2

 2 cos13x � 15 2° � 1

0° � x° 6 360°.2 cos13x � 15 2° � 1

Example

Solve for 

Using a calculator:

x° � 11.5°, 168.5°

0° � x° 6 360°.5 sin x° 	 2 � 3

60�
S A

T C
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3 Solve these for 

a b c

d e f

4 Solve these for 

a b

c d

5 Solve for 

6 Solve for 

7 Solve for 

8 Solve for 

9 Solve for 

10 Solve these for 

a b c

d e f

g h i

j k l

m n o

p q r

s

11 Solve these for 

a b c

d e f

g h i

j k l

m n o

12 Solve for 

13 Solve for 

14 The height of a basket on a Ferris wheel is modelled by

where H is the height above the ground in metres and t is the time in minutes.
a How long does it take to make one complete revolution?
b Sketch the graph of the height of the basket during one revolution.
c When is the basket at its (i) maximum height (ii) minimum height?

15 The population of tropical fish in a lake can be estimated using

where t is the time in years. Estimate the population
a initially b after 3 years.
c Find the minimum population estimate and when this occurs.

P1t 2 � 6000 	 1500 cos 15t

H1t 2 � 21 � 18 sin ¢2p
3

 t≤

�p � u 6 p.5 	 2 sin ¢3u �
p

4
≤ � 6

0° � x° 6 720°.8 � 3 cos x° � 7

6 csc 4u � 3 � 112 	 cot u � 91 � 3 csc u � 11

8 sec u � 199 � 4 sin 3u � 67 � 2 tan 4u � 13

6 sin 2u � �13 cos 3u � 1 � 09 	 5 tan u � 23

6 � 5 sin u � 77 cos ¢u �
p

3
≤ � 425 cos u � 4 � �3

8 tan u � 2 � 179 cos u � �44 sin u � 1

0 � u 6 2p.

4 � 3 sin 30x° � 2

9 sec 4x° 	 3 � 216 cot x° � 1 � 84 sec x° 	 3 � 9

csc x° � 2 � 5sec x° � 37 	 11 tan 5x° � �9

8 cos 3x° 	 5 � 76 sin 2x° � 5 � �17 � 5 sin x° � 4

9 sin1x � 15 2° � �522 sin x° � 3 � �23 � 4 cos x° � 2

8 cos1x 	 20 2° � 54 sin x° � 3 � 06 cos x° � 5 � �1

5 tan x° � 1 � 74 cos x° � 33 sin x° � 1

0° � x° 6 360°.

�p � u 6 p.6 cos 3u 	 2 � �1

�180° � x° 6 180°.2 tan x° � 212

0° � x° 6 24°.6 sin 30x° � 3 � 0

0 � u 6 p.2 sin 4u 	 1 � 0

0° � x° 6 180°.23 tan 2x° � 1 � 0

6 cos 2u � �2274 � 2 sin 5u � 3

tan¢2u �
p

6
≤ �

1

23
cos 4u �

1
2

0 � u 6 2p.

sec 3x° � �24 sin13x � 15 2° � 2232 cos 2x° � �1

6 tan 4x° � 62 cos 3x° � 23sin 2x° �
1
2

0° � x° 6 360°.
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1 Solve these for 

a b c

d e f

g h i

2 Solve these for 

a b c

d e f

g h 23 sec u � 2sin¢u �
p

6
≤ �

23
2

3 tan u � 234 � 2 sin u � 33 tan u 	 2 � 5

tan u � �
1

23
sin u � �

1
2

cos u �
23
2

0 � u 6 2p.

6 cot x° � 1 � 5csc x° � 24 sin x° � 3 � 1

cos x° 	 1 � 02 cos x° � �232 sin x° 	 1 � 0

sin x° �
23
2

cos x° �
1
2

tan x° � 23

0° � x° 6 360°.

Here the period is and hence we can find all six solutions:

u � 0.637, 1.46, 2.73, 3.55, 4.83, 5.65

2p
3

Example

Solve for 

Here we notice that the domain includes negative angles. It is solved in the
same way.

sin is negative in the third and fourth quadrants: 

We know that 

so the related angles are and 

Hence 

Now we just need to ensure that we have all of the solutions within the domain
by using the period. These two solutions are both within the domain. The other
two solutions required can be found by subtracting a period:

u � �
5p
12

, �
p

12
, 

7p
12

, 
11p
12

 1 u �
7p
12

, 
11p
12

 2u �
7p
6

, 
11p

6

11p
6

.
7p
6

sin 

p

6
�

1
2

 1  sin 2u � �
1
2

 1 2 sin 2u � �1
 2 sin 2u 	 3 � 2

�p � u 6 p.2 sin 2u 	 3 � 2

S A

T C
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4 Find the length of this arc

5 The diagram below shows a circle centre O and radius 
The angle 
Find the shaded area.

[IB Nov 04 P1 Q9]

AOB � 135°.
OA � 5 cm.

40°
2.5 m

A B

O

5 cm

17 cm

x

60°

x°

70°

8 m

6 m

c d

21 mm

x�

17 mm20 mm

80�

30�

x

17 mm

7 In the triangle ABC, the side AB has length 5 and the angle BAC = 28°. For
what range of values of the length of BC will two distinct triangles ABC be
possible?

8 Find the exact value of each of these.

a b c d

e f sin 300° g tan 240° h cos 135°

i tan 330° j sec 60° k csc 240°

9 Sketch each of these graphs.
a b

c d

e

10 State the equation of the graph.
a b

y � arcsin u

y � 5 sec uy � 8 � 3 cos 4u

y � 4 sin1x � 30 2°y � 6 cos 2u � 1

cos 

7p
4

sin 

7p
6

tan 

5p
6

sin 

3p
4

cos 

2p
3

�

y

�

2

0

�4

y

20� 360�

x�

5

0

6 Find x in each triangle.
a b
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1.7 Inverse trigonometric functions
In order to solve trigonometric equations, we employed the inverse function.

For example, 

An inverse function is one which has the opposite effect to the function itself.

For an inverse function, the range becomes the domain and the domain becomes the
range.

Hence for the inverse of the sine and cosine functions, the domain is 

The graphs of the inverse trigonometric functions are:

y � arcsin u

3�1, 1 4 .

1 x° � arcsin¢1
2
≤

sin x° �
1
2

arcsin is the inverse sine

function (also denoted

).sin�1

More work is done on
inverse functions in
Chapter 3.

1�1 0

�
2

�
�2

y

�

y � arccos u

1�1 0

�
2

�
y

�

y � arctan u

0

�
2

�
�2

y

�

Review exercise

1 Express in degrees: a b

2 Express in radians: a 120° b 195°

3 Find the area of this segment.

5p
12

p

6

18 cm

70 cm
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11 Solve these for 

a b

c d

e

12 Solve these for 

a b

c d

e f

13 Solve these for 

a b

c d

14 Solve for [IB May 01 P1 Q2]

15 The angle satisfies the equation where is in degrees.
Find all the possible values of lying in the interval [0°, 90°].

[IB May 02 P1 Q10]

16 The height in cm of a cylindrical piston above its central position is given by

where t is the time in seconds, 

a What is the height after second? `

b Find the first time at which the height is 10 cm.

17 Let for 

a Sketch the graph of f(x).
b On the sketch, clearly indicate the coordinates of the x-intercept, the 

y-intercept, the minimum point and the endpoints of the curve of f(x).

c Solve [IB Nov 03 P1 Q14]f1x 2 � �
1
2

.

�4 � x � 4.f1x 2 � sin¢arcsin 
x
4

� arccos 
3
5
≤

1
2

0 � t �
p

4
.

h � 16 sin 4t

u

utan u 	 cot u � 3u

�
p

2
� x �

p

2
.2 sin x � tan x

3 sec x° � 7 � 09 tan 3x° � 17 � 0

8 sin 2x° 	 5 � 07 cos x° � 3 � 0

0° � x° 6 360°.

8 sin 3x° � 4 � 06 cos 2x° � 323

23 tan x° 	 1 � 44 sin x° 	 2 � 0

9 sin x° � 98 tan x° 	 8 � 0

0° � x° 6 360°.

23 tan 2u 	 1 � 0

2 sin 4u � 23 � 06 tan u � 6 � 0

2 cos u 	 23 � 02 sin u � 1 � 0

0 � u 6 2p.
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The first reference to quadratic equations
appears to be made by the Babylonians in
400 BC, even though they did not actually
have the notion of an equation. However,
they succeeded in developing an algorithmic
approach to solving problems that could be
turned into quadratic equations. Most of the
problems that the Babylonians worked on
involved length, hence they had no concept
of a negative answer. The Hindu
mathematician, Brahmagupta, undertook
more work in the seventh century and he
realised that negative quantities were
possible and he worked on the idea of letters
for unknowns. In the ninth century, in his
book Hisab al-jabr w’al-muqabala,Al-khwarizmi
solved quadratic equations entirely in words.
The word "algebra" is derived from the title
of his book. It was not until the twelfth
century that Abraham bar Hiyya ha-Nasi
finally developed a full solution to a
quadratic equation. USSR stamp featuring Al-khwarizmi

2 Quadratic Equations, Functions 
and Inequalities

2.1 Introduction to quadratic functions
Consider the curve What does it look like?

To draw the graph a table of values can be set up on a calculator or drawn on paper.

y � x2.

x 0 1 2 3

9 4 1 0 1 4 9
y 9 4 1 0 1 4 9
x2

�1�2�3



The standard quadratic function is where and

Its graph is known as a parabola. However, this is not the only form that

produces a parabolic graph. Graphs of the form are also parabolic, and an

example is shown below.

y2 � 2ax

b, c H �.

a H �, a � 0f1x 2 � ax2 � bx � c

2  Quadratic Equations, Functions and Inequalities
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The curve is shown below.

The maximum or minimum
turning point is the point
where the curve turns and has
its greatest or least value. This
will be looked at in the context
of other curves in Chapter 8.

x

y

y � x2

0

The main features of the curve are:

• It is symmetrical about the y-axis.
• The y-values are always greater than or equal to zero (there are no negative y-values).
• The minimum value is 

Now consider the curve This is the table of values:y � x2 � x � 2.

y � 0.

The curve is shown below.

x

y

y � x2 � x � 2

x � 0.5

(0.5,�2.25)

2�1 0

In this case:

• The line of symmetry is 
• The curve intersects the x-axis at and 
• The minimum value of the curve is 

This information can also be found on the calculator, and the displays for this are shown
below.

y � �2.25.
x � 2.x � �1

x � 0.5.

x

y

y2 � 2ax

0

Investigation

Sketch the following 12 curves using your calculator:

Use the graphs to deduce general rules. Think about about the following points:

• When do these curves have maximum turning points? When do they have minimum
turning points?

• What is the connection between the x-value at the turning point and the line of
symmetry?

• What is the connection between the x-intercepts of the curve and the line of
symmetry?

• Describe the intersection of the curve with the x-axis.

y � �x2 � 4x � 3y � �4x2 � 12x � 9y � �x2 � 3x � 7

y � 4x2 � 4x � 1y � �x2 � 4x � 4y � x2 � 7x � 9

y � �x2 � 4x � 6y � �x2 � 6x � 8y � 2x2 � 5x � 3

y � 2x2 � 5x � 2y � x2 � 4x � 4y � x2 � 5x � 6
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From this investigation, it is possible to deduce that:

• If the coefficient of is positive, the curve has a minimum turning point. If it is

negative, the curve has a maximum turning point.
• The x-value where the maximum or minimum turning point occurs is also the line of

symmetry.
• The line of symmetry is always halfway between the x-intercepts if the curve crosses

the x-axis twice.
• There are three possible scenarios for the intersection of the curve with the x-axis:

- It intersects twice.
- It touches the x-axis
- It does not cross or touch the x-axis at all.

In Chapter 1 transformations of curves were introduced. We will now look at three
transformations when applied to the quadratic function.

This translates (shifts) the curve left by a units if a is positive or right by a units if

a is negative. The curve does not change shape; it merely shifts left or right. Examples

are shown below.

y � x2

y � 1x � a 22

x2

x

y

y � (x � 2)2

�2 0

y � (x � 3)2

x

y

3
0

This translates (shifts) the curve up by a units if a is positive or down by a units if

a is negative. Once again, the curve does not change shape; it merely shifts up or down.

Examples are shown below.

y � x2

y � x2 � a

x

y

y � x2 � 1

1

0

x

y

0

�4

y � x2 � 4

In this case the curve does change shape.

If a is positive this stretches the curve parallel to the y-axis by scale factor a. If a

is negative the stretch is the same but the curve is also reflected in the x-axis. 

and are shown below.y � �2x2

y � 2x2

y � x2

y � ax2

2.2 Solving quadratic equations
Quadratic equations are equations of the form 

There are effectively two methods of solving a quadratic equation.

Solving a quadratic equation by factorisation

This is where the quadratic equation is rearranged to equal zero, the quadratic expression
is factorised into two brackets, and then the values of x for which each bracket equals
zero are found. The values of x that make the brackets zero are called the roots or zeros
of the equation and are also the x-intercepts of the curve.

ax2 � bx � c � 0.

x

y

y = 2x2

y = x2

y = �2x2

0

Factorisation was covered in
the chapter on presumed
knowledge.

Example

Solve the quadratic equation 

 1 x � 5 or x � �2
 1 x � 5 � 0 or x � 2 � 0

 1 1x � 5 2 1x � 2 2 � 0
 x2 � 3x � 10 � 0

x2 � 3x � 10 � 0.

2  Quadratic Equations, Functions and Inequalities

The parabola shape of a quadratic graph occurs in a number of natural settings. One possible
example is the displacement-time graph of a projectile, but it must be remembered that this
does not take into account the effect of air resistance. A suspension bridge provides a more
realistic example. When a flexible chain is hung loosely between two supports, the shape
formed by the chain is a curve called a catenary. However, if a load is hung from this chain,
as happens in a suspension bridge, then the curve produced is in fact a parabola. Hence the
shape of the suspending wires on the Golden Gate Bridge in San Francisco is a parabola.
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2.3 Quadratic functions
We can write quadratic functions in a number of different forms.

Standard form

This is the form where c is the y-intercept because 

Remember that if a is positive the curve will have a minimum point, and if a is negative

the curve will have a maximum turning point. If the curve is given in this form, then to

draw it we would usually use a calculator or draw a table of values.

Intercept form

This is the form where the quadratic function has been

factorised. In this form the x-intercepts are given by and since they are found

by letting Knowing the x-intercepts and the y-intercept, there is normally

enough information to draw the curve.

f1x 2 � 0.

�
c
d

�
b
a

f1x 2 � 1ax � b 2 1cx � d 2

f10 2 � c.f1x 2 � ax2 � bx � c

Example

Solve the quadratic equation 

 1 x �
1
2

 or x � 2

 1 2x � 1 � 0 or x � 2 � 0
 1 12x � 1 2 1x � 2 2 � 0

 2x2 � 5x � 2 � 0

2x2 � 5x � 2 � 0.

Example

Solve the quadratic equation using the quadratic formula.
In this case, and 

 1 x � 2, 
1
2

 1 x �
5 ;  3

4

 1 x �
5 ;225 � 16

4

 1 x �
5 ;21�5 22 � 412 2 12 2

212 2

 x �
�b ;2b2 � 4ac

2a

c � 2.b � �5a � 2,
2x2 � 5x � 2 � 0

Example

Solve the equation using the quadratic formula.

In this case, and 

 1 x �
�6 ;262 � 411 2 1�10 2

211 2

 x �
�b ;2b2 � 4ac

2a

c � �10.b � 6a � 1,
x2 � 6x � 10 � 0

x2 � 6x � 10 � 0

Using the formula to solve a quadratic equation

Some quadratic equations cannot be factorised, but still have solutions. This is when the
quadratic formula is used:

x �
�b ;2b2 � 4ac

2a

a, b and c refer to 

is known as the discriminant.

We begin by looking at the previous example, which was solved by factorisation, and
show how it can be solved using the quadratic formula.

b2 � 4ac

ax2 � bx � c � 0. The formula works for all
quadratic equations,
irrespective of whether they
factorise or not, and will be
proved later in the chapter.

2  Quadratic Equations, Functions and Inequalities

 1 x � �7.36, 1.36

 1 x �
�6 ;276

2

 1 x �
�6 ;236 � 40

2

Exercise  1

1 Find the solutions to the following quadratic equations using factorisation.

a b 

c d
2 Find the x-intercepts on the following curves using factorisation.

a b c 

d e 
3 Find the solutions to the following quadratic equations using the quadratic

formula.

a b c 

d e 
4 Find the x-intercepts on the following curves using the quadratic formula.

a b c 

d e y � 1 � 2x2 � 3xy � 2x2 � 5x � 11

y � 3x2 � 7x � 3y � x2 � 4x � 9y � x2 � 6x � 3

3x2 � 5x � 3 � 05x2 � 9x � 2 � 0

2x2 � 7x � 2 � 0x2 � 5x � 5 � 0x2 � 6x � 6 � 0

y � 3x2 � 11x � 6y � 6x2 � 5x � 6

y � 2x2 � 5x � 12y � x2 � 5x � 24y � x2 � 7x � 10

x˛1x � 1 2 � x � 32x2 � 17x � 8 � 0

x2 � x � 6 � 0x2 � 5x � 4 � 0
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Turning point form

This is when the function is in the form The graph is the curve

which has been translated p units to the right, stretched parallel to the y-axis by

scale factor r, then translated q upwards.

In this form the maximum or minimum turning point has coordinates (p,q). This is the
reason:

If r is positive, then since is never negative, the least possible value of f(x) is

given when Hence f(x) has a minimum value of q, which occurs when

If r is negative, then since is never negative, the greatest possible value of f(x)

is given when Hence f(x) has a maximum value of q, which occurs when

Remember that is the line of symmetry of the curve.

Completing the square
Writing a quadratic in the form is known as completing the square.

This is demostrated in the following examples.

r˛1x ;  p 22 
;  q

x � p

x � p.

1x � p 22 � 0.

1x � p 22

x � p.

1x � p 22 � 0.

1x � p 22

y � x2

f1x 2 � r˛1x � p 22 � q.

2  Quadratic Equations, Functions and Inequalities
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Example

Sketch the curve 
The y-intercept is at 
Factorising the function:

So to find the x-intercepts solve 

Hence the x-intercepts are and 

The curve has a positive coefficient of so it has a minimum turning point.

This point occurs halfway between and i.e. at 

When So the minimum

point is 

A sketch of the graph is shown below.

¢�3
4

, �
1
8
≤.
f1x 2 � 2¢�3

4
≤2

� 3¢�3
4
≤ � 1 �  �

1
8

.x � �
3
4

,

�
3
4

.�1,�
1
2

x2,

�1.�
1
2

12x � 1 2 1x � 1 2 � 0.
f1x 2 � 12x � 1 2 1x � 1 2

f10 2 � 1.
f1x 2 � 2x2 � 3x � 1.

x

y

(0,1)
(�1,0)

� 0,1
2� ,3

4 �
1
8

f(x) � 2x2 � 3x �1

This technique will be
needed in later chapters.

Example

Complete the square on the function 

In this case the coefficient of is 2 and we need to make it 1: hence the 2 is

factorised out, but the constant is left unchanged.

Following the same procedure as the example above:

 f1x 2 � 2¢x �
3
4
≤2

�
9
8

� 8 � 2¢x �
3
4
≤2

�
55
8

 f1x 2 � 2B¢x �
3
4
≤2

�
9

16
R � 8

f1x 2 � 2¢x2 �
3
2

 x≤ � 8

x2

f1x 2 � 2x2 � 3x � 8.

Example

Write the function in the form

We know from the expansion of brackets that this equals

Hence the coefficient of x is always twice the value of p.

Therefore plus or minus a number. To find this we subtract

because it is not required and then a further 27 is subtracted.

Hence f1x 2 � 1x � 3 22 � 9 � 27 � 1x � 3 22 � 36.

32

f1x 2 � 1x � 3 22
x2 � 2ax � a2.

1x � a 2 1x � a 2

1x � p 22 � q.f1x 2 � x2 � 6x � 27

Method for completing the square on ax2 � bx � c

Example

Complete the square on the function 

Step 1 

Step 2 

Step 3 

Step 4 1 f1x 2 � �1x � 3 22 � 2

1 f1x 2 � �1x � 3 22 � 9 � 11

1 f1x 2 � � 3 1x � 3 22 � 9 4 � 11

1 f1x 2 � �1x2 � 6x 2 � 11

f1x 2 � �x2 � 6x � 11.

1. Take out a, leaving the constant alone: 

2. Complete the square: 

3. Multiply out the outer bracket.
4. Tidy up the constants.

aB¢x �
b
2a
≤2

� ¢ b
2a
≤2R � c

a˛¢x2 �
b
a

 x≤ � c
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Complete the square on the function and hence find

the maximum or minimum turning point.

The curve will have its least value when that is and this

least value will be Hence the curve has a minimum turning point, which is

¢3
2

, 
9
2
≤.

9
2

.

x �
3
2

,x �
3
2

� 0,

 1 f1x 2 � 2¢x �
3
2
≤2

�
9
2

 1 f1x 2 � 2¢x �
3
2
≤2

�
9
2

� 9

 1 f1x 2 � 2B¢x �
3
2
≤2

�
9
4
R � 9

 1 f1x 2 � 21x2 � 3x 2 � 9

 f1x 2 � 2x2 � 6x � 9

f1x 2 � 2x2 � 6x � 9

Example

Without using a calculator, sketch the curve 
From this form of the curve we note that the y-intercept occurs when 
and is therefore 
By turning it into intercept form the x-intercepts can be found.

Hence the x-intercepts are when

Complete the square to transform it into turning point form:

Since the coefficient of is positive, we know that the curve has a minimum

turning point with coordinates ¢�3
2

, �
25
2
≤.

x2

 1 y � 2¢x �
3
2
≤2

�
25
2

 1 y � 2¢x �
3
2
≤2

�
9
2

� 8

 1 y � 2B¢x �
3
2
≤2

�
9
4
R � 8

y � 21x2 � 3 2 � 8

 1 x � �4, x � 1
 1x � 4 2 1x � 1 2 � 0

 1 y � 21x � 4 2 1x � 1 2
 y � 21x2 � 3x � 4 2

y � �8.
x � 0

y � 2x2 � 6x � 8.

If the quadratic equation
does not factorise, use the
formula. If there is no
solution the curve is entirely
above or below the x-axis.

Example

By using a method of completing the square without a calculator, sketch the

curve 
In this form we can see that the curve cuts the y-axis at (0,4).

To find the x-intercepts it is necessary to solve 

Using the quadratic formula: 

This gives no real roots and hence the curve does not cut the x-axis.
Hence in this situation the only way to find the turning point is to complete
the square.

Since the coefficient of is positive, we know that the curve has a minimum

turning point with coordinates ¢1
3

, 
11
3
≤.

x2

 1 y � 3¢x �
1
3
≤2

�
11
3

 1 y � 3¢x �
1
3
≤2

�
1
3

� 4

 1 y � 3B¢x �
1
3
≤2

�
1
9
R � 4

 1 y � 3¢x2 �
2
3
≤ � 4

 y � 3x2 � 2x � 4

x �
2 ;24 � 48

6
�

2 ;2�44
6

3x2 � 2x � 4 � 0.

y � 3x2 � 2x � 4.

x

y

0

4
,1

3
11
3

y � 3x2 � 2x �4

Example

x

y
y � 2x2 � 6x �8

(�4,0) (1,0)

(0,�8)

� ,3
2 �

25
2

0

Hence the curve is:

We could sketch the curve from the intercept form alone, but if the curve
does not cut the x-axis the turning point form must be used.

All these curves can be sketched using a calculator and the x-intercepts, y-intercept and
the maximum or minimum turning point found.



This method is not often used because the answer looks identical to the answer found
using the quadratic formula. In fact the formula is just a generalised form of completing
the square, and this is how we prove the quadratic formula.

We begin with 

 1 x �
�b ;2b2 � 4ac

2a

 1 x �
b
2a

�
;2b2 � 4ac

2a

 1 ¢x �
b
2a
≤2

�
b2 � 4ac

4a2

 1 ¢x �
b
2a
≤2

�
4ac � b2

4a2 � 0

 1 ¢x �
b
2a
≤2

�
b2

4a2 �
c
a

� 0

 1 a¢x �
b
2a
≤2

�
b2

4a
� c � 0

 1 aB¢x �
b
2a
≤2

�
b2

4a2R � c � 0

 1 a¢x2 �
b
a
≤ � c � 0

ax2 � bx � c � 0
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Example

Solve the quadratic equation by completing the square.

 1 x � �3 ; 226

 1 x � 3 � ;224

 1 1x � 3 22 � 24

 1 1x � 3 22 � 24 � 0

 1 1x � 3 22 � 9 � 13 � 0

 x2 � 6x � 13 � 0

x2 � 6x � 13 � 0

From here it should be noted

that is the line of

symmetry of the curve and the
x-value where the maximum
or minimum turning point
occurs.

x � �
b
2a

Exercise  2

1 Complete the square:

a b c

d e

2 Complete the square and hence sketch the parabola, showing the coordi-
nates of the maximum or minimum turning point and the x- and y-intercepts.

a b c

d e f

g h i

3 Draw each of these on a calculator and identify the maximum or minimum
turning point, the x-intercepts and the y-intercept.

a b 

c d y � �3x2 � 5x � 9y � 5x2 � 6x � 16

y � �x2 � 5x � 7y � 2x2 � 5x � 7

y � �2x2 � 3x � 4y � 3x2 � 5x � 2y � 4x2 � 3x � 1

y � 2x2 � 10x � 11y � �x2 � 8x � 3y � �x2 � 4x � 3

y � x2 � 5x � 2y � x2 � 4x � 3y � x2 � 6x � 4

5x2 � 7x � 33x2 � 6x � 8

�x2 � 3x � 5x2 � 3x � 3x2 � 2x � 5

2.4 Linear and quadratic inequalities
Linear inequalities
The equation represents a straight line. We now need to consider what is
meant by the inequalities and y 6 mx � c.y 7 mx � c

y � mx � c

Example

Using a calculator, sketch the curve showing the coordi-

nates of the minimum turning point and the x- and y-intercepts.

y � x2 � 5x � 3

It is also possible to solve quadratic equation using the method of completing the square.



Quadratic inequalities
Any inequality that involves a quadratic function is called a quadratic inequality.
Quadratic inequalities are normally solved by referring to the graph. This is best
demonstrated by example.
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Consider the line At any point on the line the value of y is equal to the value
of What happens when we move away from the line in a direction parallel to the
y-axis? Clearly the value of stays the same, but the value of y will increase if we
move in the direction of positive y and decrease if we move in the direction of negative
y. Hence for all points above the line and for all points below the line

This is shown below.y 6 x � 2.
y 7 x � 2

x � 2
x � 2.

y � x � 2.
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x

y

0

x � 2 fixed
y increasing

x � 2 fixed
y decreasing

y �
 x 

�
 2

Example

Sketch the region of the x, y plane represented by the inequality

First we consider the line 

Rearranging this into the form gives 

This line has gradient and a y-intercept of 2. Since “greater than” is

required, the area above the line is needed. This is shown below.

�
3
2

y � �
3
2

 x � 2.y � mx � c

2y � 3x � 4.
2y � 3x 7 4.

x

y

0

(0, 2)
,4

3 0

2y � 3x � 4

The shading shows the 
non-required area. The line
is not included.

Now we consider how to solve linear inequalities.

Consider the fact that If the same number is added to both sides of the
inequality, then the inequality remains true. The same is true if the same number is
subtracted from both sides of the inequality.

10 7 9.

Example

Find the solution set to 

Alternatively:

 1 x 6 �
1
2

 1 �1 7 2x
 1 2x � 2 7 3 � 4 � 4x

 21x � 1 2 7 3 � 411 � x 2

 1 x 6 �
1
2

 1 �2x 7 1
 1 2x � 2 7 3 � 4 � 4x

 21x � 1 2 7 3 � 411 � x 2
21x � 1 2 7 3 � 41x � 1 2 .

Example

Find the solution set that satisfies 

Begin by sketching the curve This is essential in these

questions. However, we are interested only in whether the curve has a maximum

or minimum point and where the x-intercepts are.

Since the coefficient of is positive, the curve has a minimum point and the

x-intercepts can be found by factorisation.

 1 x � �5, x � 3
 1 1x � 5 2 1x � 3 2 � 0
x2 � 2x � 15 � 0

x2

y � x2 � 2x � 15.

x2 � 2x � 15 7 0.

If the quadratic formula
does not factorise, use the
formula or a graphing
calculator.

This argument can now be extended to Hence all points above the line fit
the inequality and all points below the line fit the inequality y 6 mx � c.y 7 mx � c

y � mx � c.

Now consider multiplication. If both sides are multiplied by 3, this gives 
which is still a true statement. If both sides are multiplied by then 
which is no longer true. Division by a negative number leads to the same problem.

This demonstrates the general result that whenever an inequality is multiplied or
divided by a negative number then the inequality sign must reverse.

In all other ways, linear inequalities are solved in the same way as linear equations. We
can avoid this problem by ensuring that the coefficient of x always remains positive.

�30 7 �27,�3
30 7 27,



1 Show these inequalities on diagrams.
a b

c d

2 Without using a calculator, find the range(s) of values of x that satisfy these
inequalities.
a b

c d

e f

g h

i j 

k l

3 Using a calculator, find the range(s) of values of x that satisfy these 
inequalities.

a b

c d

e 4x2 � 4x � 1

2x2 � 4x � 3 � x2 � x�4x2 � 7x � 1 6 0

x2 � 5x � 5 7 0x2
7 6x � 4

4 � 11x � 6x2
6 0x2 � 12x � 4 � �x2 � 5x � 4

�x2 � x � 6 � 0x2 � 3x � 2 6 0

x2 � 7x � 12 7 02x2 � 13x � 21 � 0

12x � 1 2 13 � 4x 2 � 01x � 6 2 15 � x 2 6 0

1x � 3 2 1x � 5 2 7 0�213x � 1 2 � 41x � 2 2 � 12

7x � 5 6 2x � 5x � 5 7 4 � 3x

3x � 4y � 5 � 0x � 2y � 5

y 6 �3x � 8y 7 2x � 5

51

This can also be done using a calculator to draw the graph, finding the x-intercepts and
then deducing the inequalities.
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The question now is “When is this curve greater than zero?” The answer to
this is when the curve is above the x-axis.

This is shown below.

y

x0 (3,0)(�5,0)

Hence the solution set is and x 7 3x 6 �5

The answer needs to be
represented as two
inequalities.

Example

Using a calculator, find the solution set to 
The calculator screen dump is shown below.

x2 � 5x � 3 � 0.

From this we can deduce that the solution set is x � 0.697, x � 4.30.
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Exercise  3

2.5 Nature of roots of quadratic equations
We now need to take a more in-depth look at quadratic equations.

Consider the following equations and what happens when they are solved using the
formula.

The shading shows the 
non-required area. The line
is not included.

y

x0

y � x2 � 2x � 15

(3,0)(�5,0)

This curve is shown below. Example

Find the solution set that satisfies 

Consider the curve Since the coefficient of is negative,

the curve has a maximum turning point.

Solving 

The curve is shown below.

 1 x � 3, x � �2
 1 1�x � 3 2 1x � 2 2 � 0

�x2 � x � 6 � 0

x2y � �x2 � x � 6.

�x2 � x � 6 7 0.

Since the question asks when the curve is greater than zero, we need to know
when it is above the x-axis. Hence the solution set is �2 6 x 6 3.

x

y

0

y � x2 � x � 6

3�2

In this case the solution can
be represented as a single
inequality.
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a

b 

c

This suggests that the roots of quadratic equations can be classified into three categories
and that there are conditions for each category.

In case a) we see that the discriminant is greater than zero, and since the square root
exists the produces two different roots. Hence case a) is two real distinct roots, and
the condition for it to happen is 

In case b) we see that the discriminant is equal to zero so there is only one repeated root,

which is Hence case b) is two real equal roots, and the condition for it to happen

is In this case the maximum or minimum turning point is on the x-axis.

In case c) we see that the discriminant is less than zero and so there are no real answers.

There are roots to this equation, which are called complex roots, but these will be met

formally in Chapter 17. Hence case c) is no real roots and the condition for it to happen

is b2 � 4ac 6 0.

b2 � 4ac � 0.

x � �
b
2a

.

b2 � 4ac 7 0.
;

 1 x �
�6 ;2�4

2

 1 x �
�6 ;236 � 40

2

 1 x �
�6 ;216 22 � 411 2 110 2

211 2

x2 � 6x � 10 � 0

 1 x �
�6
2

� �3

 1 x �
�6 ;236 � 36

2

 1 x �
�6 ;216 22 � 411 2 19 2

211 2

x2 � 6x � 9 � 0

 1 x � �0.551, �5.54

 1 x �
�6 ;224

2

 1 x �
�6 ;236 � 12

2

 1 x �
�6 ;216 22 � 411 2 13 2

211 2

x2 � 6x � 3 � 0
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x

y

0(�3, 0)

y � x2 � 6x � 9

x

y

0

y � x2 � 6x � 10

b2 � 4ac 6 0b2 � 4ac � 0b2 � 4ac 7 0

x

y

0 x

y

0
x

y

0

x

y

0 x

y

0
x

y
0

If a question talks about the
condition for real roots then

is used.b2 � 4ac � 0

Example

Determine the nature of the roots of 

In this case 

Hence and the roots of the equation are real and distinct.b2 � 4ac 7 0

b2 � 4ac � 9 � 4 � 5.

x2 � 3x � 4 � 0.

Example

If has a repeated root, find the value of a.
This is an alternative way of asking about the conditions for real equal roots.

For this equation to have a repeated root, 

 1 a � 8
 1 64 � 8a � 0

b2 � 4ac � 0.

ax2 � 8x � 2 � 0

Example

Show that the roots of are real for all values of a

and b

The condition for real roots is 

Now the square of any number is always either positive or zero and hence the
roots are real irrespective of the values of a and b.

 1 1a � 2b 22 � 0

 1 a2 � 4ab � 4b2 � 0

 1 a2 � 2ab � b2 � 6ab � 0

 1 1a � b 22 � 6ab � 0

b2 � 4ac � 0.

1a, b H � 2 .

2ax2 � 1a � b 2x � 3b � 0

x

y

0

y � x2 � 6x � 3

�0.551
�5.54

A summary of this is shown in the table below.



If the straight line is a tangent to the parabola (it touches the curve at only one point),

then there is one root which is the point of contact and hence this is the case of real,

equal roots i.e. for the resulting equation. This is shown below.b2 � 4ac � 0
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An application of the nature of roots of quadratic
equations
Consider the straight line and the parabola In the figure

below we see that the line intersects the curve in two places.

y � x2 � x � 11.y � 2x � 1

This is the resulting
quadratic equation.

x

y

0

x

y

0

x

y

0

Example

Prove that is a tangent to 
If this is true, then the equation should have real equal
roots, as there is only one point of contact.

In this case 
Hence it does have real equal roots and is a tangent to
y � 4x˛1x � 2 2 .

y � 4x � 9
b2 � 4ac � 144 � 144 � 0.

1 4x2 � 12x � 9 � 0

4x � 9 � 4x˛1x � 2 2
y � 4x˛1x � 2 2 .y � 4x � 9

Exercise  4

1 Determine the nature of the roots of the following equations, but do not
solve the equations.

a b c

d e f

2 For what values of p is a perfect square?

3 Find the value of q if has real equal roots.

4 Prove that will always have real roots independent

of the value of q.

5 Find a relationship between a and b if the roots of

are equal.

6 If x is real and prove that 

7 Find the values of p for which the expression is a 

perfect square.

8 If show that there is no real value of r.

9 Find the value of m for which the curve touches the

x-axis.

10 Prove that is a tangent to the curve y � x2 � 5x � 6.y � x � 3

y � 8mx2 � 3mx � 1

x2 � 13 � 4r 2x � 6r2 � 2 � 0,

2p � 3 � 4px � px2

s2 � 4s � 12 � 0.s �
4x2 � 3
2x � 1

,

2abx2 � x2a � b � b2 � 2a � 0

qx2 � 3x � 6 � 4q � 0

2x2 � 3x � q � 0

4x2 � px � 49 � 0

x2 � 1 � 3x � 44x2 � 4x � 1 � 0�2x2 � 7x � 2 � 0

3x2 � 6x � 4 � 02x2 � 4x � 7 � 0x2 � 3x � 4 � 0
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x

y y � 2x � 1

y � x2 � x � 11(�2,�5)

(0,�1)

(0.5, 0)

(5, 9)

To find the x-coordinates of this point of intersection, we solve the equations
simultaneously.

Hence what can be called the resulting quadratic equation has two real distinct roots.
This gives a method of finding the different conditions for which a line and a parabola
may or may not intersect. There are three possible cases.

If the parabola and the straight line intersect then there are two roots, and hence this is

the case of two real different roots i.e. for the resulting quadratic

equation. This is shown below.

b2 � 4ac 7 0

 1 x � 5, x � �2

 1 1x � 5 2 1x � 2 2 � 0

 1 x2 � 3x � 10 � 0

 1 2x � 1 � x2 � x � 11

If the parabola and the straight line do not intersect then there are no real roots, and

hence this is the case of no real roots i.e. for the resulting quadratic

equation. This is shown below.

b2 � 4ac 6 0



12

The diagram above shows a triangle ABC, in which unit, units and
units. Find an expression for cos C in terms of c.

Given that show that Find the set of values of c

which satisfy this inequality.

5c2 � 4c � 3 6 0.cos C 7

4
5

,

AC � c
BC � 2AB � 1
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11 For each part of this question, which of the following statements apply?
i The straight line is a tangent to the curve.

ii The straight line cuts the curve in two distinct points.
iii The straight line neither cuts nor touches the curve.

a Curve: b Curve: 

Line: Line: 

c Curve: d Curve: 

Line: Line:  y � 10x � 11 � 0 y � 31x � 3 2

 y � 13x � 4 2 1x � 1 2 y � 9x2 � 3x � 10

 y � 2x � 1 � 0 y � x � 3

 y � 7x˛1x � 1 2 y � 3x2 � 4x � 2
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Review exercise

1 Express as the difference of two squares.

2 Given that find the set of values of x for which

[IB May 87 P1 Q9]

3 Consider the equation Find the

set of values of k for which the equation has real roots. [IB Nov 03 P1 Q13]
4 Solve the following simultaneous equations.

i ii 

5 The equation has two distinct real roots. Find

the set of possible values of k. [IB May 01 P1 Q18]

6 For what values of m is the line a tangent to the parabola

[IB Nov 00 P1 Q13]

7 Prove that if for all real x, then 

8 By letting find the values of x for which 

9 Knowing that the values of x satisfying the equation 

are real numbers, determine the range of possible values of 
[IB Nov 91 P1 Q13]

10 Express in the form where a and b are 

constants. State the coordinates of the maximum point on the graph of

and also state what symmetry the graph has.

11 William’s father is two years older than his mother and his mother’s age is
the square of his own. The sum of all three ages is 80 years. How old is
William?

y � 12 � x 2 1x � 5 2

a � 1x � b 22,12 � x 2 1x � 5 2

k H �.

2x2 � kx � k � 0

x
1
4 � 2x�1

4 � 1.y � x
1
4

0 6 k 6 8.x2
7 k˛1x � 2 2

y � 4 � x2?

y � mx � 5

kx2 � 3x � 1k � 2 2 � 0

x2 � 3xy � 2y2 � 02x2 � 3xy � y2 � 8

x � y � 9y � x � 2

11 � 2k 2x2 � 10x � k � 2 � 0, k H �.

y 6 0.

y � x2 � 2x � 3 1x H � 2 ,

x˛14 � x 2
1
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Calculators are an integral part of school mathematics, and this course requires the
use of a graphing calculator. Although much of the content of this chapter is
“ancient” mathematics in that it has been studied for thousands of years, the use of
the calculator in its learning is very recent. Devices for calculating have been around
for a long time, the most famous being the abacus. Calculating machines have been
built at various times including the difference engine shown below left, built by
Charles Babbage in 1822. However, hand-held calculators did not become available
until the 1970s, and the first graphing calculator was only produced in 1985. In
many ways, the advent of the graphing calculator has transformed the learning of
functions and their graphs, and this is a very recent development. What will the next
25 years bring to revolutionise the study of mathematics? Will it be that CAS
(computer algebra systems) calculators will become commonplace and an integral
part of school mathematics curricula and thus shift the content of these curricula?

3 Functions

3.1 Functions
A function is a mathematical rule. Although the word “function” is often used for any
mathematical rule, this is not strictly correct. For a mathematical rule to be a function,
each value of x can have only one image.

Many to one One to one  One to many 
(a function) (a function which (not a function)

has an inverse)

These are arrow 
diagrams.



A simple test can be performed on a graph to find whether it represents a function: if
any vertical line cuts more than one point on the graph, it is not a function.

Definitions
Domain – the set of numbers that provide the input for the rule.
Image – the output from the rule of an element in the domain.
Range – the set of numbers consisting of the images of the domain.
Co-domain – a set containing the range.
Function – a rule that links each member of the domain to exactly one member of the
range.

Notation
Functions can be expressed in two forms:
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Example

Find f(2) for 

 � 8 � 8 � 14 � 1 � 15
 f12 2 � 23 � 212 22 � 712 2 � 1

f1x 2 � x3 � 2x2 � 7x � 1.

f1x 2 � 2x � 1
f : x S 2x � 1

The second form is more common but it is important to be aware of both forms.

Finding an image
To find an image, we substitute the value into the function.

Domains and ranges are sets of numbers. It is important to remember the notation of the
major sets of numbers.

– the set of integers 

– the set of positive integers 
– the set of natural numbers 

– the set of rational numbers 

– the set of real numbers.

If the domain is not stated, it can be assumed to be the set of real numbers. However, if a
domain needs to be restricted for the function to be defined, it should always be given.
This is particularly true for rational functions, which are covered later in the chapter.

�

bx : x �
p

q
, p, q H � q � 0r�

50, 1, 2, 3, p 6�

51, 2, 3, p 6��

5 p , �3, �2, �1, 0, 1, 2, 3, p 6�

Rational numbers are
numbers that can be 
expressed as a fraction of
two integers.

This means that a function
may have range 
but the co-domain could
be stated to be The
term “co-domain” will not
be used on examination
papers.

�.

y 7 0

All numbers on the num-
ber line are real numbers
(including irrational num-
bers such as ).p, 22, 23
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1 For the following functions, find f(4).
a b

c d

2 For the following functions, find 

a b

c d

3 Draw an arrow diagram for with domain and
state the range.

4 Draw an arrow diagram for with domain and
state the range.

5 Draw the graph of for and state the range.
6 Draw the graph of for and state the range.

7 Draw the graph of for and state the range.

8 Draw the graph of for and state the

range.

9 For what is the range?
10 For each of these graphs, state the domain and range.

a b

f1x 2 � 2x � 5, x H ��,

�1 � x � 5p1x 2 � 2x3 � 7x � 6

0 � x � 6g1x 2 � x2 � x � 6

�3 � x � 2f1x 2 � 9 � 2x
0 � x � 7f1x 2 � x � 5

5�3, �1, 1, 66g1x 2 �
x � 3

x

5�1, 1, 56f1x 2 � 4x � 3

g1t 2 �
17 � t

t2 , t � 0g˛1t 2 � t3 � 4t2 � 5t � 7

g1t 2 � 3t2g1t 2 � 6t � 5

g1�2 2 .

f1x 2 �
24
x

, x � 0f1x 2 � x2 � 3

f1x 2 � 9 � 2xf1x 2 � 3x � 1

Example

For with a domain find the range.5�3, �1, 2, 36,f1t 2 � t2 � 3

Domain
f

Range

�3

�1

2

6

�2

1
3

The range is the set of images � 5�2, 1, 66.

Use an arrow diagram.

Remember, each value of
x has only one image in
the range.

Example

For the function 
(a) find f(1)
(b) sketch the graph of f(x)
(c) state the range of this function.

(a) 
(b)

f11 2 � 211 2 � 3 � 5

f1x 2 � 2x � 3, 0 � x � 5

3

13

0 5 x

y

(c) The range is the set of images � 53 � y � 136.

Example

For find f(2), f(2x) and 

To find f(2x), substitute 2x for x in the rule f(x).

So 

Similarly,

 �
9 � 15x � 3x2

x2

 �
9
x2 �

15
x

� 3

 f¢3
x
≤ � ¢3

x
≤2

� 5¢3
x
≤ � 3

 � 4x2 � 10x � 3

 f12x 2 � 12x 22 � 512x 2 � 3

 � 11
 � 4 � 10 � 3

 f12 2 � 22 � 512 2 � 3

f¢3
x
≤.f1x 2 � x2 � 5x � 3,

Exercise  1

3

11

�3 20 x

y

10

2

18

x

y

3 7

c

4

10�2 x

y

11 For find

a f(2x) b c

12 For find

a g(2x) b c g(6x) d

13 For find

a b h(4x) c d

14 For find k˛1x � 9 2 .k˛1x 2 � x � 9,

h1x � 2 2h¢1
x
≤h1�x 2

h1x 2 �
x

2 � x
,

g12x � 1 2g1x � 4 2

g1x 2 � x2 � 3x,

f¢1
x
≤f1�x 2

f1x 2 � 3x � 2,



 � 2x2 � 10x � 5

 � 2x2 � 10x � 4 � 1
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3.2  Composite functions
When one function is followed by another, the resultant effect can be expressed as a
single function. When functions are combined like this, the resultant function is known
as a composite function.
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Example

Find if

 g1x 2 � x � 4
 f1x 2 � 2x

h1x 2 � g1f˛1x 2 2

f
x

g

2 4 8

3 6 10

This composite function is f followed by g.
So in this example the effect is then 
h1x 2 � 2x � 4

�4.� 2

g(f(x)) is f followed by g (the order is important).

This was a very simple example, but for more complicated functions it is useful to find
the composite function in two steps like this:

(substituting 2x for x in g(x))

 � 2x � 4

 g1f1x 2 2 � g12x 2

f(g(x)) is sometimes also written 1f � g 2 1x 2

Example

For and find g(f(x)).

 � 4x2 � 6x � 6

 � 4x2 � 4x � 1 � 10x � 5 � 2

 � 12x � 1 22 � 512x � 1 2 � 2

 g˛1f˛1x 2 2 � g˛12x � 1 2
g1x 2 � x2 � 5x � 2,f1x 2 � 2x � 1

It is important to note that the order of the functions is very important.

In general, g1f1x 2 2 � f1g1x 2 2 .

In the example

 � 21x2 � 5x � 2 2 � 1

 f1g1x 2 2 � f1x2 � 5x � 2 2

Example

For and find 

 � sin12 sec u 2 � 4 sec u
 p1h1u 2 2 � p1sec u 2

p1h1u 2 2 .p1u 2 � sin 2u � 4u,h1u 2 � sec u

Example

For and find (a) g(f(4)) (b) f(g(x))

(a)     (b) 

 �
14
3

 �
2

x � 3
 �

2
3

� 4

 �
2

x � 4 � 1
 g1f14 2 2 � g¢2

3
≤

 f1g1x 2 2 � f1x � 4 2f14 2 �
2

4 � 1
�

2
3

g1x 2 � x � 4,f1x 2 �
2

x � 1
, x � 1,

Note that we did not find
g(f(x)) here in order to
find g(f(4)). It is generally
easier to just calculate f(4)
and then input this value
into g(x).

Exercise  2

1 For and find
a  f(g(2)) b g(f(0))

c d  g(f(x))

2 For and find

a p(h(2)) b  

c d h(p(x))

3 For and find

a b

c d 
4 For each pair of functions, find (i) f(g(x)) and (ii) g(f(x)).

a b 

c d

e f

g f1x 2 � sin 2x, g1x 2 � x2 � 7

f1x 2 � x6 � 2x � 3, g1x 2 � x2 � 4f1x 2 � x3 � x � 7, g1x 2 � 2x � 3

f1x 2 � cos x, g1x 2 � 3x2f1x 2 � x3, g1x 2 � x2 � 6

f1x 2 � x2 � 4, g1x 2 � 3x � 5f1x 2 � 2x � 1, g1x 2 � x2

f1g1u 2 2f1g1�2p 2 2

f¢g¢p
3
≤≤g¢f¢p

2
≤≤

g1u 2 � u �
p

3
,f1u 2 � sin u

p1h1�3 2 2

h1p1�2 2 2

p1x 2 � x2 � 3,h1x 2 � 3x � 2

f1g1�1 2 2

g1x 2 � 4x,f1x 2 � x � 6



When testing whether a mapping was a function, we used a vertical line test. To test if a
mapping is a one-to-one correspondence, we can use a vertical and horizontal line test.
If the graph crosses any vertical line more than once, the graph is not a function. If the
graph crosses any horizontal line more than once, there is no inverse (for that domain).

The arrow diagram for a one-to-one correspondence shows that the range for f(x)

becomes the domain for Also, the domain of f(x) becomes the range for 

Looking at f(x) and from a composite function view, we havef�11x 2

f�11x 2 .f�11x 2 .
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3.3 Inverse functions
Consider a function If we put in a single value of x, we find a single value of y.

If we were given a single value of y and asked to find the single value of x, how would we

do this? This is similar to solving a linear equation for a linear function. The function that

allows us to find the value of x is called the inverse function. Note that the original

function and its inverse function are inverses of each other. We know that addition and

subtraction are opposite operations and division is the opposite of multiplication. So, the

inverse function of is f�11x 2 � x � 3.f1x 2 � x � 3

y � f1x 2 .
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f(x)

f�1 (x)

is the inverse of f(x).f�11x 2

Note that both the original function f(x) and the inverse function are functions.

This means that for both functions there can only be one image for each element in the

domain. This can be illustrated in an arrow diagram.

f�11x 2

This means that not all functions have an inverse. An inverse exists only if there is a one-
to-one correspondence between domain and range in the function.

f(x) f(x) f(x)Domain Range

f�1 (x)

No inverse exists f(x) is not a function f(x) is a function
for the function f(x) and an inverse 

function exists

one-to-one correspondence

An inverse does not exist 
for a many-to-one function,
unless the domain is 
restricted.

x
f(x)

x
f�1 (x)

that is 

Finding an inverse function
For some functions, the inverse function is obvious, as in the example of 

which has inverse function However, for most functions more thought

is required.

f�11x 2 � x � 3.

f1x 2 � x � 3,

f�11f1x 2 2 � x.

Method for finding an inverse function

Example

Find the inverse function for 
Here there is no domain stated and so we assume that it is for

has a one-to-one correspondence for all real numbers
and so an inverse exists.

Interchanging x and y gives 

So the inverse function is f�11x 2 �
1
2

 x �
1
2

.

y �
1
2

 x �
1
2

.

 1 x �
1
2

 y �
1
2

 So 2x � y � 1
 Let y � 2x � 1

x H �. f1x 2 � 2x � 1

f1x 2 � 2x � 1.

5 For and where p is a constant, find

a f(g(x)) b g(f(x)) c p if 

6 For and find
a g(f(x)) b f(g(x)) c f(f(x)) d g(g(x))

7 For and find

a g(f(x)) b f(g(x)) c f(f(x)) d g(g(x))
8 For each pair of functions, find (i) f(g(x)) and (ii) g(f(x)), in simplest form.

a

b

c 

d

e 

9 For and find f(g(x)) in its simplest

form.

g1x 2 �
1
x

� 7, x � 0,f1x 2 �
1

x � 7
 , x � �7,

f1x 2 �
x

2 � x
, x � �2, g1x 2 �

2
x
, x � 0

f1x 2 �
2

3x � 1
, x �

1
3

, g1x 2 �
1
x
, x � 0

f1x 2 � 2 � 5x, g1x 2 �
x

x � 1
, x � �1

f1x 2 � x2 � 3x, g1x 2 �
3
x
, x � 0

f1x 2 �
2

x � 3
, x � 3, g1x 2 � 3x � 1

g1x 2 � cos x,f1x 2 � x �
p

2

g1x 2 � 2x � 3,f1x 2 � 6x2

f1g1x 2 2 � g1f1x 2 2

g1x 2 � 2x � p,f1x 2 � 3x � 4

1. Check that an inverse function exists for the given domain.
2. Rearrange the function so that the subject is x.
3. Interchange x and y.



This graph is not a function as there exist vertical lines that cut the graph twice. There

are also horizontal lines that cut the circle twice. Even restricting the domain to

does not allow there to be an inverse as the original graph is not a function.

So it is not possible to find an inverse for x2 � y2 � 25.

0 � x � 5
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The equation is for a circle with centre the origin, as shown below.x2 � y2 � 25
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Example 

Find the inverse function for for 

An inverse exists as there is a one-to-one correspondence for f(x) when

Let

Interchanging x and y gives 

So the inverse function is f�11x 2 �
2x � 6

x
, x H ��.

y �
2x � 6

x
.

 1 x �
2y � 6

y

 1 x �
6
y

� 2

 So x � 2 �
6
y

y �
6

x � 2

x 7 2.

x 7 2, x H �.f1x 2 �
6

x � 2

Example

For find for a suitable domain.
Considering the graph of f(x), it is clear that there is not a one-to-one 
correspondence for all x H �.

f�11x 2f1x 2 � x2,

x

y
y � x2

0

However, if we consider only one half of the graph and restrict the domain to
an inverse does exist.

Let 

Then 

Interchanging x and y gives (positive root only)

1 f�11x 2 � 1x, x H �, x � 0

y � 1x

x � 1y

y � x2

x H �, x � 0,
This is important to note: 
a square root is only a
function if only the positive
root is considered.

0

y

5

�5

5
x

�5

Exercise  3

1 Which of the following have an inverse function for 
a b  c d

2 For each function f(x), find the inverse function 
a b c 

d e f

g h i 
3 What is the largest domain for which f(x) has an inverse function?

a b c

d e f

g

4 For each function f(x), (i) choose a suitable domain so that an inverse exists 

(ii) find the inverse function 

a b c 

d e f 

g h i 

j k l

5 For and find

a b h�11x 2h1x 2 � f1g1x 2 2

g1x 2 � x � 2,f1x 2 � 3x

f1x 2 � 2x3 � 5f1x 2 � x4f1x 2 � 16 � 9x2

f1x 2 � 2x2 � 3f1x 2 � x2 � 4f1x 2 � 6x2

f1x 2 �
4

5x � 6
f1x 2 �

8
4x � 9

f1x 2 �
7

2 � x

f1x 2 �
5

3x � 2
f1x 2 �

3
x � 7

f1x 2 �
1

x � 6

f�11x 2 .

f1x 2 � cos x

f1x 2 � x2 � x � 12f1x 2 � 9 � x2f1x 2 � x2 � 5

f1x 2 �
3

2x � 1
f1x 2 �

2
x � 4

f1x 2 �
1

x � 3

f1x 2 � 8x3f1x 2 � x3 � 6f1x 2 � 2x � 9

f1x 2 � 9 � 4xf1x 2 � 7 � xf1x 2 �
2
3

 x

f1x 2 � x � 6f1x 2 � x � 5f1x 2 � 4x
f�11x 2 .

y � cos xf1x 2 � x3f1x 2 � x2 � 1f1x 2 � 2x � 3
x H �?

3.4 Graphs of inverse functions
On a graphing calculator, graph the following functions and their inverse functions and
look for a pattern:

1 

2 

3 f�11x 2 � x � 1f1x 2 � x � 1,

f�11x 2 � x � 4f1x 2 � x � 4,

f�11x 2 �
1
2

 xf1x 2 � 2x,



4 Sketch the graph of the inverse function for each graph.

a b

f�11x 2
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4

5 for 

Through this investigation it should be clear that the graph of a function and its inverse
are connected. The connection is that one graph is the reflection of the other in the line

This connection should make sense. By reflecting the point (x, y) in the line the

image is (y, x). In other words, the domain becomes the range and vice versa. This

reflection also makes sense when we remember that 

Thus if we have a graph (without knowing the equation), we can sketch the graph of
the inverse function.

f1f�11x 2 2 � x.

y � x,

y � x.

x 7 3f�11x 2 �
2 � 3x

x
f1x 2 �

2
x � 3

,

f�11x 2 �
1
3

 x �
1
3

f1x 2 � 3x � 1,
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Example

For the graph of f(x) below, sketch the graph of its inverse, f�11x 2 .

x

y

0

y � f(x)

y �f�1 (x)

y � x

Drawing in the line and then reflecting the graph in this line produces

the graph of the inverse function f�11x 2 .

y � x

Exercise  4

1 For each function f(x), find the inverse function and draw the

graphs of and on the same diagram.
a b c 

d e 

2 For each function f(x), draw the graph of for 

Find the inverse function and draw it on the same graph.

a b

c d

3 For each function f(x), draw the graph of for 

Find the inverse function and draw it on the same graph.

a b c f1x 2 �
2

x � 1
f1x 2 �

1
x � 5

f1x 2 �
1

x � 2

f�11x 2

x � 0.y � f1x 2

f1x 2 � 5 � x2f1x 2 � x2 � 4

f1x 2 � 3x2f1x 2 � x2

f�11x 2

x � 0.y � f1x 2

f1x 2 � 2x � 4 f1x 2 � 3x � 1

f1x 2 � x � 3f1x 2 � x � 2f1x 2 � 2x
y � f�11x 2y � f1x 2

f�11x 2

x

y

0

y � f(x)

y � x

x

y

0

y � f(x)
y � x

2

c d

x

y

0

y � f(x)3

x

y

0

y � f(x)

y � x

(3, 3)

e f

y

0

y � f(x)

y � x

x

1

x

y

0

y � f(x)
y � x

3.5 Special functions
The reciprocal function

The function known as the reciprocal function is In Chapter 1, we met vertical

asymptotes. These occur when a function is not defined (when the denominator is zero).

For there is a vertical asymptote when To draw the graph, we

consider what happens either side of the asymptote. When 

When 

Now consider what happens for large values of x, that is, as 

As As x S �q, 
1
x

S 0.x S q, 
1
x

S 0.

x S ;q.

x � 0.1, f10.1 2 � 10.

x � �0.1, f1�0.1 2 � �10.

x � 0.f1x 2 �
1
x
,

f1x 2 �
1
x
.



The graph of an absolute value function can be used to solve an equation or inequality.
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It is clear from the graph that this function has an inverse, provided 

Let 

Interchanging y and x, 

Hence So this function is the inverse of itself. Hence it has a

self-inverse nature and this is an important feature of this function.

The absolute value function
The function denoted is known as the absolute value function. This
function can be described as making every y value positive, that is, ignoring the negative
sign. This can be defined strictly as

This is known as a piecewise function as it is defined in two pieces.

This is the graph:

f1x 2 � b x, x � 0
�x, x 6 0

f1x 2 � �x�

f�11x 2 �
1
x
, x � 0, x H �.

y �
1
x
.

 1 x �
1
y

 y �
1
x

x � 0.
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x

y

0

For For
large values of x, the graph
approaches the x-axis. This
is known as a horizontal 
asymptote. As with vertical
asymptotes, this is a line
that the graph approaches
but does not reach.

x S q, y S 0.

x

y

0

y � |x |

The absolute value can be applied to any function. The effect is to reflect in the x-axis
any part of the graph that is below the x-axis while not changing any part above the
x-axis.

The whole graph is 
contained above the x-axis.
Note the unusual “sharp”
corner at x � 0.

So the graph of isf1x 2 �
1
x

Example

Sketch the graph of y � �x � 3�.

x

y

0

y � x � 3y � |x � 3|

Example

Sketch the graph of 

Start by sketching the graph of 
� 1x � 4 2 1x � 2 2

y � x2 � 2x � 8

y � �x2 � 2x � 8�.

�2 4

(1,�9)

x

y

0

Reflect the negative part of the graph in the x-axis:

�2 4

(1,�9)

x

y

0



5 Sketch the graph of 

6 Sketch the graph of 

7 Sketch the graph of 

8 Sketch the graph of 

9 Sketch the graph of 

10 Sketch the graph of 

11 Sketch the graph of 

12 Solve 
13 Solve 

14 Solve 

15 Solve 

16 Solve 

17 Solve 

18 Solve 

19 Solve 

20 Solve 

21 Solve 

22 Solve �2x2 � 5x � 12� 6 9.

�x2 � 4x � 12� � 7.

�9 � 4x� 6 1.

�2x � 1� � 9.

�x � 2� 6 5.

�2x2 � x � 10� � 4.

�x2 � x � 6� � 2.

�7 � 2x� � 3.

�2x � 5� � 3.

�x � 5� � 1.
�x � 2� � 3.

y � �3x2 � 5x � 2�.

y � �x2 � 5x � 6�.

y � �x2 � 7x � 12�.

y � �x2 � 4x � 12�.

y � �3x � 5�.
y � �3x�.
y � �x � 4�.
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Example

Solve �2x � 3� � 5.

x

y

0

y � 55

y � |2x � 3|

3
2

For the negative solution solve For the positive solution solve

 1 x � �1
 1 x � 4 1 �2x � 2

 1 2x � 8 1 �2x � 3 � 5
 2x � 3 � 5 �12x � 3 2 � 5

Example

Solve 

so the graph of isy � �x2 � x � 6�x2 � x � 6 � 1x � 3 2 1x � 2 2

�x2 � x � 6� � 4.

x

y

�3 2

4

0

,� 1
2

25
4

To find the points of intersection of and solve

and

(using the quadratic formula)

Hence or 1 � x � 2.70�x2 � x � 6� � 4 1 �3.70 � x � �2

 1 x � �2 or x � 1
 1 x � �3.70 or x � 2.70 1 1x � 2 2 1x � 1 2 � 0
 1 x2 � x � 10 � 0 1 x2 � x � 2 � 0

 x2 � x � 6 � 4 �x2 � x � 6 � 4

y � 4y � �x2 � x � 6�

Exercise  5

1 Write as a piecewise function.

2 Write as a piecewise function.

3 Write as a piecewise function.

4 Write as a piecewise function.f1x 2 � �2x2 � 5x � 3�

f1x 2 � �x2 � x � 12�

f1x 2 � �2x � 1�
f1x 2 � �x � 2�

3.6 Drawing a graph
In the first two chapters, we covered drawing trigonometric graphs and drawing
quadratic graphs. We have now met some of the major features of the graphs, including

• roots – values of x when 

• y-intercept – the value of y when 
• turning points
• vertical asymptotes – when y is not defined

• horizontal asymptotes – when x S ;q

x � 0

y � 0 More work will be done
on sketching graphs in
Chapter 8.

This process was covered in
Chapter 2.

Example

Sketch the graph of noting the major features.

so the graph has roots at
and 

We know the shape of this 
function, and that it has a 
minimum turning point at 

by the symmetry of 
the graph.
Setting gives the 
y-intercept as 
This graph has no asymptotes.

y � �12.
x � 0

12, �16 2

x � 6.x � �2

x2 � 4x � 12 � 1x � 2 2 1x � 6 2

y � x2 � 4x � 12,

x

y

0�2

(2,�16)

�12

6



Many types of function can be sketched using a graphing calculator. Although we study
a number of functions in detail, including straight lines, polynomials and trigonometric
functions, there are some functions that we only sketch using the calculator (in this
course).

75

All of these features can be identified when sketching a function using a graphing
calculator.
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Example

Sketch the graph of 

This graph has no roots as the numerator is never zero.

When so is the y-intercept.

There is a vertical asymptote when 
As the denominator becomes very large and so 
By taking values of x close to the vertical asymptote, we can determine the 
behaviour of the graph around the asymptote. So, when 
When So the graph isx � 3.1, y � 20.

x � 2.9, y � �20.

y S 0.x S ;q,
x � 3 � 0 1 x � 3.

¢0, �
2
3
≤y � �

2
3

x � 0,

y �
2

x � 3
.

This is an example of a
rational function. More
work on these is covered
on page 79.x

y

0 3

Example

Sketch the graph of y � 10 � 3x � x2.

The calculator can be used to calculate points such as intercepts and turning
points. The asymptotes (if any) are clear from the graph (as long as an appropriate
window is chosen).

3  Functions

and are the roots. 
(0, 10) is the y-intercept.

is the maximum turning point.¢�3
2

, 
49
4
≤

x � 2x � �5

Example

Sketch the graph of y �
1x2 � 5 2

1
2

x � 2
.

Here we can see that there is a vertical asymptote at a horizontal 

asymptote at there is no turning point, and the y-intercept is �
25
2

.y � 0,

x � 2,

Exercise  6

1 For each function, sketch the graph of indicating asymptotes,
roots, y -intercepts and turning points.
a b

c d

e f 

g h

i j  

k l 

m f1x 2 �
4

2x � 1

f1x 2 �
3

x � 2
f1x 2 �

1
x � 4

f1x 2 � 20 � 17x � 10x2f1x 2 � 6x2 � x � 15

f1x 2 � 3x2 � 2x � 8f1x 2 � x2 � 5x � 24

f1x 2 � x2 � 8x � 12f1x 2 � x2 � 7x � 12

f1x 2 � 7 � 2xf1x 2 � 3 � x

f1x 2 � 2x � 1f1x 2 � x � 4

y � f1x 2 ,



For kf(x), each y-value is multiplied by k and so this creates a vertical stretch.

For f(kx), each x-value is multiplied by k and so this creates a horizontal stretch.

For k is added to each y-value and so the graph is shifted vertically.

For k is added to each x-value and so the graph is shifted horizontally.

For each y-value is multiplied by and so each point is reflected in the x-axis.

For each x-value is multiplied by and so each point in reflected in the y-axis.�1f1�x 2 ,

�1�f1x 2 ,

f1x � k 2 ,

f1x 2 � k,
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2 Using a graphing calculator, make a sketch of indicating asymptotes,
roots, y-intercepts and turning points.

a b

c d

e f 

g h

i j 

k l 

m n f1x 2 �
cos x2

x � 1
f1x 2 �

sin x
x2

f1x 2 �
1x2 � 3 2

3
2 1x � 2 2

x � 7
f1x 2 �

x2 � x � 6
x2 � 10x � 24

f1x 2 �
x2 � 8
x � 5

f1x 2 �
x � 2
x2 � 6

f1x 2 �
x � 3

x2 � 3x � 10
f1x 2 �

x � 1
x � 5

f1x 2 �
7

x2 � 7x � 12
f1x 2 �

5
1x � 2 2 1x � 3 2

f1x 2 �
6

2x � 3
f1x 2 � x2 � 2x � 5

f1x 2 � x2 � 5x � 3f1x 2 � x2 � x � 30

y � f1x 2 ,

3  Functions
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3.7 Transformations of functions
In Chapter 1, we met trigonometric graphs such as y � 2 sin 3x � 1.

y

1

�1

3

0

Here the 3 has the effect of producing three waves in (three times as many graphs as
).

The 2 stretches the graph vertically.

The 1 shifts the graph vertically.

In Chapter 2, we met quadratic graphs such as y � �1x � 2 22 � 4.

y � sin x
2p

x

y

40

(2, 4)

Here the inside the bracket has the effect of shifting right.

The in front of the bracket reflects the graph in the x-axis.

The shifts the graph vertically.

We can see that there are similar effects for both quadratic and trigonometric graphs. 
We can now generalize transformations as follows:

�4

�1

y � x2�2

General form Example Effect

kf(x) Vertical stretch

f(kx) Horizontal stretch

Vertical shift [ up, down]

Horizontal shift [ left, right]

Reflection in x-axis

Reflection in y-axisy � sin1�x 2f1�x 2

y � �cos x�f1x 2

k 6 0k 7 0y � 1x � 3 22f1x � k 2

k 6 0k 7 0y � x2 � 5f1x 2 � k

y � cos 2x

y � 3 sin x

Example

Sketch the graph of y � �2 cos¢u �
p

4
≤ � 1.

Example

Sketch the graph of y � 1x � 2 22 � 3.

	

y

3


2

0

�1

x

y

0

1

(2, �3)



Similarly, the function of the absolute value of x, that is, can be considered to be
a transformation of a function. If we consider this as a piecewise function, we know that
the absolute value part will have no effect for However, for the effect
will be that it becomes This means that the graph of will be the graph of
f(x) for and this will then be reflected in the y-axis.x � 0

f1�x� 2f1�x 2 .
x 6 0,x � 0.

f1�x� 2 ,

79

The absolute value of a function can be considered to be a transformation of a
function (one that reflects any parts below the x-axis). A graphing calculator can also be
used to sketch transformations of functions, as shown below.

�f1x 2 �

3  Functions
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Example

This is a graph of 
Draw
(a) 
(b) f1�x 2

f1x � 2 2

y � f1x 2 .

x

y

0 4

5

7

(1, 7)

(5, �2)

�1

y � f (x)

x

y

0 1 6 9

(3, 7)

(2, 5)

(7, �2)

x

y

0 1

5

(�5, �2)

(�1, 7)

�7 �4

(a) (b) f1�x 2f1x � 2 2

This is a horizontal shift of 2 This is a reflection in the x-axis.
to the right.

Example

Given that sketch the graph of (a) (b) 
(a)

�f1x 2 �f1x � 3 2f1x 2 � x2 � 4,

As expected, this is the graph of f(x) shifted 3 places to the left. The calculator
cannot find the “new” function, but the answer can be checked once it is
found algebraically, if required.

(b) The negative part of the curve is reflected in the x-axis, that is, the part
defined by �2 � x � 2.

 � x2 � 6x � 5

 � x2 � 6x � 9 � 4

 f1x � 3 2 � 1x � 3 22 � 4
This can be sketched and
checked to be the same as
f1x � 3 2 .

3  Functions

Example

Sketch the graph of and the graph of 
Using a graphing calculator, we can sketch both graphs:

f1�x� 2 .f1x 2 � x2 � 4x � 5

Rational functions

Rational functions are functions of the type where g(x) and h(x) are

polynomials. Here we shall consider functions of the type and 
bx � c
px � q

.
a

px � q

f1x 2 �
g1x 2

h1x 2



Functions of the type 

The shape of this graph is very similar to the previous type but the horizontal asymptote
is not the x-axis.

The horizontal asymptote is as when x S ;q, y S

b
p

.y �
b
p

,

bx � c
px � q

3  Functions
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Functions of the type 

These can be considered to be a transformation of the reciprocal function f1x 2 �
1
x
.

a
px � q

3  Functions
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Example

Sketch the graph of 

Comparing this to So its graph is the graph of

stretched vertically and shifted 3 to the right.�2y �
1
x
,

f1x 2 �
1
x
, y � 2f˛1x � 3 2 .

y �
2

x � 3
.

x

y

0 3
2�3

Example

Sketch the graph of 

To consider this as a transformation, it can be written as 

This is shifted left and vertically stretched by However, it is 

probably easiest just to calculate the vertical asymptote and the y-intercept.

Here the vertical asymptote is when The y-intercept

is when x � 0 1 y � 5.

2x � 1 � 0 1 x � �
1
2

.

5
2

.
1
2

y �
1
x

y �

5
2

x �
1
2

.

y �
5

2x � 1
.

y

0

5

�1
2

Example

Sketch the graph of 

This has a vertical asymptote at 

The horizontal asymptote is [As ]

The y intercept is y � �
1
3

.

x S ;q, y S

2x
x

� 2y � 2.

x � 3.

y �
2x � 1
x � 3

.

x

y

2

3�1
3

0

Example

Sketch the graph of 

This has a vertical asymptote at 

There is a horizontal asymptote at 

The y-intercept, when is y �
7
5

.x � 0,

y � �
2
3

.

x � �
5
3

.

y �
7 � 2x
3x � 5

.

x

y

�
2
3

7
5

�5
3 0



5 For each graph sketch (i) (ii) (iii) 
a b

5 � 3 f1x 2f1�x 2f1x � 3 2y � f1x 2 ,

3  Functions

83

1 Sketch (a) (b) (c) 

2 Sketch (a) (b) (c) 
3 For each function f(x), sketch (i) (ii) (iii) 

(iv) 

a b c d

e f g  h

4 For each of the functions in question 3, find an expression for 
algebraically. Sketch each graph of using a graphing calculator,
thus checking your answer.

2 � f1x � 1 2
2 � f1x � 1 2

f1x 2 �
x � 2
x � 1

f1x 2 �
3

x � 4
f1x 2 � x2 � 3f1x 2 �

1
x

f1x 2 � 4 � xf1x 2 � 3xf1x 2 � x3f1x 2 � x2

y � �2 f1x 2
y � f1x 2 � 1y � f1x � 2 2y � f1x 2

y � 8 � x2y � 1x � 2 22y � 3x2

y � �3 sin u � 2y � 4 sin ¢u �
p

3
≤y � 2 cos 3x°

3  Functions
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Example

(a) Sketch the curve 

(b) Solve 

(a) For f(x), we know that the graph has a vertical asymptote at and will
have a horizontal asymptote at y � 0.

x � 2

3
x � 2

6 4, x 7 0.

f1x 2 �
3

x � 2
.

x

y

2
�

3
2

0

(b) In order to solve this inequality, we first solve

Using the graph, the solution to the inequality is x 7

11
4

.

 1 x �
11
4

 1 4x � 11
 1 4x � 8 � 3

 1

3
x � 2

� 4

 f1x 2 � 4

Exercise  7

�1 7

(2, �6)

y

x0
�3 52

6

(3,�4)

(�1,7)

x

y

0

c

�5 7

5

(2, 9)

(�3, 4)

(�1, 2) x

y

0

6 Sketch the graph of the rational function 

a b 

c d

e f 

g h 

i j 

7 Sketch the graph of the rational function 

a b

c d

e f

g h

8 Solve the following equations for 

a b c

d e

9 Solve the following inequalities for 

a b c

d e f

g h 
6x � 1
2x � 1

6 5
x � 2
x � 1

6 5

2
3 � x

� �2
8

3x � 2
6 4

8
2x � 1

6 1

2
x � 3

6 7
1

x � 3
� 4

1
x � 5

6 6

x H �, x 7 0.

9
7 � 2x

� �4
8

2 � x
� 6

3
2x � 1

� 5
7

x � 1
� 3

10
x � 2

� 4

x H �.

g1x 2 �
7x � 2
2x � 3

, x �
3
2

g1x 2 �
10x � 1
2x � 3

, x � �
3
2

g1x 2 �
5x � 2
2x � 1

, x � �
1
2

g1x 2 �
9 � x
3 � x

, x � 3

g1x 2 �
8 � x
x � 2

, x � �2g1x 2 �
2x � 1
x � 6

, x � 6

g1x 2 �
x � 4
x � 3

, x � �3g1x 2 �
x � 6
x � 1

, x � 1

y � g1x 2 .

f1x 2 �
3

8 � 5x
, x �

8
5

f1x 2 �
�4

x � 5
, x � �5

f1x 2 �
1

7 � x
, x � 7f1x 2 �

6
2x � 3

, x �
3
2

f1x 2 �
1

2x � 1
, x � �

1
2

f1x 2 �
5

x � 7
, x � �7

f1x 2 �
3

x � 4
, x � 4f1x 2 �

1
x � 2

, x � �2

f1x 2 �
1

x � 3
, x � 3f1x 2 �

2
x
, x � 0

y � f1x 2 .



16 Solve for 

17 Use your graphing calculator to draw a sketch of

and 

18 The one-to-one function f is defined on the domain by 

a State the range, A, of f. b Obtain an expression for for 
[IB May 02 P1 Q15]

19 Solve the inequality [IB May 03 P1 Q13]

20 A function f is defined for by 

Find an expression for [IB May 03 P1 Q17]

21  Let

Find
a the set of real values of x for which b the range of f.

f is real and finite [IB May 01 P1 Q5]

22 Let and 

Find the set of values of x such that [IB Nov 03 P1 Q17]f1x 2 � g1x 2 .

g1x 2 �
x � 2
x � 4

, x � 4.f1x 2 �
x � 4
x � 1

, x � �1

f : x S

B

1
x2 � 2.

f�11x 2 .

f1x 2 �
x2 � 1
x2 � 1

.x � 0

�x � 2� � �2x � 1�.

x H A.f�11x 2 ,

f1x 2 �
2x � 1
x � 2

.x 7 0

h1x 2 � �g1x 2 �.f1x 2 �
x3 � 5x � 1

x � 2
, g1x 2 � f1x � 3 2

x 7 0.
2

4x � 1
� 3
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10 Use your graphing calculator to draw a sketch of

and 

11 Use your graphing calculator to draw a sketch of for

and 

12 Use your graphing calculator to draw a sketch of given

and Hence draw the graph of p1�x� 2 .g1x 2 � 3x � 1.f1x 2 � x2 � x � 6

p1x 2 � g1f1x 2 2

h1x 2 � �g1x 2 �.x � 3, g1x 2 � f˛1x � 2 2

f1x 2 �
x2 � 1
x � 3

h1x 2 � �g1x 2 �.f1x 2 � x21x � 2 23, g1x 2 � f1�x 2 � 3

3  Functions
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Review exercise

1 For find f(2).

2 For with domain draw an arrow diagram

and state the range.

3 For find

a f(3x) b c

4 For and find

a f(g(x)) b g(f(x)) c f(f(x)) d g(g(x))
5 For each function f(x), choose a suitable domain so that an inverse exists and

find 

a b c

6 Sketch the graph of and its inverse function 

7 For sketch the graph of and 

8 Solve 

9 Solve 

10 Sketch the graph of indicating asymptotes and the y-intercept.

11 Sketch the graph of indicating asymptotes, roots, y-intercept

and turning points.

12 Sketch the graph of indicating asymptotes, roots, y-intercept

and turning points.

13 For sketch the graph of 
a b f(3x) c 

14 Sketch the graph of each of these rational functions:

a b c 

15 Solve 
9

3x � 2
� 5.

f1x 2 �
8x � 3
2x � 1

f1x 2 �
�4

3x � 2
f1x 2 �

7
2x � 1

4 � 5 f1x 2f1x � 3 2
f1x 2 � 2x � 1,

y �
cos x
3x2 ,

y �
x � 2

x2 � 4x � 9
,

y �
2

x � 3
,

�7 � 5x� 6 3.

�2x � 9� � 7.

y � f1�x� 2 .y � �f1x 2 �f1x 2 � x2 � 4x � 12,

f�11x 2 .f1x 2 �
2

x � 1

f1x 2 �
7

2x � 3
f1x 2 �

1
x � 5

f1x 2 � x2 � 6

f�11x 2 .

g1x 2 �
x

x � 1
, x � 1f1x 2 � 8 � 3x

f¢1
x
≤f12x � 1 2

f1x 2 � 7x � 4,

5�4, 0, 1, 56,g1x 2 �
2x � 1
x � 2

f1x 2 �
3x2 � 5

x
,

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗
1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗
1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗
1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON✗

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON



86 1

The Italian mathematician Paolo Ruffini,
born in 1765, is responsible for
synthetic division, also known as
Ruffini’s rule, a technique used for the
division of polynomials that is covered
in this chapter.

Ruffini was not merely a mathematician
but also held a licence to practise
medicine. During the turbulent years of
the French Revolution, Ruffini lost his
chair of mathematics at the university of
Modena by refusing to swear an oath to
the republic. Ruffini seemed unbothered
by this, indeed the fact that he could no
longer teach mathematics meant that he
could devote more time to his patients,
who meant a lot to him. It also gave him
a chance to do further mathematical
research. The project he was working on
was to  prove that the quintic equation cannot be solved by radicals. Before
Ruffini, no other mathematician published the fact that it was not possible to solve
the quintic equation by radicals. For example, Lagrange in his paper Reflections on the
resolution of algebraic equations said that he would return to this question, indicating
that he still hoped to solve it by radicals. Unfortunately, although his work was
correct, very few mathematicians appeared to care about this new finding. His
article was never accepted by the mathematical community, and the theorem is
now credited to being solved by Abel.

4 Polynomials

Paolo Ruffini
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This chapter treats this
topic as if a calculator is
not available throughout
until the section on using
a calculator at the end.

This was covered in 
Chapter 3.

Degree Form of polynomial Name of function

1 Linear

2 Quadratic

3 Cubic

4 Quartic

5 Quintica x 5 � b x 4 � c x 3 � d x 2 � e x � f

a x 4 � b x 3 � c x 2 � d x � e

a x3 � b x2
˛ � c x � d

a x 2 � b x � c

a x � b

is a polynomial is of degree 5 or quintic function. The coefficient

of the leading term is 2, and is the constant term.

Values of a polynomial
We can evaluate a polynomial in two different ways. The first method is to substitute the
value into the polynomial, term by term, as in the example below.

�7

f1x 2 � 2x5 � 3x2 � 7

Example

Find the value of when 

Substituting: 

 � 4

� 8 � 12 � 12 � 4

 f12 2 � 23 � 312 22 � 612 2 � 4

x � 2.f1x 2 � x3 � 3x2 � 6x � 4

The second method is to use what is known as a nested scheme.

This is where the coefficients of the polynomial are entered into a table, and then the
polynomial can be evaluated, as shown in the example below.

4.1 Polynomial functions
Polynomials are expressions of the type These

expressions are known as polynomials only when all of the powers of x are positive

integers (so no roots, or negative powers). The degree of a polynomial is the highest

power of x (or whatever the variable is called). We are already familiar with some of

these functions, and those with a small degree have special names:

f1x 2 � axn � bxn�1 � ... � px � c.



The same is true for algebraic division. Synthetic division is a shortcut for dividing
polynomials by linear expressions – algebraic long division is covered later in the chapter.

Synthetic division works in exactly the same way as the nested calculation scheme. The
value of x that is used is the root that the divisor provides. This is best demonstrated by
example.
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To see why this nested calculation scheme works, consider the polynomial

2x3 � x2 � x � 5.
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Example

Using the nested calculation scheme, evaluate the polynomial

when x � �2.f1x 2 � 2x4 � 4x3 � 5x � 8
This needs to be here as
there is no term.x2

Each of these is then multiplied
by to give the number
diagonally above.

�2

2 0 5

16 54

2 16 46�27�8

�32�4

����

�8�4�2

Example

Find the value of the polynomial when x � 2.g1x 2 � x3 � 7x � 6

So f1�2 2 � 46

x 2 1 5

2x

2 2x3 � x2 � x � 52x2 � x � 12x � 1

2x3 � x2 � x2x2 � x
���

�1

2 1 0 6

2 4

1 2 0�3

�6
���

�7

Here This means that is a root of g1x 2 � x3 � 7x � 6.x � 2g12 2 � 0.

Division of polynomials
This nested calculation scheme can also be used to divide a polynomial by a linear
expression. This is known as synthetic division.

When we divide numbers, we obtain a quotient and a remainder. For example, in the
calculation 603 is the dividend, 40 is the divisor, 15 is the quotient
and 3 is the remainder.

603 � 40 � 15 R 3,

Synthetic division works
only for linear divisors.

Example

Divide by using synthetic division.

We need the value of x such that that is, x � 2.x � 2 � 0,

x � 23x3 � x2 � 2x � 5

Example

Divide by 

So x3 � 11x � 3 � 1x � 5 2 1x2 � 5x � 14 2 � 67

x � 5.x3 � 11x � 3

2 3 2

6 10 24

3 5 12 19

xx2

���

�5�1

This is the remainder.These numbers are the coefficients of the
quotient.

So 

This could be checked by expanding the brackets.

3x3 � x2 � 2x � 5 � 1x � 2 2 13x2 � 5x � 12 2 � 19

1 0 3

25

1 14 �67�5

�70�5
���

�11�5

Example

Divide by 

Here the coefficient of x in the divisor is not 1.

 1 x �
1
2

 1 2¢x �
1
2
≤ � 0

 2x � 1 � 0

2x � 1.2x3 � x2 � 5x � 1



2 1 5

1 1 3

2 2 6 2

���

�1
1
2

So, from this we can say that

� 12x � 1 2 1 x2 � x � 3 2  � 2

 2x3 � x2 � 5x � 1 � ¢x �
1
2
≤12x2 � 2x � 6 2 � 2

4.2 Factor and remainder theorems
The remainder theorem

If a polynomial f(x) is divided by the remainder is f(h).

Proof

We know that where Q(x) is the quotient and R is the
remainder.

For 

Therefore, 

The factor theorem

If then is a factor of f(x).
Conversely, if is a factor of f(x) then 

Proof

For any function 

If then 

Hence is a factor of f(x).

Conversely, if is a factor of f(x) then 

Hence f1h 2 � 1h � h 2Q1h 2 � 0.

f1x 2 � 1x � h 2Q1x 2 .1x � h 2

1x � h 2

f1x 2 � 1x � h 2Q1x 2 .f1h 2 � 0

f1x 2 � 1x � h 2Q1x 2 � f1h 2 .

f1h 2 � 0.1x � h 2
1x � h 2f1h 2 � 0

f1x 2 � 1x � h 2Q1x 2 � f1h 2 .

 � R

 � 10 � Q1h 2 2 � R

 f1h 2 � 1h � h 2Q1h 2 � Rx � h,

f1x 2 � 1x � h 2Q1x 2 � R

1x � h 2
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1 Evaluate for 

2 Evaluate for 

3 Evaluate for 
4 Find f(4) for each polynomial.

a b 

c d 

5 Calculate for 

6 Use synthetic division to find the quotient and remainder for each of these
calculations.

a b 

c d 

e f

g h

7 Express each function in the form where Q(x) is the
quotient on dividing f(x) by and R is the remainder.1px � q 2

f1x 2 � 1px � q 2Q1x 2 � R

1�3x4 � 4x3 � 5x2 � 13 2 � 14x � 3 21t3 � 7t � 9 2 � 12t � 1 2

1x5 � x2 � 5x � 11 2 � 12x � 1 21x4 � 5x2 � 3x � 7 2 � 1x � 1 2

1x3 � 5x2 � x � 9 2 � 1x � 4 212x3 � x2 � 8x � 7 2 � 1x � 6 2

1x3 � 4x2 � 5x � 1 2 � 1x � 1 21x2 � 6x � 3 2 � 1x � 2 2

f1x 2 � 6x3 � 4x2 � 2x � 3.f ¢�1
2
≤

f˛1x 2 � 6 � 7x � 5x2 � 2x3f˛1t 2 � t5 � 6t3 � 7t � 6

f˛1x 2 � 5x4 � 4x2 � 8f˛1x 2 � x3 � x2 � 2x � 5

x � �1.f1x 2 � x6 � 4x3 � 7x � 9

x � �2.g1x 2 � 7x3 � 2x2 � 8x � 1

x � 2.f1x 2 � x4 � 3x3 � 3x2 � 7x � 4
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Exercise  1

f(x)

(a)

(b)

(c)

(d)

(e)

(f)

(g) 2x � 12x4 � 4x2 � 11

2x � 1x3 � 7x2 � 4x � 2

x � 12x6 � 5x4 � 9

x � 45x5 � 4x3 � 3x � 2

x � 34x3 � 7x2 � 9x � 17

x � 5x3 � 6x2 � 8x � 7

x � 23x2 � 7x � 2

1px � q 2

Example

Show that is a factor of 

This can be done by substituting into the polynomial.

Since is a factor of f1x 2 � 2x3 � 7x2 � 9x � 30.f1�5 2 � 0, 1x � 5 2

 � 0
 � �250 � 175 � 45 � 30

 f1�5 2 � 21�5 23 � 71�5 22 � 91�5 2 � 30

x � �5

f1x 2 � 2x3 � 7x2 � 9x � 30.1x � 5 2

This can also be done using synthetic division. This is how we would proceed if asked to
fully factorise a polynomial.
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In this situation, there will
always be a common factor
in the quotient. This common
factor is the coefficient of x
in the divisor.



7 Which of these are factors of 
a b
c d
e f

8 Factorise fully:

a b  

c d

e f

g h

i

j

4.3 Finding a polynomial’s coefficients
Sometimes the factor and remainder theorems can be utilized to find a coefficient of a
polynomial. This is demonstrated in the following examples.

36x5 � 132x4 � 241x3 � 508x2 � 388x � 80

2x5 � 6x4 � 7x3 � 21x2 � 5x � 15

x4 � 7x2 � 1812x3 � 8x2 � 23x � 12

2x3 � 21x2 � 58x � 242x3 � 3x2 � 23x � 12

x4 � 1x3 � 4x2 � 7x � 10

x3 � 7x � 6x3 � x2 � x � 1

x � 4x � 8

x � 6x � 2

x � 2x � 1
x3 � 28x � 48?
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1 Show that is a factor of 

2 Show that is a factor of 

3 Show that is a factor of 

4 Show that is a factor of 

5 Show that is a factor of 

6 Show that is a factor of x4 � 8x3 � 17x2 � 16x � 30.x � 5

3x3 � x2 � 20x � 12.3x � 2

2x3 � 13x2 � 17x � 12.2x � 1

x3 � 3x2 � 10x � 24.x � 2

x3 � 2x2 � 14x � 3.x � 3

x2 � x � 12.x � 3
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Example

Factorise fully 

Without a calculator, we need to guess a possible factor of this polynomial.
Since the constant term is we know that possible roots are

We may need to try some of these before finding a root. Normally we would
begin by trying the smaller numbers.

;1, ;2, ;3, ;5, ;6, ;10, ;15, ;30.
�30,

g1x 2 � 2x4 � x3 � 38x2 � 79x � 30.

1 2 1

2 3

2 3 �142�112�35

�112�35
����

�30�79�38

2 1

6 64 30

2 0�15�32�3

�4
����

�30�79�38�2

2

27 15

2 0�5�9

�6
���

�15�32�3�3

Clearly is not a factor.

Trying and also does not produce a value of 0. So we need to
try another possible factor. Try x � 2.

x � 2x � �1

x � 1

So is a factor.

Now we need to factorise We know that 

do not produce factors so we try x � �3.

x � ;12x3 � 3x2 � 32x � 15.

x � 2

Hence 
 � 1x � 3 2 1x � 2 2 12x � 1 2 1x � 5 2

 g1x 2 � 1x � 3 2 1x � 2 2 12x2 � 9x � 5 2 We do not need to use
division methods to
factorise a quadratic.

Exercise  2

Example

Find p if is a factor of 

Since is a factor, we know that is a root of the polynomial.

Hence the value of the polynomial is zero when and so we can use
synthetic division to find the coefficient.

x � �3

�3x � 3

x3 � x2 � px � 15.x � 3

1 p 15

12

1 0p � 12�4

�15�3
���

�1�3

This is working
backwards from the zero.

So 

This can also be done by substitution.

If then 

So 

 1 p � �7
 1 �3p � 21 � 0

 �27 � 9 � 3p � 15 � 0

f13 2 � 1�3 23 � 1�3 22 � 3p � 15 � 0.f1x 2 � x3 � x2 � px � 15,

 1 p � �7
 1 �3p � 21

 1 �3p � 36 � �15
 �31p � 12 2 � �15



1 Find the remainder when is divided by 

2 Find the remainder when is divided by 

3 Find the value of p if is a factor of 

4 Find the value of k if is a factor of 

5 Find the value of k if is a factor of and hence

factorize f(x) fully.

6 Find the value of a if is a factor of and hence

factorize g(x) fully.

7 When is divided by the remainder is zero, and

when it is divided by the remainder is 27. Find p and q.

8 Find the value of k if is a factor of and

hence factorize f(x) fully.

9 Find the values of p and q if and are factors of

10 The same remainder is found when and 

are divided by Find k.

4.4 Solving polynomial equations
In Chapter 2 we solved quadratic equations, which are polynomial equations of degree
2. Just as with quadratic equations, the method of solving other polynomial equations is
to make the polynomial equal to 0 and then factorize.

x � 2.

x4 � 3x2 � 7x � 52x3 � kx2 � 6x � 31

x4 � px3 � 30x2 � 11x � q.

1x � 7 21x � 3 2

f1x 2 � 2x3 � 5x2 � kx � 2412x � 1 2

x � 2,

x � 1,x4 � x3 � x2 � px � q

g1x 2 � x3 � ax2 � 9x � 181x � 2 2

f1x 2 � 2x3 � 9x2 � kx � 31x � 3 2

3x4 � 15x3 � kx2 � 9x � 5.1x � 5 2

x3 � 3x2 � 10x � p.1x � 2 2

2x � 1.5x4 � 6x2 � x � 7

x � 2.x3 � 2x2 � 6x � 5
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Example

Find p and q if and are factors of

and hence fully factorise the polynomial.

Using synthetic division for each factor, we can produce equations in p and q.

2x4 � 3x3 � px2 � qx � 15,f1x 2 �

x � 1x � 5

2 3 p q 15

35

2 3 0p � 35�7

�15�5p � 175�10
����

�5

So 
 1 q � 5p � 178

 q � 5p � 175 � 3

1 2 3 p q 15

2 5

2 5 0�15p � 5

�15p � 5
����

So 

Solving and simultaneously:

and 

So 

Now we know that and are factors:x � 1x � 5

f1x 2 � 2x4 � 3x3 � 33x2 � 13x � 15

 1 q � 13
 q � 33 � �20

 1 p � �33
 1 6p � �198

5p � 178 � p � �20

q � p � �20q � 5p � 178

 1 q � p � �20

 q � p � 5 � �15

2 3 13 15

35

2 2 3 0�7

�15�10�10
����

�33�5

1 2 2 3

2

2 0�3�5

�3�5
���

�7

Hence 

1 f1x 2 � 12x � 1 2 1x � 5 2 1x � 1 2 1x � 3 2

f1x 2 � 1x � 5 2 1x � 1 2 12x2 � 5x � 3 2

Exercise  3

Example

Solve 

In order to factorise the polynomial, we need a root of the equation. Here the
possible roots are Trying works:x � 1;1, ;2, ;3, ;6.

x3 � 4x2 � x � 6 � 0.

1 1 4 1

1 5 6

1 5 6 0

���

�6

As the remainder is zero, is a factor.

Hence the equation becomes 

 1 x � 1 or x � �3 or x � �2
 1 x � 1 � 0 or x � 3 � 0 or x � 2 � 0

 1 1x � 1 2 1x � 3 2 1x � 2 2 � 0
1x � 1 2 1x2 � 5x � 6 2 � 0

x � 1



1 Show that 5 is a root of and hence find the other roots.

2 Show that 2 is a root of and hence find the other roots.

3 Show that is a root of and

hence find the other roots.

4 Solve the following equations.

a b

c d

e f

g

5 Find where the graph of cuts the x-axis.

6 Show that has only one root.

7 Find the only root of 

8 is a root of 

a Find the value of p.

b Hence solve the equation 

9 is a root of 

a Find the value of k.

b Hence solve the equation 

10 Solve the following inequalities for 

a

b

c

d

e

11 The profit of a football club after a takeover is modelled by

where t is the number of years after the takeover.

In which years was the club making a loss?

P � t3 � 14t2 � 20t � 120,

�6x3 � 207x2 � 108x � 105 � 0

x3 � 9x2 � 11x � 31 � 10

x3 � 7x2 � 4x � 12 � 0

x3 � 4x2 � 11x � 30 � 0

1x � 5 2 1x � 1 2 1x � 7 2 � 0

x � 0.

f1x 2 � 0.

f1x 2 � 2x3 � 3x2 � kx � 42 � 0.x � �6

g1x 2 � 0.

g1x 2 � x3 � 10x2 � 31x � p � 0.x � 2

x3 � 3x2 � 5x � 15 � 0.

x3 � x2 � 2x � 2 � 0

f1x 2 � x3 � 8x2 � 11x � 18

12x3 � 16x2 � 7x � 6 � 0

2x3 � 13x2 � 26x � 16 � 0x4 � 4x3 � 12x2 � 32x � 64 � 0

x4 � 4x3 � 19x2 � 46x � 120 � 0x3 � 17x2 � 75x � 99 � 0

x3 � 7x2 � 4x � 28 � 0x3 � 6x2 � 5x � 12 � 0

2x5 � 9x4 � 34x3 � 111x2 � 194x � 120 � 0�3

2x3 � 15x2 � 16x � 12 � 0

x3 � x2 � 17x � 15 � 0
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Example

Find the points of intersection of the curve and the

line 

At intersection, 

Here the possible roots are Trying works:x � 3;1, ;2, ;3, ;6.

 1 2x3 � 3x2 � 11x � 6 � 0

 2x3 � 3x2 � 9x � 1 � 2x � 5

y � 2x � 5.

y � 2x3 � 3x2 � 9x � 1

3 2 6

6 9

2 3 0�2

�6
���

�11�3

So the equation becomes 

To find the points of intersection, we need to find the y-coordinates.

When When When 

Hence the points of intersection are (3,1), ¢1
2

, �4≤,1�2, �9 2 .

y � 21�2 2 � 5 � �9y � 2¢1
2
≤ � 5 � �4y � 213 2 � 5 � 1

x � �2x �
1
2

x � 3

1 x � 3 or x �
1
2

 or x � �2

 1 1x � 3 2 12x � 1 2 1x � 2 2 � 0

 1x � 3 2 12x2 � 3x � 2 2 � 0

Example

Solve for 

This is an inequality which we can solve in the same way as an equation.

First we need to factorise x3 � 2x2 � 5x � 6.

x � 0.x3 � 2x2 � 5x � 6 � 0

1 1 6

1

1 0�6�1

�6�1
���

�5�2

So the inequality becomes 1x � 1 2 1x � 2 2 1x � 3 2 � 0.

 � 1x � 1 2 1x � 2 2 1x � 3 2

 x3 � 2x2 � 5x � 6 � 1x � 1 2 1x2 � x � 6 2

Plotting these points on a graph, and considering points either side of them
such as we can sketch the graph.

This provides the solution: 1 � x � 3

x � �3, x � 0, x � 2, x � 4,

0 1 3�2 x

y

Exercise  4



Find an expression for the polynomial f(x) for each of these graphs.
1 2

3 4

5 6

7 8
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4.5 Finding a function from its graph
We can find an expression for a function from its graph using the relationship between
its roots and factors.
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Example

For the graph below, find an expression for the polynomial f(x).

We can see that the graph has roots at and 

Hence f(x) has factors and 

Since the graph cuts the y-axis at we can find an equation:

Hence f1x 2 � �
1
2

 1x � 3 2 1x � 2 2 1x � 4 2

 1 k � �
1
2

 1 24k � �12

 f10 2 � k˛13 2 1�2 2 1�4 2 � �12

 f1x 2 � k˛1x � 3 2 1x � 2 2 1x � 4 2

10, �12 2 ,

1x � 4 2 .1x � 3 2 , 1x � 2 2

x � 4.x � �3, x � 2

2�3 4 x

y

0

Example

For the graph below, find an expression for the polynomial f(x).

We can see that the graph has roots at and 

Hence f(x) has factors and Since the graph has a turning point
at (3,0), this is a repeated root (in the same way as quadratic functions that have
a turning point on the x-axis have a repeated root).

1x � 3 2 .1x � 2 2

x � 3.x � �2

3

12

�2 x

y

0

Since the graph cuts the y-axis at (0,12), we can find the equation:

Hence 

 �
2
3

 x3 �
8
3

 x2 � 2x � 12

 f1x 2 �
2
3

 1x � 2 2 1x � 3 22

 1 k �
2
3

 1 18k � 12
 f˛10 2 � k˛12 2 1�3 22 � 12

 f˛1x 2 � k˛1x � 2 2 1x � 3 22

Exercise  5

�4

�4

0 1 x

y
(3,9)

0 6 x

y

5�2

10

x

y

0

�1

�6

3 x0

y

12

20 x

y

3�1

�12

�4 x

y

20 4

12

�3 x

y

2

�48

3�4 x0

y
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9 10
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2

24

4�3 �1 x

y

0 2 3 5�1

�600

x0

y

1

24

4�3 x0

y

Example

Find 

This process continues:

Hence 

This can also be expressed as 

To perform algebraic division, the same process is employed.

6087 � 13 � 468 � 3.

6087 � 13 � 468 R 3.

468
13�6087

 52
88
78
107
104

3

 

4

13�6087
52
8

6087 � 13.

There are four 13s in 60 remainder 8

There are four 13s in 60 remainder 8

There are six 13s in 88 remainder 10

There are eight 13s in 107 remainder 3

Example

Find 

We put this into a division format:

The first step is to work out what the leading term of the divisor x needs to be

multiplied by to achieve The answer to this is and so this is the first

part of the quotient.

This process is then repeated: the next part of the quotient is what x needs to

be multiplied by to give 

This is continued thus:

So the remainder is 

So 
2x3 � 7x2 � 6x � 4

x � 3
� 2x2 � 13x � 33 �

103
x � 3

.

�103.

2x2 � 13x � 33
1x � 3 2 �2x3 � 7x2 � 6x � 4

2x3 � 6x2

�13x2 � 6x � 4
�13x2�39x

�33x �4
�33x�99

�103

�13x2.

2x2

1x � 3 2 �2x3 � 7x2 � 6x � 4
2x3 � 6x2

�13x2 � 6x � 4

2x22x3.

1x � 3 2 �2x3 � 7x2 � 6x � 4

2x3 � 7x2 � 6x � 4
x � 3

.

Multiplying the divisor by 
provides this. This is then
subtracted from the dividend.

2x2

Example

Find 

3x2

1x2 � 2 2 �3x4 � 4x3 � 5x2 � 7x � 4
3x4 � 6x2

�4x3 � x2 � 7x � 4

3x4 � 4x3 � 5x2 � 7x � 4
x2 � 2

.

To obtain must
be multiplied by 3x2.

3x4, x2

4.6 Algebraic long division
Synthetic division works very well as a “shortcut” for dividing polynomials when the
divisor is a linear function. However, it can only be used for this type of division, and in
order to divide a polynomial by another polynomial (not of degree 1) it is necessary to
use algebraic long division.

This process is very similar to long division for integers.



Use algebraic long division for the following questions.

1 Show that 

2 Show that 

3 Find 

4 Find 

5 Find the quotient and remainder for 

6 Show that is a root of 

7 Find expressing your answer in the form 

8 Find 

9 Find 

10 Find 

11 Find 

12 Find 

13 Given that is a factor of f(x), solve 

14 Given that is a factor of g(x), solve

4.7 Using a calculator with polynomials
Everything covered so far in this chapter has been treated as if a calculator were not
available. For the polynomials examined so far it has been possible to factorise and
hence solve polynomial equations to find the roots. For many polynomials it is not
possible to factorise, and the best method of solving these is to employ graphing
calculator technology. In these cases, the roots are not exact values and so are given as
approximate roots. Also, if a calculator is available, it can help to factorise a polynomial
as it removes the need for trial and error to find the initial root.

g1x 2 � x5 � 7x4 � 6x3 � 4x2 � 40x � 96 � 0.

x2 � x � 4

f1x 2 � x4 � 4x3 � 7x2 � 22x � 24 � 0.x � 1

11 � 5x3 � x6

x2 � 1
.

9 � 5x � 7x2 � x4

2x � 1
.

2x5 � 13
x2 � 3

.

3x4 � 2x2 � 7
x � 2

.

2x3 � 9x2 � 8x � 11
2x2 � 7

.

px � q �
ax � b
x2 � 5

.
x3 � 5x2 � 9x � 4

x2 � 5
,

x3 � 5x2 � 4x � 20 � 0.x � 5

3x2 � 5x � 7
x � 2

.

2x2 � 5x � 3
x � 3

.

1x2 � x � 12 2 � 1x � 4 2 .

1x2 � 1 2 � 1x � 1 2 � x � 1.

x2 � 5x � 6
x � 2

� x � 3.

4  Polynomials
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Although the process of algebraic long division is not part of this curriculum, it is an
important skill that is employed in curve sketching, found in Chapter 8.

102

This continues to give:

So the remainder here is 

Hence 
3x4 � 4x3 � 5x2 � 7x � 4

x2 � 2
� 13x2 � 4x � 1 2 1x2 � 2 2 � x � 6.

x � 6.

3x2 � 4x � 1
1x2 � 2 2 �3x4 � 4x3 � 5x2 � 7x � 4

3x4 � 6x2

� 4x3 � x2 � 7x � 4
� 4x3 � 8x

� x2 � x � 4
� x2 � 2

x � 6

is multiplied by
to obtain 

is multiplied by 
to obtain �x2.

�1x2

�4x3.�4x
x2

4  Polynomials

Example

Find 

In this case, the numerator is not presented with the powers in descending
order. It is vital that it is rearranged so that its powers are in descending order
before dividing. There are also some “missing” powers. These must be put into
the dividend with zero coefficients to avoid mistakes being made.

Having presented the division as above, the process is the same.

Hence 
5 � 3x3 � x6

x2 � 4
� x4 � 4x2 � 3x � 16 �

12x � 59
x2 � 4

.

x4 � 4x2 � 3x � 16
1x2 � 4 2 � x6 � 0x5� 0x4 �3x3 � 0x2 � 0x� 5

x6 � 4x4

� 4x4 �3x3 � 0x2� 0x � 5
� 4x4 � 16x2

3x3 � 16x2� 0x � 5
3x3 � 12x

16x2 � 12x � 5
16x2 �64

�12x �59

1x2 � 4 2 �x6 � 0x5 � 0x4 � 3x3 � 0x2 � 0x � 5

5 � 3x3 � x6

x2 � 4
.

Exercise  6

Example

Sketch the graph of and hence find its root(s). 

Using a calculator, we can obtain its graph:

f1x 2 � x3 � 4x2 � 2x � 1



Use a calculator to solve all of the following equations.

1

2

3

4

5

6

7 x4 � x3 � 5x2 � 7x � 2 � 0

x3 � 6x2 � 4x � 7 � 0

x3 � 2x2 � 11x � 5 � 0

3x3 � 9x2 � 4x � 12 � 0

2x4 � 3x3 � 15x2 � 32x � 12 � 0

2x4 � 9x3 � 46x2 � 81x � 28 � 0

2x3 � 5x2 � 4x � 3 � 0

4  Polynomials
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Solving a polynomial inequality is also made simple through the use of graphing
calculator technology.

104

We can see that this cubic function has only one root. We can find this using the
calculator. As the calculator uses a numerical process to find the root, it is important
to make the left bound and right bound as close as possible to the root.

Hence x � 3.51.

4  Polynomials

Example

Factorise fully 

Using the graph of the function,

we can see that is a root of f(x) and so we can use this in synthetic
division.

x � �3

f1x 2 � 6x3 � 13x2 � 19x � 12.

6 13

15 12

6 0�4�5

�18
���

�12�19�3

Hence 

 � 1x � 3 2 13x � 4 2 12x � 1 2 .

 f1x 2 � 1x � 3 2 16x2 � 5x � 4 2

Example

(a) Solve where 

(b) Find the range of values of a so that there are three solutions to the equation

(a) Here is the graph of f(x):

f1x 2 � a.

f1x 2 � x3 � 6x2 � 7x � 2.f1x 2 6 10

We can find the three points of intersection of f(x) with the line

Looking at the graph, it is clear that the solution to the inequality is 
and 

(b) By calculating the maximum and minimum turning points, we can find the
values of a so that there are three solutions. To have three solutions, a must
lie between the maximum and minimum values (y-values).

From the calculator, it is clear that �3.88 6 a 6 59.9.

�1 6 x 6 1.77.
x 6 �6.77

y � 10: x � �6.77, �1, 1.77

Exercise  7
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8

9

10 For what value of x do the curves and 

meet?
11 State the equation of f(x) from its graph below. Hence find the points of intersection

of f(x) and 

12 Factorise by obtaining an initial root using a calculator.

13 Factorise by obtaining an initial root using a calculator.

14 a Solve 
b Find the values of a so that there are three solutions to the equation 

15 a Solve 

b Find the values of a so that there are three solutions to the equation f1x 2 � a.

f1x 2 � x3 � 6x2 � 7x � 2 6 20.

f1x 2 � a.
f1x 2 � x3 � 6x2 � 7x � 2 6 0.

36x4 � 73x2 � 16,

x3 � 21x � 20,

g1x 2 � x2 � 4.

y � x2 � 3x � 5y � 2x3 � 4x2 � 3x � 7

x3 � 9x2 � 11x � 4 � 2x � 1

x4 � 22x2 � 19x � 41 � 0
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y � f(x)

�16

4�2 x

y

2
10

Review Exercise

Review exercise
1 Evaluate when 

2 Find 

3 Express in the form by dividing f(x) by

4 Show that is a factor of and hence find the other 

factors.

5 Factorise fully 

6 Factorise fully 

7 Factorise fully 

8 Show that is a root of and hence find the

other roots.

9 Solve 2x5 � 5x4 � x3 � 34x2 � 66x � 24 � 0.

x3 � 6x2 � 13x � 42 � 0,x � �2

k1x 2 � x4 � 3x3 � x2 � 15x � 20.

g1x 2 � 6x4 � 19x3 � 59x2 � 16x � 20.

f1x 2 � 2x3 � 3x2 � 17x � 12.

x3 � 10x2 � 3x � 54,x � 2

2x � 1.

Q1x 2 12x � 1 2 � Rf˛1x 2 � 2x5 � 4x2 � 7

13x4 � 2x3 � 6x � 1 2 � 1x � 2 2 .

x � �2.2x3 � 5x2 � 3x � 7

1

4�3 x

y

0
2
1

�96

y � f (x)

1
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11 Solve correct to 3 significant figures.

12 Solve correct to 3 significant figures.

13 Using algebraic long division, find 

14 Using algebraic long division, find 

15 The polynomial is divisible by and has a remainder 6

when divided by Find the value of a and of b. [IB May 03 P1 Q4]

16 The polynomial leaves the same remainder when divided

by as when divided by Find the value of a. [IB Nov 01 P1 Q3]

17 When the polynomial is divided by the remainder is 8. Find

the value of a. [IB Nov 02 P1 Q1]

18 Consider Find the value of k if is a factor of f(x).

[IB Nov 04 P1 Q1]

x � 2f1x 2 � x3 � 2x2 � 5x � k.

x � 1,x4 � ax � 3

x � 1.x � 2

f1x 2 � x3 � 3x2 � ax � b

1x � 1 2 .

1x � 2 2x3 � ax2 � 3x � b

1x4 � 4x2 � 3x � 5 2 � 1x2 � 1 2 .

x3 � 5x2 � 6x � 4
2x � 1

.

x3 � 7x2 � 2x � 31 � 0,

5x3 � 6x � 7 � 0,
1

4
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10 Find an expression for f(x) from its graph.



5.1 Exponential functions
An exponential (or power) function is of the form 

a is known as the base 

x is known as the exponent, power or index.

Remember the following rules for indices:

1. 

2. 

3. 

4. 

5. 

6. a0 � 1

q2ap � a
p
q

1
ap � a�p

1ap 2q � apq

ap

aq � ap�q

ap � aq � ap�q

1a � 1 2 .

y � ax.
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5 Exponential and Logarithmic
Functions

1

In this chapter we will meet logarithms,
which have many important applications,
particularly in the field of natural science.
Logarithms were invented by John Napier
as an aid to computation in the 16th
century.

John Napier was born in Edinburgh,
Scotland, in 1550. Few records exist about
John Napier’s early life, but it is known that
he was educated at St Andrews University,
beginning in 1563 at the age of 13.
However, it appears that he did not graduate
from the university as his name does not
appear on any subsequent pass lists.The
assumption is that Napier left to study in
Europe.There is no record of where he
went, but the University of Paris is likely,
and there are also indications that he spent
time in Italy and the Netherlands.

While at St. Andrews University, Napier became very interested in theology and he
took part in the religious controversies of the time. He was a devout Protestant, and
his most important work, the Plaine Discovery of the Whole Revelation of St. John was published
in 1593.

It is not clear where Napier learned mathematics, but it remained a hobby of his, with
him saying that he often found it hard to find the time to work on it alongside his
work on theology. He is best remembered for his invention of logarithms, which
were used by Kepler, whose work was the basis for Newton’s theory of gravitation.
However his mathematics went beyond this and he also worked on exponential
expressions for trigonometric functions, the decimal notation for fractions, a
mnemonic for formulae used in solving spherical triangles, and “Napier’s analogies”,
two formulae used in solving spherical triangles. He was also the inventor of
“Napier’s bones”, used for mechanically multiplying, dividing and taking square and
cube roots. Napier also found exponential epressions for trignometric functions, and
introduced the decimal notation for fractions.

We can still sympathize with his sentiments today, when in the preface to the Mirifici
logarithmorum canonis descriptio, Napier says he hopes that his “logarithms will save
calculators much time and free them from the slippery errors of calculations”.

John Napier

Example

Simplify 

x
1
5 � x

2
5

52x3
�

x
3
5

x
3
5

� x0 � 1

x
1
5 � x

2
5

52x3
.

Example

Evaluate without a calculator.

8�˛

2
3 �

1
3282

�
1
22 �

1
4

8�˛

2
3

Graphing exponential functions
Consider the function y � 2x.

x 0 1 2 3 4 5

y 1 2 4 8 16 32
1
2

1
4

�1�2

The y-values double for
every integral increase of x.



Now All exponential graphs of the form can

be expressed in this way, and from our knowledge of transformations of functions this is 

actually a reflection in the y-axis.

Hence this is the general graph of y � a�x, a 7 1:

y � ax, 0 6 a 6 1y � ¢1
2
≤x

�
1
2x � 2�x.

The first few points are shown in this graph:
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x

y

�2, 1
4

�1, 1
2

0

1

1�1�2 2 3

2
3
4
5
6
7
8 (3,8)

(2,4)

(1,2)

Investigation

Using a graphing calculator, sketch these graphs:

(a) (b) (c) (d) 

Try to identify a pattern.

The investigation should have revealed that all exponential graphs

1. pass through the point (0,1)
2. have a similar shape
3. are entirely above the x-axis.

y � 10xy � 5xy � 4xy � 3x

1
x

y

0

This shape is known as exponential growth, and all graphs of the form 
have this shape. The domain restriction of is important. We know that when

the graph is the horizontal line and below we will see what happens
when 

For graphs of the form let us consider y � ¢1
2
≤x

.y � ax, 0 6 a 6 1

0 6 a 6 1.
y � 1,a � 1

a 7 1
y � ax, a 7 1

x 0 1 2 3 4 5

y 4 2 1
1
32

1
16

1
8

1
4

1
2

�1�2

The first few points are shown in this graph:

x

y

2, 1
4

1, 1
2

0

1

1�1�2�3�4 2 3 4

2
3
4
5
6
7
8

(�1,2)

(�2,4)

(0,�1)

x

y

1

0

This is known as exponential decay. Exponential decay graphs can be expressed as
or as as shown above.y � ax, 0 6 a 6 1y � a�x, a 7 1

Exercise  1

1 Simplify these.

a b c d

e f g h

2 Without using a calculator, evaluate these.

a b  c

d e f

g h i

3 Simplify these.

a b

c d

e f

g h

4 Draw the graph of each of these.

a b c d

e f g h y � ¢2
3
≤x

y � ¢3
2
≤x

y � 6�xy � ¢1
4
≤x

y � 10xy � 6xy � 5xy � 3x

1x
1
2 � x�˛

1
2 22x

1
2 12x

1
2 � x�˛

1
2 2

3x214x3 � 5x�1 2
4m

5
3 � 3m�˛

5
3

2m
2
3

t
1
2 � t3

t
3
2

5p3 � 2p�5

p4

4y3 � 2y6

6y5

x5 � x3

x2

¢ 1
27
≤�˛

2
3

4�˛

3
28�˛

2
3

9�˛

1
225

3
2190

10�181
1
416

1
2

18p5

3p�2

8p6

4p4t4 � t�212x3 24

3y2 � 7y31x3 25
p7

p2p4 � p5



Interpreting a logarithm
A logarithm can be interpreted by “the answer to a logarithm is a power”.

This comes from the definition:

So, for example, log2 64 � x 3 2x � 64 1 x � 6.

loga q � p 3 ap � q

5.2 Logarithmic graphs
In the study of inverse functions, it was found that an inverse function exists only for
one-to-one functions. The question is whether there is an inverse function for
exponential functions.
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1

x

y

0

y � ax

Using the tests of horizontal and vertical lines, it is clear that any of these lines pass
through only one point (or no point) on the graph.

So, for any exponential function an inverse function exists.

In Chapter 3, we also found that the graph of an inverse function is the reflection of the
original function in the line Using this, we can find the shape of the inverse
function.

y � x.

y � ax1a � 1 2 ,

1

1 x

y

0

y � x

y � f�1(x)

y � f(x)

As all exponential graphs have the same shape, all inverse graphs will also have the same
shape. These inverse functions are known as logarithmic functions.

Logarithmic functions are defined

y � ax
3 x � loga y

Consider the exponential function 

This means that the inverse function is written 

There are two key features of logarithmic graphs:

1. Logarithmic functions are defined only for 
2. All logarithmic graphs pass through (1,0).

This means that we can summarize the domain and range for exponential and
logarithmic functions.

x 7 0.

y � log2 x.

y � 2x
1 x � log2 y

y � 2x.

In 2 is known as
the base.

log2 x,

Domain Range

Exponential

Logarithmic �x 7 0

y 7 0�

Example

Find 

1 x � 3

log5 125 � x 1 5x � 125

log5 125. This is asking “What
power of 5 gives 125?”

There are two important results to remember:

Example

Evaluate (a) (b) 

(a) 

 1 x �
1
2

 1 25x � 5

 log25 5 � x

log5¢ 1
25
≤log25 5

 loga a � 1

 loga 1 � 0 These come from 
and a1 � a.

a0 � 1

(b) 

 1 x � �2

 1 5x �
1
25

 log5¢ 1
25
≤ � x

Example

Sketch the graph of 

We know the shape, and that the graph passes through (1, 0).

As the base is 3, we know that so the graph passes through (3,1).log3 3 � 1,

y � log3 x.

x

y

0

(3, 1)

1



2. Similarly, let and 

3. Again, let and 

 � m loga x
 Hence loga x

m � mp

 So xm � 1ap 2m � amp

loga y � q.loga x � p

 1 loga¢xy≤ � loga x � loga y

 Hence loga¢xy≤ � p � q

 So 
x
y

�
ap

aq � ap�q

loga y � q.loga x � p

1 Sketch these graphs.

a b

c d

2 Sketch these functions on the same graph.

a and b and 

3 Without a calculator, evaluate these logarithms.

a b c d e

f g h i j

k l m n

4 Without a calculator, evaluate these logarithms.

a b c d

e f g h

5 Without a calculator, evaluate these logarithms.

a b c d

e f g

6 Without a calculator, evaluate these logarithms.

a b c d e �loga aloga¢1a≤loga 1aloga a
2loga a

log25¢15≤log8¢12≤log3¢ 1
81
≤

log3¢ 1
27
≤log3¢19≤log2¢18≤log2¢ 1

16
≤

log16 8log8 4log64 2log64 8

log25 5log4 2log9 3log8 2

log8 1log3 3log7 7log10 1000

log10 100log8 64log2 64log4 64log2 32

log6 216log3 27log5 25log3 9log2 4

y � log5 xy � 5xy � log3 xy � 3x

y � log10 xy � log5 x

y � log4 xy � log2 x
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1. 2. 

3. loga x
m � m loga x

loga¢xy≤ � loga x � loga yloga xy � loga x � loga y

It is very important to 
remember that
logp a � logp b � logp1a � b 2 .

Exercise  2

5.3 Rules of logarithms
As there are for exponentials, there are rules for logarithms that help to simplify
logarithmic expressions.

For exponentials, we have the rules:

1. 2. 3. 

The corresponding rules for logarithms are:

1ap 2q � apqap � aq � ap�qap � aq � ap�q

Proofs

1. Let and 

This means that and 

Since 

By the definition of a logarithm this means that 

 1 loga xy � loga x � loga y

 loga xy � p � q

xy � ap � aq � ap�q, xy � ap�q.

y � aq.x � ap

loga y � q.loga x � p

It is worth noting that
1

loga x
� �loga x.

For these rules to work,
the logarithms must have
the same base.

Example

Simplify 

 � logx 4

 logx 8 � logx 3 � logx 6 � logx ¢8 � 3
6
≤

logx 8 � logx 3 � logx 6.

These rules can also be used to solve equations involving logarithms.

Example

Simplify 

 � logp¢32
3
≤

 � logp¢8 � 16
12

≤
 � logp 8 � logp 12 � logp 16

� logp 2
3 � logp 12 � logp 4

23 logp 2 � logp 12 � 2 logp 4

3 logp 2 � logp 12 � 2 logp 4

Example

Simplify and evaluate 

 � 2
 � log10 100
 � log10 25 � log10 4

 2 log10 5 � 2 log10 2 � log10 5
2 � log10 2

2

2 log10 5 � 2 log10 2.



6 If express y in terms of x.

7 If express y in terms of x.

8 If express y in terms of p and x.

9 If show that 

10 Solve for 
a b

c d

e f

g h

11 Solve for 
a b

c d

e f   

12 Volume of sound is measured in decibels. The difference in volume between two

sounds can be calculated using the formula where and 

are sound intensities The volume of normal conversation is 60 dB and

the volume of a car horn is 110 dB. The sound intensity of normal conversation

is 40 phons. What is the sound intensity of a car horn 1S1 2?1S2 2

1S1 7 S2 2 .

S2S1d � 50 log10¢S1

S2
≤

log712x � 5 2 � log71x � 5 2 � log7¢x
2
≤log161x � 2 2 � log161x � 6 2 �

1
2

log81x
2 � 1 2 � log81x � 1 2 � 2log413x � 1 2 � log41x � 1 2 � 1

log51x � 1 2 � log51x � 3 2 � 1loga1x � 2 2 � loga1x � 1 2 � loga 4
x 7 0.

2 loga x � loga x � loga 9
1
2

 loga x � loga 6 � loga 30

loga 6 � loga x � loga 1loga x
2 � loga¢12≤ � loga 32

loga x � 2 loga 5 � loga 225loga x � 2 loga 2 � loga 24

loga x � loga 3 � loga 19loga x � loga 2 � loga 14
x 7 0.

y2 � 81x � 1 2 .2 log2 y � log21x � 1 2 � 3,

loga y � loga p � 5 loga x,

loga y � 2 loga 3 � 4 loga x,

loga y � loga 4 � 3 loga x,

1 Simplify these.
a  b  c

d e f

g h  i

j k

2 Express each of these as a single logarithm of a number.
a b

c d

3 Simplify these.

a b

c d

e f

g h

i j

k

4 Simplify these.
a

b

c

d

5 Simplify these.
a b c

d e f

What is the connection between and logy x?logx y

log100 10log10 100log27 9

log9 27log4 2log2 4

3 loga1x � 2 2 � loga13x2 � 12 2 � loga1x � 2 2

loga1x � 1 2 � loga1x
2 � 1 2 � 2 loga1x � 1 2

loga 4 � loga 2x

loga 3 � loga x � 2 loga x

�2 log4 8 � log4¢12≤
log2¢14≤ � 2 log2¢18≤log2 3 � log2 2 � log2 6 � log2 8

log5 64 � 6 log5 2
1
2

 log2 16 �
1
3

 log2 8

log6 12 � log6¢13≤log3 6 � log3 12 � log3 8

log4 36 � log4 18log6 2 � log6 3

log3 63 � log3 7log10 4 � log10 125

loga x � 2 loga y � 3 loga t5 � 2 log2 6

log2 10 � 21 � log3 5

loga 6 � 2 loga 2 � loga 82 loga 3 � 3 loga 2

�3 loga 22 loga 6 � loga 2 � loga 125 loga 2

1
2

 loga 16loga 2 � loga 3 � loga 4loga 8 � loga 8

loga 10 � loga 2loga 5 � loga 3loga 2 � loga 9
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Example

Solve for 

 1 x � 1

 1 1x � 4 2 1x � 1 2 � 0

 1 x2 � 3x � 4 � 0

 1 x2 � 3x � 2 � 6

 1 1x � 2 2 1x � 1 2 � 6

 1 log61x � 2 2 1x � 1 2 � log6 6

 1 log61x � 2 2 1x � 1 2 � 1

 log61x � 2 2 � log61x � 1 2 � 1

x 7 0.log61x � 2 2 � log61x � 1 2 � 1

Expressing 1 as a logarithm.

Since x 7 0.

Exercise  3

5.4 Logarithms on a calculator
The natural base
There is a special base, denoted e, which is known as the natural base. The reason why this
base is special is covered in Chapter 9. This number e is the irrational number 2.718

The exponential function to the base e is which is also written exp(x).f1x 2 � ex,

p

exp1x 2 � ex

loge x � ln x

1

1 x

y

0

y � e x

y � lnx

There is also a notation for its inverse (logarithmic) function known as the natural
logarithmic function. It is also sometimes called a Naperian logarithm after John Napier.

The graphs of these functions have the same shape as other logarithmic and exponential
graphs.

In particular note that
ln e � 1.



The change of base formula can be used to sketch any logarithmic function on the
calculator.

Calculators perform logarithms in only two bases, 10 and e. For these two logarithms,
the base is rarely explicitly stated. For the natural base the notation is ln, and for base 10
it is often just written log x, and the base is assumed to be 10.
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loga x �
logb x

logb a

Be careful with brackets.

Example

Find and ln 7.log10 7

Change of base formula
To find logarithms in other bases, we need to change the base using this formula:

Proof

If we are using this formula to find a logarithm on a calculator, it is often written as

 1 y �
logb x

logb a

 1 logb x � y logb a

 1 logb x � logb a
y

 1 x � ay

 loga x � y

loga x �
ln x
ln a

Example

Use the change of base formula to evaluate these.
(a) (b) log3 10log2 8

Example

Sketch y � log6 x.

Exercise 3 question 5 asked “What is the connection between and ” The
answer is a special case of the change of base formula, namely that

logy x?logx y

logx y �
logy y

logy x
�

1
logy x

This can be used to help solve equations.

Example

Use the change of base formula to solve 

This can be changed into 

Multiplying by gives

 1 x � 9 or x � 81

 1 log9 x � 1 or log9 x � 2

 1 1log9 x � 1 2 1log9 x � 2 2 � 0

 1 1y � 1 2 1y � 2 2 � 0

 1 y2 � 3y � 2 � 0

 1 1log9 x 2
2 � 3 log9 x � 2 � 0

 1log9 x 2
2 � 2 � 3 log9 x

log9 x

log9 x �
2

log9 x
� 3.

log9 x � 2 logx 9 � 3.

Let y � log9 x

Exercise  4

1 Using a calculator, evaluate these.

a b c

d e

2 Using a calculator, evaluate these.
a ln 10 b ln 9 c ln 31

d e ln 7.5 f ln(0.328)ln¢1
2
≤

log10¢12≤log10 3

log10 26log10 8log10 1000



Natural logarithm equations can also be solved using a calculator.

3 Use the change of base formula to evaluate these.

a b c d e

f g h i j

k l m n o

p q r

4 Use your calculator to sketch these.
a b c

5 Use the change of base formula to solve these.
a

b

c log7 x � 12 logx 7 � 4

log2 x � 6 logx 2 � 1

log4 x � 5 logx 4 � 6

y � log9 xy � log7 xy � log5 x

log910.324 2log410.126 2log6 4.38

log8 9.21log5¢57≤log6¢23≤log8¢14≤log7¢18≤

log5¢16≤log4¢12≤log4 13log9 12log6 12

log5 80log4 17log3 11log2 9log4 16
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5.5 Exponential equations
Logarithms can be used to solve exponential equations and this is one of their greatest
applications today. When logarithms were first advanced by Napier, they were used as a
computational aid. Exponential equations are ones where we are trying to find the power.
The logarithmic rule of is particularly useful for these equations.loga x

p � p loga x

Example

Solve 

 1 x � 2.81

 1 x �
ln 7
ln 2

 1 x ln 2 � ln 7
 1  ln 2x � ln 7

 2x � 7

2x � 7.

Since ln e � 1.

Example

Solve 

 1 x � 2.48
 1 x � ln 12

 1 x ln e � ln 12
 1 ln ex � ln 12

 ex � 12

ex � 12.

Example

Solve 

 1 x � 2.18 13 sf 2
 1 2x � 1 � 3.357 p

 1 2x � 1 �
ln 40
ln 3

 1 12x � 1 2 ln 3 � ln 40
 1  ln 32x�1 � ln 40

 32x�1 � 40

32x�1 � 40.

Example

Solve 

Remembering this means this can be written

 1 x � 59 900 13 sf 2
 x � e11

loge x � 11,

ln x � 11.

Exponential functions are very important in the study of growth and decay, and are
often used as mathematical models.

Example

A population of rats increases according to the formula where t is

the time in months.
(a) How many rats were there at the beginning?
(b) How long will it be until there are 80 rats?

(a) When 

(b)

 1 t � 10.5 months

 1 t �
ln 10
0.22

 1 0.22t � ln 10

 1  ln e0.22t � ln 10

 1 e0.22t � 10

8e0.22t � 80

t � 0, R10 2 � 8e0 � 8

R1t 2 � 8e0.22t,

Example

For a radioactive isotope where A is the mass of isotope in grams,

is the initial mass, and t is time in years.
In 5 years, 40 g of this substance reduced to 34 g.
(a) Find the value of k, correct to 3 sig figs.
(b) Find the half-life of this substance.

A0

A � A0˛e�kt,

Method for solving an exponential equation

1. Take natural logs of both sides.
2. “Bring down” the power.
3. Divide the logs.
4. Solve for x.



1 Solve for x.
a b c
d e f

2 Solve for x.
a b c
d e

3 Solve for x.
a b c
d e

4 Find the least positive value of for which the inequality is true.
a b c d

5 The number of bacteria in a culture is given by where t is

the time in days.
a How many bacteria are there when 
b How many bacteria are there after 2 days?
c How long will it take for the number of bacteria to increase to ten times its

original number?
6 According to one mobile phone company, the number of people owning a

mobile phone is growing according to the formula 
where t is time in months. Their target is for 3 million people to own a mobile
phone. How long will it be before this target is reached?

7 When a bowl of soup is removed from the microwave, it cools according to

the model t in minutes and T in C.
a What was its temperature when removed from the microwave?

b The temperature of the room is 22 C. How long will it be before the soup

has cooled to room temperature?

8 A radioactive isotope is giving off radiation and hence losing mass according

to the model t in years and M in grams.
a What was its original mass?
b What will its mass be after 20 years?
c What is the half-life of the isotope?

M1t 2 � 2100e�0.012t,

°

°T1t 2 � 80e�0.12t,

N1t 2 � 100 000e0.09t,

t � 0?

B1t 2 � 40e0.6t,

5x
7 720010x

7 2103x
7 3002x

7 350
x H �

ln x � 0.2ln x � 16
ln x � 10ln x � 2ln x � 9

8ex � 34ex � 18
ex � 270ex � 30ex � 12

14x � 38x � 612x � 6500
5x � 203x � 402x � 256

123

Sometimes exponential equations can be reduced to quadratic form.

122

(a) 

(b) The half-life of a radioactive substance is the time taken for only half of the
original amount to remain.

i.e. 

 1 t � 21.3 years

 1 �0.0325t � ln 

1
2

 1 e�0.0325t �
1
2

A
A0

�
1
2

 1 k � 0.0325

 1 �5k � ln¢34
40
≤

 1 e�5k �
34
40

 1 40e�5k � 34

A0 � 40, A � 34, t � 5
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Example

Solve giving your answer in the form where

 1 x �

ln¢16
3
≤

ln¢27
2
≤

 1 x ln¢27
2
≤ � ln¢16

3
≤

 1 x˛1ln 6 � ln 9 � ln 4 2 � ln 16 � ln 3
 1 x ln 6 � x ln 9 � ln 3 � x ln 4 � ln 16

 1 x ln 6 � 2x ln 3 � ln 3 � x ln 4 � 2 ln 4
 1 x ln 6 � 12x � 1 2 ln 3 � 1x � 2 2 ln 4

 1 ln 3 16x 2 132x�1 2 4 � ln 4x�2

 16x 2 132x�1 2 � 4x�2

a, b H �.

x �
ln a
ln b

,16x 2 132x�1 2 � 4x�2,

Example

Solve , giving the answer in the form where

 1 713x 2 131 2 � 2 �
3
3x

 713x�1 2 � 2 �
3
3x

a, b H �.

a � log3 b,713x�1 2 � 2 �
3
3x

Let y � 3x.

 1 x � 1 � log3 7

 1 x � log3¢37≤
 1 3x �

3
7

 1 y �
3
7

 or y � �
1
3

 1 17y � 3 2 13y � 1 2 � 0
 1 21y2 � 2y � 3 � 0

 1 21132x 2 � 213x 2 � 3 � 0

 1 21132x 2 � 213x 2 � 3

 1 2113x 2 � 2 �
3
3x

Exercise  5
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5.6 Related graphs
Exponential and logarithmic graphs are transformed in the same way as other functions,
as studied previously.

We can sketch and interpret related exponential and logarithmic graphs using this
information.

9 The height of a satellite orbiting Earth is changing according to the formula

t in years and H in km.

a What will be the height of the satellite above the Earth after 2 years?
b When the satellite reaches 320 km from the Earth, it will burn up in the

Earth’s atmosphere. How long before this happens?
10 Scientists are concerned about the population of cheetahs in a game park in

Tanzania. Their study in 2006 produced the model

where P is the population of cheetahs and t is the time in     

years from 2006.
a How many cheetahs were there in 2006?
b How many cheetahs do they predict will be in the park in 2015?
c If the population drops to single figures, scientists predict the remaining

cheetahs will not survive. When will this take place?

11 The pressure in a boiler is falling according to the formula where

is the initial pressure, is the pressure at time t, and t is the time in hours.
a At time zero, the pressure is 2.2 units but 24 hours later it has dropped 1.6

units. Find the value of k to 3 sf.
b If the pressure falls below 0.9 units, the boiler cuts out. How long before it

will cut out?
c If the boiler’s initial pressure is changed to 2.5 units, how much longer will it

be operational?

12 A radioactive substance is losing mass according to the formula 
where is the initial mass, is the mass after t years.
a If the initial mass is 900 g and after 5 years it has reduced to 850 g, find k.
b What is the half-life of this substance?

13 Solve Give your answer in the form where 

14 Solve Give your answer in the form where 

15 Solve Give your answer in the form where

16 Solve Give your answer in the form where

17 Solve giving your answer in the form 

where 

18 Solve giving your answer in the form 

where 

19 Solve giving your answer in the form 

where 

20 Solve giving your answer in the form 

where 

21 Solve 

22 Solve 9x � 413x 2 � 12 � 0.

4x � 412x 2 � 5 � 0.

a, b H �.

x � a � log6 b,316x�1 2 � 1 �
4
6x,

a, b H �.

x � a � log4 b,214x�2 2 � 12 �
5
4x,

a, b H �.

x � a � log4 b,214x�1 2 � 2 �
3
4x,

a, b H �.

x � a � log2 b,512x�1 2 � 3 �
4
2x,

a, b H �.

x �
ln a
ln b

,12x 2 132x�1 2 � 4x�3.

a, b H �.

x �
ln a
ln b

,14x 2 15x�1 2 � 22x�1.

a, b H �.

x �
ln a
ln b

,14x 2 132x�1 2 � 6x�1.

a, b H �.x �
ln a
ln b

,3x�1 � 22�x.

MtM0

Mt � M0˛e�kt

PtP0

Pt � P0˛e�kt,

P1t 2 � 220e�0.15t,

H1t 2 � 30000e�0.2t,
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Example

Sketch the graph of y � 4x � 2.

For exponential graphs,
we often plot the points
for and x � 1.x � 0

This is a vertical shift
downwards of 2 units.

13, 1 2 S 13, 6 2

11, 0 2 S 11, 4 2

This is a horizontal shift
right of 1 unit and a
vertical shift of 3 units.

For logarithmic graphs,
we often plot the points
when and 
where a is the base (or
their images under
transformation). So here 

and

12, 1 2 S 13, 4 2

11, 0 2 S 12, 3 2

x � a,x � 1

Notice the vertical 
asymptote has moved to
x � 1.

�1
x

y

(1, 2)

�2

0

Example

Sketch the graph of y � log21x � 1 2 � 3.

x

y

0 1

(2,3)
(3,4)

Example

Sketch the graph of 

From log rules, we know that this is the same as y � 2 log3 x � 4.

y � log3 x
2 � 4.

x

y

0

(1, 4)

(3, 6)



6 For this graph of what is the value of k?y � kex,
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1 Sketch these graphs.
a b c d

2 Sketch these graphs.
a b c d

3 Sketch these graphs.
a b c d

4 Sketch these graphs.

a b

c d

5 Sketch these graphs.

a b

c d y � 3 log31x � 2 2y � log3¢1x≤
y � log3 x

2y � log3 x

y � �log4 xy � log41x � 2 2

y � log4 x � 2y � log4 x

y � 5ex�1 � 3y � 3ex�2y � 2ex � 1y � 4e�x

y � ex�2y � �exy � 4exy � ex

y � 2x�3y � 2�xy � 2x � 3y � 2x
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Example

For this graph of what is the value of k?

As (0,3) lies on the graph it has been stretched So k � 3.� 3.

y � ke�x,

x

y

0

3

Example

Part of the graph of is shown. What are the values of p and q?y � p log21x � q 2

The graph has been shifted 5 places right 
so 

So for 

So and q � 5p � 4

 � p
 � p log2 2

 17, 4 2 , 4 � p log217 � 5 2

q � 5.

x

y

(7, 4)

650

Exercise  6

5

x

y

0

5

(1, 7)

x

y

0

10 x

y

(9, 2)

x

y
(1, 1)

�2 0�3

7 For this graph of what are the values of k and p?y � k � 2x � p,

8 The sketch shows the graph of Find the value of a.y � loga x.

9 The sketch shows the graph of Find the values of p and a.y � loga1x � p 2 .

10 The sketch shows part of the graph of Find the values of a
and p.

y � a log61x � p 2 .

x

y

(9, 6)

40



15 A truck has a slow puncture in one of its tyres, causing the pressure to
drop. The pressure at time t, is modelled by where t is in
hours and is the inflation pressure.
a Initially the tyre is inflated to 50 units. After 18 hours, it drops to 16 units.

Calculate the value of k.
b The truck will not be allowed to make a journey if the pressure falls below

30 units. If the driver inflates the tyre to 50 units immediately before
departure, will he be able to make a round trip that takes 6 hours?

16 Solve [IB Nov 03 P1 Q10]

17 Find the exact value of x satisfying the equation 

Give your answer in the form where [IB May 03 P1 Q12]

18 Solve giving your answer in the form 

where [IB Nov 03 P1 Q19]

19 Solve the simultaneous equations and for 

20 Solve the simultaneous equations and 

21 Solve the system of simultaneous equations:

[IB Nov 98 P1 Q2]

22 If find
a the exact domain of f(x)
b the range of f(x). [IB Nov 98 P1 Q7]

23 Find all real values of x so that [IB May 98 P1 Q3]

24 a Given that find the real numbers k and m such that 

and 

b Find all values of x for which 
[IB Nov 97 P1 Q4]

log9 x
3 � log3 x

1
2 � log27 512.

log27 512 � m log3 8.log9 x
3 � k log3 x

loga b �
logc b

logc a
,

3x2�1 � 123 2126.

f1x 2 � ln16x2 � 5x � 6 2 ,

 4x � 8y

 x � 2y � 5

2 loga x � log14y � 1 2 .
loga1x � y 2 � 0

x, y 7 0.xy � 16logx y � 1

a, b H �.

a � log5 b,215x�1 2 � 1 �
3
5x,

a, b H �.
ln a
ln b

,

13x 2 142x�1 2 � 6x�2

log16 
32100 � x2 �

1
2

.

P0

Pt � P0˛e�kt,Pt,

1 Simplify these.

a b c

2 Draw these graphs.
a b

3 Evaluate these.

a b c d

4 Simplify these.
a b c

5 Simplify these.
a b

6 Solve for 

a b

c d
7 Evaluate these.

a b c d
8 Solve for x.

a b c
9 Solve for x.

a b c d
10 Find the least positive value of for which the inequality is true.

a b c
11 Sketch these graphs.

a b c d

12 Sketch these graphs.

a b c

13 For this graph of what is the value of k?y � ke�x,

y � 5 log21x � 1 2y � log7¢1x≤y � log5 x � 2

y � �3x � 5y � 4x�1 � 2y � 6x�3y � 5x � 2

ex
7 2915x

7 20003x
7 190

x H �

5ex � 19ex � 87x � 23x � 320

5 ln x � 19ln x � 17ln x � 9

3 log8 5log11 2log9 4log4 7

log31x � 2 2 � log31x � 1 2 � 2log51x � 1 2 � log51x � 2 2 � log5 10

1
2

 loga x � loga 5 � loga 45loga x � loga 6 � loga 54

x 7 0.

log4 6 � log4 2 � log4 3log3 x � log3 8

2 loga 5 � 1logp 8 � logp 4 � logp 16loga 16 � loga 3

log5¢ 1
25
≤log8 2log5 125log2 32

log6 xy � 6x

x�˛

1
2 12x

1
2 � 4x�˛

3
2 2

5p
1
2 � 3p

3
4

p
3
2

x7 � x2

x3
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Review exercise

x0

y

7

14 The sketch shows part of the graph of What are the values
of p and q?

y � logp1x � q 2 .

x

y
(4, 2)
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Pascal’s triangle is constructed by
adding together the two numbers
above as shown (with a 1 on the end
of each row).There are many
interesting results and applications
related to this triangle. For example,
notice that the sum of each row is a
power of 2.
Pascal’s triangle is named after Blaise
Pascal, born 1623, a French
mathematician who made great
contributions to the fields of number theory, geometry and probability. However, it is
not universally known as Pascal’s triangle as it was not discovered first by him.There is
evidence that Chinese and Persian mathematicians independently found the triangle as
early as the 11th century. Chia Hsien,Yang Hui and Omar Khayyam are all documented
as using the triangle. In fact, there may be reference to the triangle as early as 450 BC
by an Indian mathematician who described the “Staircase of Mount Meru”. In China
the triangle is known as the Chinese triangle, and in Italy it is known as Tartaglia’s
triangle, named after a 16th century Italian mathematician, Nicolo Tartaglia.

http://www.bath.ac.uk/~ma3mja/history.html

Accessed 14 February 2006

A sequence is defined as an ordered set of objects. In most cases these objects are
numbers, but this is not necessarily the case. Sequences and series occur in nature, such
as the patterns on snail shells and seed heads in flowers, and in man-made applications
such as the world of finance and so are a useful area of study. Whereas a sequence is a
list of objects in a definite order, a series is the sum of these objects.

Consider these sequences:

1. 

2.  J, A, S, O, N, D, J,

3.  M, W, F, S, T, T, S,

4.  Moscow, Los Angeles, Seoul, Barcelona, Atlanta, Sydney, Athens, Beijing, London,

5.  2, 4, 6, 8, 10,

6.  10, 13, 16, 19, 22,

7.  3, 6, 12, 24, 48,

8.  1, 3, 7, 15, 31,

How can these sequences be described?

Here are some possible descriptions:

p

p

p

p

p

p

p

6 Sequences, Series 
and Binomial Theorem

1

1

1

1

1

2

6

1

3

4

3

4

1

1

1

, , , ,  ...
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1.  Plane shapes beginning with triangle, with one vertex (and side) added each time.

2.  Initial letter of each month (in English) beginning with July.

3.  Initial letter of days, starting with Monday, going forward each time by two days.

4.  Olympic cities beginning with Moscow (1980).

5.  Even numbers beginning with 2, increasing by 2 each time.

6.  Numbers beginning with 10, increasing by 3 each time.

7.  Beginning with 3, each term is the previous term multiplied by 2.

8.  Beginning with 1, each term is double the previous term plus 1.

It is natural to describe a sequence by the change occurring each time from one term to
the next, along with the starting point. Although all of the above are sequences, in this
course only the types of which 5, 6 and 7 are examples are studied.

In order to describe sequences mathematically, some notation is required.

is known as the nth term of a sequence.
This provides a formula for the general term of a sequence related to its term number, n.

is the notation for the sum of the first n terms.
a or is commonly used to denote the initial term of a sequence.u1

Sn

un

6.1 Arithmetic sequences
An arithmetic sequence, sometimes known as an arithmetic progression, is one where
the terms are separated by the same amount each time. This is known as the common
difference and is denoted by d. Note that for a sequence to be arithmetic, a common
difference must exist.

Consider the sequence 5, 7, 9, 11, 13,

The first term is 5 and the common difference is 2.
So we can say and 

Sequences can be defined in two ways, explicitly or implicitly. An implicit expression
gives the result in relation to the previous term, whereas an explicit expression gives the
result in terms of n. Although it is very easy to express sequences implicitly, it is usually
more useful to find an explicit expression in terms of n.

Here, an implicit expression could be 

For an explicit expression consider this table.

un � un�1 � 2.

d � 2.a � 5

p

nth term previous term

n 1 2 3 4 5

5 7 9 11 13un

In this case, un � 2n � 3.

Compare this with 
finding the straight line
with gradient 2 and 
y-intercept 3.

In this course, two types of sequence are considered: arithmetic sequences and
geometric sequences.
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1 Find for these sequences.
a 5, 7, 9, 11, 13,
b 1, 6, 11, 16, 21,
c 8, 14, 20, 26, 32,
d 60, 51, 42, 33, 24,
e

2 For the sequence 7, 18, 29, 40, 51, find and 
3 For the sequence 200, 310, 420, 530, 640, find and 
4 For the sequence find and 

5 For the sequence find and 

6 For 9, 16, 23, 30, 37, which term is the first to exceed 1000?
7 For 28, 50, 72, 94, 116, which term is the first to exceed 500?
8 For 160, 154, 148, 142, 136, which term is the last positive term?
9 Find given and 

10 Find given and 
11 Find given and 
12 Find given and 
13 Given that k, 8, 7k are consecutive terms of an arithmetic sequence, find k.
14 Given that are consecutive terms of an arithmetic

sequence, find k.
15 Given that are consecutive terms of an arithmetic

sequence, find k.

16 Given that are consecutive terms of an arithmetic sequence,

find k.

k2 � 4, 29, 3k

4k � 2, 18, 9k � 1

k � 1, 11, 2k � 1

u14 � �11.u8 � �8un

u7 � 8.u3 � 32un

u10 � 97.u4 � 43un

u9 � 33.u5 � 17un

p

p

p

u15.un1, 
3
2

, 2, 
5
2

, 3, p

u19.un17, 10, 3, �4, �11, p

u13.unp

u20.unp

4, 0, �4, �8, �12, p

p

p

p

p

un

Example

If are consecutive terms of an arithmetic sequence, find the

possible values of k.
As the sequence is arithmetic, a common difference must exist.

Hence and 

So 

 1 k � �3 or k � 8
 1 1k � 3 2 1k � 8 2 � 0

 1 k2 � 5k � 24 � 0

 k2 � 6k � 12 � 12 � k

d � k2 � 6k � 12.d � 12 � k

k, 12, k2 � 6k

Exercise  1

6.2 Sum of the first n terms of an 
arithmetic sequence

An arithmetic series is the sum of an arithmetic sequence.

So for i.e. 8, 11, 14, 17, 20, the arithmetic series is

So means 8 � 11 � 14 � 17 � 20 � 70.S5

Sn � 8 � 11 � 14 � 17 � 20 � ...
p ,un � 3n � 5,

It is clear that an arithmetic sequence will be of the form

Hence, the general formula for the nth term of an arithmetic sequence is

a, a � d, a � 2d, a � 3d, a � 4d, p

un � a � 1n � 1 2d

Example

Consider the arithmetic sequence 4, 11, 18, 25, 32,
(a) Find an expression for the nth term of the sequence.
(b) Find the 12th term of the sequence.
(c) Is (i) 602 (ii) 711 a member of this sequence?

(a) Clearly for this sequence and 
so

(b) Hence

(c) (i) 

Since n is not an integer, 602 cannot be a term of this sequence.
(ii) 

Clearly 711 is a member of the sequence, the 102nd term.
 1 n � 102

 1 7n � 714
 7n � 3 � 711

 1 n � 86.4
 1 7n � 605

 7n � 3 � 602
 � 81

 u12 � 7 � 12 � 3

 un � 7n � 3
 un � 4 � 7n � 7
 un � 4 � 71n � 1 2

d � 7,u1 � a � 4

u12,
un,

p

Example

What is the nth term of a sequence with and 
If then 
If then 
Subtracting, 

Now substituting this into 

Hence 

It is easy to verify that this is the correct formula by checking u12.
 � 100 � 3n

 un � 97 � 31n � 1 2
 1 a � 97

 a � 18 � 79
 a � 6d � 79,

 1 d � �3
 �5d � 15

a � 11d � 64.u12 � 64,
a � 6d � 79.u7 � 79,

u12 � 64?u7 � 79
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1 Find a formula for for these series.

a

b

c

d

e

2 Find for 

3 For the series obtained from the arithmetic sequence find 
4 Find the sum of the first 20 multiples of 5 (including 5 itself).
5 Find the sum of the multiples of 7 between 100 and 300.
6 Find an expression for the sum of the first n positive integers.
7 Find an expression for the sum of the first n odd numbers.
8 Given that three consecutive terms of an arithmetic sequence add together

to make 30 and have a product of 640, find the three terms.

9 Find the number of terms in the arithmetic series 
required to exceed 700.

10 Find the greatest possible number of terms in the arithmetic series
such that the total is less than 200.

11 What is the greatest total possible (maximum value) of the arithmetic series

12 In an arithmetic progression, the 10th term is twice the 5th term and the
30th term of the sequence is 60.
a Find the common difference.
b Find the sum of the 9th to the 20th terms inclusive.

187 � 173 � 159 � ... ?

18 � 22 � 26 � ...

9 � 14 � 19 � 24 � ...

S12.un � 5n � 3,

8 � 15 � 22 � 29 � 36 � ... .S7

1
2

�
5
6

�
7
6

�
3
2

�
11
6

� ...

2008 � 1996 � 1984 � 1972 � 1960 � ...

80 � 77 � 74 � 71 � 68 � ...

8 � 10 � 12 � 14 � 16 � ...

2 � 5 � 8 � 11 � 14 � ...

Sn

Example

Given and find 

i ii
i

i  –  ii   ii

Substituting in  i

So 

1 u11 � 44 � 2 � 42
un � 4n � 2
un � a � 1n � 1 2d � 2 � 41n � 1 2

 1 d � 4
 1 3d � 12
 a � 3d � 14

a � 2
a � 3d � 14

2a � 3d � 16
1 a � 3d � 141 2a � 3d � 16
1 7a � 21d � 981 4a � 6d � 32

S7 �
7
2

 12a � 6d 2 � 98S4 �
4
2

 12a � 3d 2 � 32

u11.S7 � 98,S4 � 32

Exercise  2

How can a formula for be found?

Re-ordering,

Adding,

This is the formula for It can be expressed in two ways:Sn.

 1 Sn �
n
2

 32a � 1n � 1 2d 4

 � n 32a � 1n � 1 2d 4

 2Sn � 2a � 1n � 1 2d � 2a � 1n � 1 2d � ... � 2a � 1n � 1 2d � 2a � 1n � 1 2d

Sn � un � un�1 � ...� u2 � u1 � 3a � 1n � 1 2d 4 � 3a � 1n � 2 2d 4 � ... � 1a � d 2 � a

Sn � u1 � u2 � p � un�1 � un � a � 1a � d 2 � ... � 3a � 1n � 2 2d 4 � 3a � 1n � 1 2d 4

Sn

This is because
un � a � 1n � 1 2dSn �

n
2

 3u1 � un 4Sn �
n
2

 32a � 1n � 1 2d 4

So in the above example,

 �
3
2

 n2 �
13
2

 n

 �
n
2

 13n � 13 2

 �
n
2

 116 � 3n � 3 2

 Sn �
n
2

 316 � 31n � 1 2 4

Example

Find a formula for for 7, 15, 23, 31, 39, and hence find 
Here and 

So and 

 S8 � 280 Sn � 4n2 � 3n

 S8 � 256 � 24 Sn �
n
2

 18n � 6 2

 S8 � 4 � 64 � 3 � 8 Sn �
n
2

 314 � 81n � 1 2 4

d � 8.a � 7
S8.pSn

Example

Find the number of terms in the series 
required to exceed 500.

So 

So (The solution of is not valid as n must be positive.)
The number of terms required in the series is 13 (and ).S13 � 520

�13.1n 7 12.7

1 3n2 � n � 500 7 0

3n2 � n 7 500

 Sn � 3n2 � n

 Sn �
n
2

 38 � 61n � 1 2 4

a � 4, d � 6

4 � 10 � 16 � 22 � 28 � ...

�13.1 12.7 n0

y
y � 3n2 � n � 500
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Sum of a geometric series
As with arithmetic series, a geometric series is the sum of a geometric sequence.

So 

The formula for can be expressed in two ways:Sn

 1 Sn �
a˛1rn � 1 2

r � 1

 1 Sn1r � 1 2 � a˛1rn � 1 2

 1 rSn � Sn � arn � a

 1 rSn � Sn � arn � a

 1 rSn � ar � ar2 � p � arn�1 � arn

Sn � a � ar � ar2 � ar3 � p � arn�1

Example

Given that the following are three consecutive terms of a geometric sequence,
find k.

So 

 1 k � 6

 1 k3 � 8k2 � 22k � 60 � 0

 1 4k2 � 8k � 4 � k3 � 14k � 4k2 � 56

 1 12k � 2 22 � 1k � 4 2 1k2 � 14 2

r �
2k � 2
k � 4

�
k2 � 14
2k � 2

k � 4, 2k � 2, k2 � 14

Use a calculator to solve
the cubic equation.

Sn �
a˛1rn � 1 2

r � 1
  or  Sn �

a˛11 � rn 2

1 � r

Example

Find for 
Here and 

So 

 � �
4
3

 1 1�2 2n � 1 2

 Sn �
41 1�2 2n � 1 2

�2 � 1

r � �2.a � 4
4 � 8 � 16 � 32 � 64.Sn

Exercise  3

1 Find the 6th term and the nth term for these geometric sequences.
a 8, 4, 2,
b 80, 20, 5,
c 2, 6, 18,
d
e
f
g a � 6, r � 5

u1 � 12, r � 2
100, �50, 25, p

5, �10, 20, p

p

p

p

6.3 Geometric sequences and series
An example of a geometric sequence is 4, 8, 16, 32, 64, 

In a geometric sequence each term is the previous one multiplied by a non-zero
constant. This constant is known as the common ratio, denoted by r.

The algebraic definition of this is:

p

un�1

un
� r 3 the sequence is geometric

Formula for 
A geometric sequence has the form

a, ar, ar2, ar3, p

un

So un � arn�1

Example

Find a formula for for the geometric sequence 
6, 12, 24, 48, 96,

Here and 

So un � 6 � 2n�1.

r � 2.a � 6

p

un

Example

Find given that and 

So 

So 

i.e. or un � 4 � 1�3 2n�1un � 4 � 3n�1

1 a � 4
1 9a � 36
ar2 � 36

1 r � ;3
r2 � 9

u5

u3
�

ar4

ar2 � r2 �
324
36

u3 � ar2 � 36           u5 � ar4 � 324

u5 � 324.u3 � 36un

This technique of dividing
one term by another is
commonly used when
solving problems related
to geometric sequences.
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Plotting a graph of the above series can help to visualize what is happening with these
series.

n0

Sn

n0

Sn

n0

Sn

All of the above series are infinite but only the first series converges. Finding the infinite
sum of a divergent series does not make any sense, and hence in order to find the sum
to infinity of a series, the series must converge.

In order to find a result for the sum of an infinite series, it is important to understand the
concept of a limit.

The concept of a limit is not particularly easy to define. The formal definition can be
stated as

“A number or point L that is approached by a function f(x) as x approaches a if, for every
positive number there exists a number such that if ”

This is not necessarily helpful in visualizing the meaning of the term. A more informal
viewpoint may help.

Consider Freddie Frog, who gets tired very quickly. Freddie hops 2 metres on his first hop.
On his second hop, he is tired and can hop only half the distance, 1 metre. This
continues, and each time he can hop only half the distance of his previous hop.

Consider Freddie trying to hop across a 4 metre road:

0 6 �x � a� 6 d.�f˛1x 2 � L� 6 ede,

With each hop, he gets closer to the other side, but will he ever make it across the road?
The distance that he has hopped can be considered to be

It is clear that he is getting very close to a distance of 4 metres but, as each hop is only
half of his previous hop (and therefore half of the remaining distance), he will never
actually reach 4 metres. In this situation, 4 metres is considered to be the limit of the
distance hopped.

A limit is a value that a function or series approaches and becomes infinitesimally close
to but will never reach. This idea has been covered in Chapter 3 – a horizontal asymptote
is a value that a function approaches as x becomes large but never reaches. It is said that
a series converges to a limit.

2 � 1 �
1
2

�
1
4

�
1
8

�
1
16

� ...

2 Find the sum of the first eight terms for each of the sequences in question 1.
Also find the sum to n terms of these numerical sequences.

3 Find the sum to n terms of these geometric sequences.

a

b

c

4 Find the general term, of the geometric sequence that has:
a and 

b and 

c and 

d and 

5 Given these three consecutive terms of a geometric sequence, find k.
a

b

c

6 Find the first term in this geometric sequence that exceeds 500.

7 If and find the last term that is less than 8000.

8 For the geometric series how many terms are
required for a total exceeding 600?

9 The first two terms of a geometric series have a sum of The fourth and
fifth terms have a sum of 256. Find the first term and the common ratio of
the series.

�4.

3 � 6 � 12 � 24 � p ,

r � 4,a � 8
2, 4, 8, 16, p

k
2

, k � 8, k2

k � 1, 2 � 2k, k2 � 1

k � 4, k � 8, 5k � 4

u7 � 512u2 � �
1
2

u5 � 324u2 � �12

u5 �
10
3

u2 � 90

u6 � 160u3 � 20
un,

1 � 3x � 9x2 � 27x3 � p

1 � x � x2 � p

x � x2 � x3 � p

6.4 Sum of an infinite series
In order to consider infinite series, it is first important to understand the ideas of
convergence and divergence. If two (or more) things converge, then they move towards
each other. In a sequence or series, this means that successive terms become closer and
closer together; to test convergence, the gap between the terms is examined.

Consider these three series:

1.  

2.  

3.  

In the first (geometric) series, the gap between the terms narrows so the series is said to
be convergent.

In the second (geometric) series, the gap between the terms widens and will continue to
increase, so the series is said to be divergent.

The third series is arithmetic and so the gap between the terms remains the same
throughout, known as the common difference. Although the gap remains constant, the
series continues to increase in absolute size towards infinity and hence all arithmetic
series are divergent.

4 � 7 � 10 � 13 � p

5 � 10 � 20 � 40 � p

24 � 12 � 6 � 3 � p
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A recurring decimal such as can be considered to be an infinite

geometric series as it is This means that the formula for

the sum to infinity can be used to find an exact (fractional) value for the decimal. This is

demonstrated by example.

5 �
8
10

�
8

100
�

8
1000

� ... .

.
5.8 � 5.8888888 p

Example

Find the exact value of the recurring decimal 1.2.

This can be considered as 

So the decimal part is a geometric series with and 

Hence a limit exists since 

So we can write 
.

1.2 � 1 �
2
9

�
11
9

.

S
q

�
a

1 � r
�

2
10
9
10

�
2
9

.

r �
1
10

6 1.

r �
1

10
.a �

2
10

1 �
2
10

�
2

100
�

2
1000

� ...

Exercise  4

Determine whether the series below converge. If they do, find the sum to infinity.
1
2
3
4
5

Find the sum to infinity for the geometric series with:

6

7

8

9

Find the range of values of x for which the following series converge.

10

11

Find the exact value of these recurring decimals.

12

13

14 7.3
#

4
#

2.1
#

6
#

6.4
#

4x � 4 �
4
x

�
4
x2 � ...

1 � x � x2 � x3 � ...

a � 9, r � �
3
4

a � 60, r � �
1
5

a � 100, r �
2
3

a � 6, r �
1
2

8 � 12 � 18 � p

�64 � 40 � 25 � p

4 � 12 � 36 � p

81 � 27 � 9 � p

20 � 10 � 5 � p

The formal definition for a limit in relation to functions given above is also true for series.

is true provided that can be made as close to L as required by choosing n

sufficiently large. In mathematical notation this can be stated “Given any number

there exists an integer N such that for all ”.

Returning to the consideration of geometric series, will all infinite series converge to a
limit? It is clear that the above series describing the frog does converge to a limit.
However, consider the series

It is immediately clear that this series will continue to grow, and the gap between terms
will continue to grow.

This is the key to understanding whether a series will converge – the gap between
successive terms. If this gap is decreasing with each term, then the series will ultimately
converge. Hence for the sum of a geometric series to converge, the common ratio must
be reducing the terms. Putting this into mathematical notation,

1 � 10 � 100 � 1000 � 10000 � ...

n � N�Sn � L� 6 ee 7 0,

Snlim
nSq

Sn � L

The notation for this is where L is the limit.lim
nSq

Sn � L

a series will only converge if �r� 6 1

If then will have a limit of zero as n becomes very large.

Considering the formula for the sum of n terms of a geometric series,

For large values of n (as n approaches ), if 

So when the sum becomesn S q,

�r� 6 1.arn
S 0q

Sn �
a˛11 � rn 2

1 � r
�

a � arn

1 � r

rn�r� 6 1,

Think of etc.0.110, 0.150

S
q

�
a

1 � r
  1�r� 6 1 2

This formula can be used to find the limit of a convergent series, also known as the sum
to infinity or infinite sum.

Example

Show that the sum to infinity of exists and find this

sum.

Clearly this series converges as 

So S
q

�
a

1 � r
�

8
3
4

�
32
3

.

�r� �
1
4

6 1.

8 � 2 �
1
2

�
1
4

�
1
8

� ...

.



6  Sequences, Series and Binomial Theorem

143

6  Sequences, Series and Binomial Theorem

142

1 In his training, Marcin does 10 sit-ups one day, then 12 sit-ups the following
day. If he continues to do 2 more each day, how long before he completes
1000 sit-ups?

2 Karen invests $2000 in an account paying 8% per year. How much will be in
the account after 4 years?

3 Anders invests 50 000 DKr (Danish kroner) at 12% per year. How much is it
worth after 6 years?

4 A kind benefactor sets up a prize in an international school. The benefactor
donates £10 000. The school invests the money in an account paying 5%
interest. If £750 is paid out annually, for how long can the full prize be given
out?

5 If Yu wants to invest 50 000 yen with a return of 20 000 yen over 8 years,
what % rate must she find?

6 What initial investment is required to produce a final balance of £12 000 if
invested at 8% per year over 4 years?

7 In a Parisian sewer, the population of rats increases by 12% each month.
a If the initial population is 10 000, how many rats will there be after 5 months?
b How long before there are 50 000 rats?

8 The number of leopards in a Kenyan national park has been decreasing in
recent years. There were 300 leopards in 2000 and the population has
decreased at a rate of 9% annually.
a What was the population in 2005?
b When will the population drop below 100?

9 Each time a ball bounces, it reaches 85% of the height reached on the previous
bounce. It is dropped from a height of 5 metres.
a What height does the ball reach after its third bounce?
b How many times does it bounce before the ball can no longer reach a

height of 1 metre?

Exercise  5

6.6 Sigma notation
Sigma is the Greek letter that corresponds to S in the Roman alphabet, and is written 
or The form is often used in statistics but the capital form is used to denote a
sum of discrete elements. This notation is a useful shorthand rather than writing out a
long string of numbers. It is normally used on the set of integers.

Consider 

This can be written as a
7

r�1
r

1 � 2 � 3 � 4 � 5 � 6 � 7

©s©.
s

Last element (ending at 7)1r � 7 2

This is the rth term of the sequence.

First element (starting from 1)1r � 1 2

Similarly,

2 � 5 � 8 � 11 � 14 � a
5

r�1
3r � 1

15 Find the sum
a of the even numbers from 50 to 100 inclusive
b of the first ten terms of the geometric series that has a first term of 16 and

a common ratio of 1.5

c to infinity of the geometric series whose second term is and third term 
1
2

.
2
3

6.5 Applications of sequences and series
Although sequences and series occur naturally and in many applications, these mostly
involve more complicated series than met in this course. Most common examples of
geometric series at this level model financial applications and population.

Example

Katherine receives h200 for her twelfth birthday and opens a bank account
that provides 5% compound interest per annum (per year). Assuming she
makes no withdrawals nor any further deposits, how much money will she
have on her eighteenth birthday?

This can be considered as a geometric series with and 
The common ratio is 1.05 because 5% is being added to 100%, which gives

So in six years the balance will be 

So she will have h268.02 on her eighteenth birthday.

If Katherine receives h200 on every birthday following her twelfth, how much
will she have by her eighteenth?

After one year the balance will be 

After two years, the balance will be 

This can be expressed as 

So 

The part in brackets is a geometric series with and 

So the sum in brackets is

Hence the balance on her eighteenth birthday will be 
h1360.38.200 � 6.8019 p �

� 6.8019 p

111 � 1.056 2

1 � 1.05

r � 1.05.a � 1

u7 � 20011.056 � 1.055 � ... � 1.05 � 1 2

 � 20011.052 � 1.05 � 1 2

 � 1.052 � 200 � 1.05 � 200 � 200

 u3 � 1.0511.05 � 200 � 200 2 � 200

u3 � 1.05u1 � 200.

u2 � 1.05 � 200 � 200.

1 u7 � 268.02
u7 � 200 � 1.056

105% � 1.05.

r � 1.05.a � 200

is the first term. After
six years the balance will
be u7.

u1
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Result 1

n times

a
n

r�1
1 � 1 � 1 � p � 1 � n

a
n

r�1
a � an where a is a constant.

This should be obvious as 

We can also see that a constant can be removed outside a sum:

Result 2

a
n

r�1
a � aa

n

r�1
1

a
n

r�1
a � a � a � a � p � a � na

a
n

r�1
r �

n˛1n � 1 2

2

This is the sum of the first n natural numbers, and each of these sums is also a triangular
number (because that number of objects can be arranged as a triangle).

For example, 

Result 3

a
3

r�1
r �

313 � 1 2

2
� 6

a
2

r�1
r �

212 � 1 2

2
� 3

a
n

r�1
r2 �

1
6

 n˛1n � 1 2 12n � 1 2

These three results can be used to simplify other sigma notation sums. Note that they
apply only to sums beginning with If the sums begin with another value the
question becomes more complicated, and these are not dealt with in this curriculum.

r � 1.

Example

Simplify and hence find 

 � 4 �  

1
6

 n˛1n � 1 2 12n � 1 2 � 3 

n˛1n � 1 2

2
� 5n

 a
n

r�1
4r2 � 3r � 5 � 4a

n

r�1
r2 � 3a

n

r�1
r � 5a

n

r�1
1

a
6

r�1
4r2 � 3r � 5.a

n

r�1
4r2 � 3r � 5

We know that is the rth term because when and when
etc.

Both arithmetic and geometric series can be expressed using this notation.

r � 2, 3r � 1 � 5,
r � 1, 3r � 1 � 23r � 1

Example

Consider the arithmetic series

Express the series using sigma notation.
This has and So the corresponding sequence has the
general term

This series can be expressed as 

The first n terms (i.e. ) could be expressed as a
n

r�1
104 � 4r.Sn

a
11

r�1
104 � 4r.

 � 104 � 4n
 un � 100 � 41n � 1 2

d � �4.a � 100

100 � 96 � 92 � ... � 60

Example

Consider the geometric series

Express the series using sigma notation.

This can be expressed as or a
n

r�1
2r�1.a

n

r�1
4 � 2r�1

4 � 8 � 16 � 32 � ... � n

Example

Express the sum using sigma notation.

The infinite sum can be expressed as a
q

r�1
16 � ¢1

4
≤r�1

16 � 4 � 1 �
1
4

� ...

16 � 4 � 1 �
1
4

� ...

There are results that we can use with sigma notation that help to simplify expressions.
These are presented here without proof but are proved in Chapter 18.
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Permutations and combinations
Factorial notation is used most commonly with counting methods known as permutations
and combinations.

Factorials can be used to determine the number of ways of arranging n objects.

Consider four people standing in a line: Anna, Julio, Mehmet and Shobana. How many
different orders can they stand in?

The different ways can be listed systematically:

Example

Simplify 

Using the same rationale as above,

n!
1n � 2 2 !

�
n � 1n � 1 2 � 1n � 2 2!

1n � 2 2 !
� n˛1n � 1 2

n!
1n � 2 2 !

Example

Simplify 
This can be factorised with a common factor of 
So 

 � 1n � 2 2! 1n2 � n � 1 2

 n! � 1n � 2 2 ! � 1n � 2 2! 3n˛1n � 1 2 � 1 4
1n � 2 2!

n! � 1n � 2 2!

A J M S
A J S M
A M J S
A M S J
A S M J
A S J M
J A M S
J A S M
J M A S
J M S A
J S A M
J S M A

M A J S
M A S J
M J A S
M J S A
M S A J
M S J A
S A J M
S A M J
S J A M
S J M A
S M A J
S M J A

1 Evaluate

a b c

2 Express each of these sums in sigma notation.
a

b

c 

3 Use the results for and to simplify these.

a b c d a
k�1

r�1
7r � 3a

2n

k�1
9 � k2

a
n

k�1
2k2 � k � 3a

n

r�1
6r � 2

a
n

r�1
r2

a
n

r�1
1, a

n

r�1
r

9 � 13 � 17 � 21 � p

�2 � 3 � 8 � 13 � p � 15n � 3 2

4 � 8 � 12 � 16 � 20

a
8

k�3
5k2 � 3ka

7

i�4
2i2a

5

r�1
3r � 2

Hence

 � 271

 � 288 � 18 � 35

 a
6

r�1
4r2 � 3r � 5 �

1
6

� 618 � 62 � 3 � 6 � 35 2

 �
1
6

 n18n2 � 3n � 35 2

 �
1
6

 n18n2 � 12n � 4 � 9n � 9 � 30 2

 �
1
6

 n 3 14n � 4 2 12n � 1 2 � 91n � 1 2 � 30 4

Exercise  6

6.7 Factorial notation
Sigma notation is a method used to simplify and shorten sums of numbers. There are
also ways to shorten multiplication, one of which is factorial notation.

A factorial is denoted with an exclamation mark ! and means the product of all the
positive integers up to that number.

n! � 1 � 2 � p � 1n � 1 2 � n

It is worth noting that 0! is
defined to be 1.

So 

It is important to be able to perform arithmetic with factorials, as demonstrated in the
examples below.

5! � 1 � 2 � 3 � 4 � 5 � 120.

Example

Simplify 

It should be obvious that so can be simplified to
8 � 7 � 6 � 5!

5!
� 8 � 7 � 6 � 336

8!
5!

8! � 8 � 7 � 6 � 5!

8!
5!

.

6  Sequences, Series and Binomial Theorem



6  Sequences, Series and Binomial Theorem

149

6  Sequences, Series and Binomial Theorem

148

Many calculators have in-built formulae for permutations and combinations.

Pascal’s triangle revisited

Here is Pascal’s triangle.

Notice that this could also be written as

Row 1

Row 2

Row 3

Row 4

So Pascal’s triangle is also given by the possible combinations in each row n. This leads to
recognizing some important results about combinations.

Result 1

¢4
0
≤ ¢4

1
≤ ¢4

2
≤ ¢4

3
≤ ¢4

4
≤ etc.

¢3
0
≤ ¢3

1
≤ ¢3

2
≤ ¢3

3
≤

¢2
0
≤ ¢2

1
≤ ¢2

2
≤

¢1
0
≤ ¢1

1
≤

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Example

How many different hockey teams (11 players) can be chosen from a squad of
15? Here, the order in which the players are chosen is unimportant.

So the number of different teams is 15C11 �
15!

11! 115 � 11 2!
� 1365.

¢n
0
≤ � ¢n

n
≤ � 1

This is fairly obvious from the definition of 

¢n
n
≤ �

n!
n! 0!

�
n!
n!

� 1¢n
0
≤ �

n!
n! 0!

�
n!
n!

� 1

nCr.

There are clearly 24 possibilities. This comes as no surprise as this can be considered as
having 4 ways of choosing position 1, then for each choice having 3 ways of choosing
position 2, and for each choice 2 ways of choosing position 3, leaving only 1 choice for
position 4 each time.

This is equivalent to having possibilities.4 � 3 � 2 � 1

There are two notations for combinations, or ¢n
r
≤.nCr

The formula for the number of permutations when choosing r objects at random from n
objects is very similar:

So ¢n
r
≤ �

n!
r! 1n � r 2 !

nPr �
n!

1n � r 2 !

This makes it clear that the r! in the combinations formula removes the duplication of
combinations merely in a different order. This topic is further developed in Chapter 20 in
its application to probability.

It is important that we 
recognize whether we are
working with a permutation
or a combination, i.e. does
order matter?

Example

How many 5 letter words (arrangements of letters) can be made from the letters
of EIGHTYFOUR?

Here, the order of the letters matters so the number of words will be given by

10P5 �
10!
5!

� 30240

10P5.

So n! is the number of ways of arranging n objects in order.

Consider a bag with five balls in it, labelled A, B, C, D and E.

If two balls are chosen from the bag at random, there are 10 possible arrangements:

A&B A&C A&D A&E B&C B&D B&E C&D C&E D&E

If the order that the balls come out in matters, there would be 20 possible outcomes.

AB AC AD AE BC BD BE CD CE DE

BA CA DA EA CB DB EB DC EC ED

The first type are known as combinations (where order does not matter) and the
second type as permutations (where order is important).

The formula for the number of combinations when choosing r objects at random from n

objects is 
n!

r! 1n � r 2 !
.
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1 Evaluate the following:

a b c d e

2 How many different 4 letter words (arrangements where order matters) can
be made from the letters A, E, I, O, U, Y?

3 How many different committees of 9 can be made from 14 people?
4 A grade 5 class has 11 students.

a If the teacher lines them up, how many different orders can there be?
b If 3 students are selected as president, secretary and treasurer of the

Eco-Club, how many different ways can this be done?
c If 7 students are chosen for a mini-rugby match, how many different teams

are possible?
5 In the UK national lottery, 6 balls are chosen at random from 49 balls. In the

Viking lottery operated in Scandinavia, 6 balls are chosen from 48 balls.
How many more possible combinations result from the extra ball?

6 The EuroMillions game chooses 5 numbers at random from 50 balls and
then 2 more balls known as lucky stars from balls numbered 1–9. How
many possible combinations are there for the jackpot prize (5 numbers plus
2 lucky stars)?

7 José is choosing his 11 players for a soccer match. Of his squad of 20, one
player is suspended. He has three players whom he always picks (certainties).
How many possible teams can he create?

8 How many 3-digit numbers can be created from the digits 2, 3, 4, 5, 6 and
7 if each digit may be used
a any number of times b only once.

9 Solve these equations.

a b c d ¢2n
2
≤ � 66¢2n

2
≤ � 28¢n

3
≤ � 10¢n

2
≤ � 15

¢8
4
≤¢9

5
≤8C3

8P3
6P2

Example

Solve

From result 4

 1 n � 10
 1 1n � 13 2 1n � 10 2 � 0
 1 n2 � 3n � 130 � 0

 1 1n � 2 2 1n � 1 2 � 132

 1

1n � 2 2!

n! � 2
� 66

 1

1n � 2 2 !

1n � 2 � 2 2 ! 2!
� 66

 1 ¢n � 2
2
≤ � 66

¢n � 1
1
≤ � ¢n � 1

2
≤ � 66

Remember that n must be
positive.

Exercise  7

Result 2

¢n
1
≤ � ¢ n

n � 1
≤ � n

The above two results and the symmetry of Pascal’s triangle lead to result 3.

Result 3

¢ n
n � 1

≤ �
n!

1n � 1 2 ! 1!
�

n!
1n � 1 2!

� n¢n
1
≤ �

n!
1n � 1 2! 1!

�
n!

1n � 1 2 !
� n

¢n
r
≤ � ¢ n

n � r
≤

This is again easy to show:

Result 4

¢n
r
≤ �

n!
r! 1n � r 2 !

�
n!

3n � 1n � r 2 4! 1n � r 2 !
�

n!
1n � r 2! r!

� ¢ n
n � r

≤

¢ n
r � 1

≤ � ¢n
r
≤ � ¢n � 1

r
≤

This is the equivalent statement of saying that to obtain the next row of Pascal’s triangle,
add the two numbers above.

The proof of result 4 is as follows.

 � ¢n � 1
r
≤

 �
1n � 1 2!

r! 1n � r � 1 2 !

 �
r # n! � 1n � 1 2 # n! � r # n!

r! 1n � r � 1 2 !

 �
r # n!

r! 1n � r � 1 2 !
�
1n � r � 1 2 # n!

r! 1n � r � 1 2!

 �
n!

1r � 1 2! 1n � r � 1 2!
�

n!
r! 1n � r 2 !

¢ n
r � 1

≤ � ¢n
r
≤
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Example

Using the result for find the expansion of 

Using the result for this becomes

 � 4 � 12x �
27
2

 x2 �
27
4

 x3 �
81
64

 x4

 � 4¢1 � 3x �
27
8

 x2 �
27
16

 x3 �
81
256

 x4≤
4B1 � 4¢3

4
 x≤ �

4 � 3
2!
¢3
4

 x≤2

�
4 � 3 � 2

3!
¢3
4

 x≤3

�
4 � 3 � 2 � 1

4!
¢3
4

 x≤4R
11 � x 2n,

14 � 3x 24 � 4¢1 �
3
4

 x≤4

14 � 3x 24.11 � x 2n,

Example

Expand 

This can be rewritten as 

Before expanding, it is often useful to simplify this further.

So 

Expanding gives

 � x3 � 12x � 48x�1 � 64x�3

 ¢x �
4
x
≤3

� x3 � ¢3
1
≤411�1 21˛x1 � ¢3

2
≤421�1 22˛x�1 � 431�1 23˛x�3

 � a
3

r�0
¢3

r
≤4r1�1 2 r˛x3�2r

 a
3

r�0
¢3

r
≤x3�r1�1 2 r¢4

x
≤r

� a
3

r�0
¢3

r
≤x3�r4r1�1 2 r˛x�r

a
3

r�0
¢3

r
≤x3�r1�1 2 r¢4

x
≤r

.

¢x �
4
x
≤3

.

Example

What is the coefficient of in the expansion of 

Rewriting using sigma notation,

For the term, it is clear that 

Hence the term required is 

So the coefficient is 

� �
108 864

125

56 � 243 � 1�1 2 �
8

125

¢8
3
≤351�1 23¢2

5
≤3

˛x2.

1 r � 3
8 � 2r � 2x2

 � a
8

r�0
¢8

r
≤38�r1�1 2 r¢2

5
≤r

˛x8�2r

 ¢3x �
2
5x
≤8

� a
8

r�0
¢8

r
≤38�r

˛x8�r1�1 2 r¢2
5
≤r

1x�1 2 r

¢3x �
2
5x
≤8

?x2

10 Solve these equations.

a b c

11 Find a value of n that satisfies each equation.

a b c ¢2n
3
≤ � ¢2n

4
≤ � 35¢n � 2

2
≤ � ¢n � 2

3
≤ � 20¢n

1
≤ � ¢n

2
≤ � 28

¢ n
n � 3

≤ � 84¢ n
n � 2

≤ � 45¢ n
n � 2

≤ � 6

6.8 Binomial theorem
The binomial theorem is a result that provides the expansion of 

Consider the expansions of and 

Notice that the coefficients are the same as the numbers in Pascal’s triangle.

Similarly, 

From Pascal’s triangle, this could be rewritten

This leads to the general expansion

This can be shortened to

1x � y 2n � ¢n
0
≤ xn � ¢n

1
≤ xn�1

˛y � ¢n
2
≤ xn�2

˛y2 � p � ¢ n
n � 1

≤ xyn�1 � ¢n
n
≤ yn

1x � y 24 � ¢4
0
≤ x4 � ¢4

1
≤ x3

˛y � ¢4
2
≤ x2

˛y2 � ¢4
3
≤ xy3 � ¢4

4
≤ y4

1x � y 24 � 1x4 � 4x3
˛y � 6x2

˛y2 � 4xy3 � 1y4

 � 1x3 � 3x2
˛y � 3xy2 � 1y3

 1x � y 21 �1x � 1y  1x � y 22 �1x2 � 2xy � 1y2 1x � y 23 � 1x � y 2 1x2 � 2xy � y2 2

1x � y 23.1x � y 21, 1x � y 22
1x � y 2n.

1x � y 2n � a
n

r�0
¢n

r
≤xn�r

˛y r

This result is stated here without proof; the proof is presented in Chapter 18.

A useful special case is the expansion of 11 � x 2n

11 � x 2n � 1 � nx �
n˛1n � 1 2

2!
 x2 �

n˛1n � 1 2 1n � 2 2

3!
 x3 � ...

Example

Using the binomial theorem, expand 

This can be written 

So

 � 32x5 � 240x4 � 720x3 � 1080x2 � 810x � 243

 � 5 � 2 � 81x � 243
 � 32x5 � 5 � 16 � 3x4 � 10 � 8 � 9x3 � 10 � 4 � 27x2

 12x � 3 25 � ¢5
0
≤25

˛x530 � ¢5
1
≤24

˛x431� ¢5
2
≤23

˛x332� ¢5
3
≤22

˛x233�¢5
4
≤21x̨134�¢5

5
≤20

˛x035

12x � 3 25 � a
5

r�0
¢5

r
≤12x 25�r3r

12x � 3 25.
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1 Use the binomial theorem to expand the following expressions.

a b c d
2 Expand the following using the binomial theorem.

a b c d 

3 Expand by considering it as 
4 What is the coefficient of:

a in the expansion of 

b in the expansion of 

c in the expansion of 

d in the expansion of 

e x in the expansion of 

f in the expansion of 

g in the expansion of 

h the term independent of x in the expansion of 

5 What is the coefficient of:

a in the expansion of 

b in the expansion of 1x � 2 241x � 4 26x6

1x � 1 2512x � 1 24x3

¢2x �
3
x
≤8

.

¢x �
2
x
≤4

x2

¢x �
1
x
≤7

x3

18 � x 29
12x � 9 25x3

1x � 4 26x2

1x � 5 28x5

1x � 2 25x3

1 31 � 3x 4 � x2 23.11 � 3x � x2 23

¢2t �
1
4t
≤4¢x �

1
x
≤6¢x �

2
x
≤5¢x �

1
x
≤3

12p � 3q 2511 � x 2413x � 2 261a � b 24

So the three scenarios that give terms independent of x when the brackets are
multiplied are:

So the term independent of x in the expansion is 
 � �11 648
 �35 840 � 26 880 � 2688

 � �2688 � 26 880 � �35 840
 � �1 � 32 � 1 � 4 � �1 � 8

 � 21 � 4 � 1 � 21 � 32 � 10 � 7 � 64 � 10

¢7
5
≤22 � ¢5

5
≤1�1 2525¢7

2
≤25 � ¢5

2
≤1�1 2222¢7

1
≤26 � ¢5

3
≤1�1 2323

k � 5, r � 5k � 4, r � 2k � 3, r � 1

Example

Expand and hence find 

So can be considered to be when in the above expansion.

So

 � 24.76099
 � 32 � 8 � 0.8 � 0.04 � 0.001 � 0.00001

 1.95 � 32 � 801�0.1 2 � 801�0.1 22 � 401�0.1 23 � 1010.1 24 � 1�0.1 25
x � �0.11.95

12 � x 25 � 32 � 80x � 80x2 � 40x3 � 10x4 � x5

1.95.12 � x 25

Exercise  8

This method of finding the required term is very useful, and avoids expanding large
expressions.

Example

Find the term independent of x in the expansion of 

For this to produce a term independent of x, the expansion of 

must have a constant term or a term in 

So the power of x is given by This cannot be zero for positive integer
values of r. Hence the required coefficient is given by

The required term is therefore given by 
So the term independent of x is 40.

12 � x 2 1 p � 10 � 22 � x�1 � ... 2 .

1 r � 3
5 � 2r � �1

5 � 2r.

¢2x �
1
x
≤5

� a
5

r�0
25�r

˛x5�r1x�1 2 r

x�1.

¢2x �
1
x
≤5

12 � x 2¢2x �
1
x
≤5

.

Example

Find the term independent of x in the expansion of 

This is the product of two expansions, which need to be considered separately
at first.

So the general terms are and 

For the term independent in x, that is the general terms need to multiply

together to make 

So 

This type of equation is often best solved using a tabular method (there is
often more than one solution).

 1 2k � r � 5
 1 r � 5 � 2k � 0
xr # x5�2k � x0

x0.

x0,

¢5
k
≤1�1 2 k2k

˛x5�2k.¢7
r
≤27�r

˛xr

12x � 1 27 � a
7

r�0
¢7

r
≤27�r

˛x7�r1r and ¢x �
2
x
≤5

� a
5

k�0
¢5
k
≤x5�k1�1 2 k2k

˛x�k

12x � 1 27¢x �
2
x
≤5

.

k 2k r

0 0 5 0

1 2 6 1

2 4 7 2

3 6 8 3

4 8 9 4

5 10 10 5

11 6

12 7

r � 5
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6 Consider the infinite geometric series

a  For what values of x does the series converge?

b Find the sum of the series if  [IB Nov 01 P1 Q4]

7 An arithmetic sequence has 5 and 13 as its first two terms respectively.
a  Write down, in terms of n, an expression for the nth term, 
b  Find the number of terms of the sequence which are less than 400.

[IB Nov 99 P1 Q1]

8 The coefficient of x in the expansion of is Find the possible 
values of a.

[IB Nov 00 P1 Q12]

9 The sum of an infinite geometric sequence is and the sum of the first 

three terms is 13. Find the first term. [IB Nov 00 P1 Q15]

10 a are the first three terms of an arithmetic 
sequence. For what value of n does the sum of the first n terms, first
exceed 100?

b The sum of the first three terms of a positive geometric sequence is 315
and the sum of the 5th, 6th and 7th terms is 80 640. Identify the first term
and the common ratio.

11 The first four terms of an arithmetic sequence are 
and where a and b are constants. Find a and b. [IB Nov 03 P1 Q9]

12 a Find the expansion of giving your answer in ascending powers
of x.

b By letting or otherwise, find the exact value of 

[IB Nov 04 P1 Q8]
13 The first three terms of a geometric sequence are also the first, eleventh and

sixteenth terms of an arithmetic sequence.
The terms of the geometric sequence are all different.
The sum to infinity of the geometric sequence is 18.
a  Find the common ratio of the geometric sequence, clearly showing all

working.
b  Find the common difference of the arithmetic sequence.

[IB May 05 P2 Q4]
14 a An arithmetic progression is such that the sum of the first 8 terms is 424,

and the sum of the first 10 terms is 650. Find the fifth term.
b A 28.5 m length of rope is cut into pieces whose lengths are in arithmetic

progression with a common difference of d m. Given that the lengths of
the shortest and longest pieces are 1 m and 3.75 m respectively, find the
number of pieces and the value of d.

c The second and fourth terms of a geometric progression are 24 and 3.84
respectively. Given that all terms are positive, find
i the sum, to the nearest whole number, of the first 5 terms
ii the sum to infinity.

15 Determine the coefficients of and in the expansion ¢2x �
1
x
≤7

.
1
x3

1
x

2.015.x � 0.01

12 � x 25,

a � 3b,
2, a � b, 2a � b � 7

Sn,
x � 1, 3x � 1, 6x � 2

13 

1
2

,

7
3

.¢x �
1

ax2≤
7

an.

x � 1.2.

1 � ¢2x
3
≤ � ¢2x

3
≤2

� ¢2x
3
≤3

� ...

c x in the expansion of 

d in the expansion of 
6 Expand these expressions.

a b c

7 What is the coefficient of:

a x in the expansion of 

b in the expansion of 

c in the expansion of 

8 Find the term independent of p in the expansion of 

9 Calculate the following correct to three significant figures.

a b c

10 For small values of x, any terms with powers higher than 3 are negligible for the 

expression 

Find the approximate expression, for this expansion.

11 In the expansions and the constant terms are equal. 

Show that this is never true for p, q H �, p, q � 0.

¢px2 �
q
x
≤4

,¢px �
q
x
≤6

ax2 � bx � c,

1x2 � x � 5 221x � 2 27.

7.9480.871.014

¢2p2 �
1
p
≤5¢p �

2
p
≤4

.

¢x �
1
x
≤7¢x �

4
x
≤5

.x�10

12x � 3 25¢x �
1
x
≤4

x3

1x � 1 24 ¢x �
1
x
≤3

¢x �
1
x
≤4¢x �

2
x
≤3¢x �

1
x
≤3

1x � 2 231x � 5 231x � 4 24

1x2 � x � 3 24.x2

13 � x 2311 � 2x 25

Review exercise

1 Find the coefficient of in the binomial expansion of 

[IB Nov 02 P1 Q3]

2 The nth term of a geometric sequence is given by 
a Find the common ratio r.

b Hence, or otherwise, find the sum of the first n terms of this sequence.

[IB May 01 P1 Q7]

3 Consider the arithmetic series 
a Find an expression for the sum of the first n terms.

b Find the value of n for which [IB May 02 P1 Q1]
4 A geometric sequence has all positive terms. The sum of the first two terms is

15 and the sum to infinity is 27. Find the value of
a  the common ratio
b the first term. [IB May 03 P1 Q1]

5 The sum of the first n terms of a series is given by where

a  Find the first three terms of the series.
b Find an expression for the nth term of the series, giving your answer in

terms of n. [IB Nov 04 P1 Q3]

n H ��.

Sn � 2n2 � n,

Sn � 1365.

Sn,
2 � 5 � 8 � p .

Sn,

un � 314 2n�1, n H ��.un

¢1 �
1
2

 x≤8

.x3
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16 The constant in the expansions of and are equal,

and k and p are both greater than zero. Express k in terms of p.

17 Find the constant term in the expansion of giving your answer

as an integer.

18 What is the coefficient of in the expansion of 

19 Simplify and hence find 

20 Solve ¢n � 1
n � 2

≤ � 165.

a
8

k�1
6 � 5k2.a

n

k�1
6 � 5k2

1x2 � 2x � 1 23¢3x �
2
x
≤5

?x9

¢3x2 �
2
x6≤

12

¢kx3 �
p

x3≤
6¢kx2 �

6
x2≤

4

1
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Consider the equation below. If all angles are in radians

Can you prove this?

The mathematics behind the fact

The hint is in the diagram, since we can check that the angles of the three triangles at
their common vertex add up to Is it possible to find a similar proof for the
following equation?

http://www.math.hmc.edu/funfacts/ffiles/20005.2.shtml 

Accessed 1 Dec 06

In Chapter 1, we met the trigonometric functions and their graphs. In this chapter we
will meet some trigonometric identities.These can be used to solve problems and are
also used to prove other trigonometric results.

7.1 Identities
An identity is a result or equality that holds true regardless of the value of any of the
variables within it.

We met an example of a trigonometric identity in Chapter 1: 

Pythagorean identities

tan u �
sin u
cos u

arctan¢1
2
≤ � arctan¢1

3
≤ �
p

4

p.

arctan11 2 � arctan12 2 � arctan13 2 � p

7 Trigonometry 2

�

y

x

1

means “is identical
to” although the equals
sign is often still used in
identity work.

�



Taking this identity of we can create other identities that are useful

in trigonometric work.

By dividing both sides by 

Similarly, by dividing both sides by we obtain

1 � cot2 u � csc2 u

sin2 u

 tan2 u � 1 � sec2 u

 
sin2 u
cos2 u

�
cos2 u
cos2 u

�
1

cos2 u

cos2 u,

sin2 u � cos2 u � 1,
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Applying Pythagoras’ theorem to the right-angled triangle obtained from the unit circle,
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y2 � x2 � 1 1 sin2 u � cos2 u � 1

This resulted from the definition of and from the unit circle. We can also see
that it is true from a right-angled triangle.

We know that and 

By Pythagoras’ theorem, 

So

Finding cos given sin

We now know that 

This is often expressed as or cos2 u � 1 � sin2 u.sin2 u � 1 � cos2 u

sin2 u � cos2 u � 1.

 u u

 � 1

 �
r2

r2

 �
y2 � x2

r2

 sin2 u � cos2 u � ¢y
r
≤2

� ¢x
r
≤2

x2 � y2 � r2.

cos u �
x
r
.sin u �

y

r

cos usin u

This is an identity and so

strictly should be written

sin2 u � cos2 u � 1.

�

y

x

r

Example

If find possible values of 

Since 

The information could also be displayed in a triangle, and calculated
that way.

cos u

 1  cos u � ; 
215

4

 �
15
16

 1 cos2 u � 1 �
1
16

sin u �
1
4

, sin2 u �
1
16

cos u.sin u �
1
4

,

�

1 4

√15

Example

If find possible values of 

 1 sin u � ; 
23
2

 �
3
4

 1 sin2 u � 1 �
1
4

 cos2 u �
1
4

sin u.cos u � �
1
2

,

Example

Simplify 

 �
2

sin u

 �
2 � 2 cos u

sin u11 � cos u 2

 �
sin2 u � 1 � 2 cos u � cos2 u

sin u11 � cos u 2

 
sin u

1 � cos u
�

1 � cos u
sin u

�
sin2 u

sin u11 � cos u 2
�

11 � cos u 22

sin u11 � cos u 2

sin u
1 � cos u

�
1 � cos u

sin u
.

Identities are often used to simplify expressions.

Questions involving simplification can also be presented as proving another identity.

As we do not know
which quadrant lies
in, could be 
positive or negative.

cos u
u

So



These Pythagorean identities can also be used to help solve trigonometric equations.

1 For the given values of give possible values of 

a b c d

2 For the given values of give possible values of 

a b c d

3 Prove the following to be true, using trigonometric identities.

a

b

c

d

4 If what are possible values for 
5 Simplify these.

a b

c d

6 Prove that 

7 Solve these following equations for 

a b

c d

e f cos u � 2 sin2 u � �16 cot2 u � 13 csc u � 2 � 0

cot u � tan u � 23 tan u � 4 sec2 u � 5

sin2 u � 2 cos u � 1 � 0csc2 u � cot2 u � 5

0 � u 6 2p.

tan2 f � cot2 f � sec2 f � csc2 f � 2.

7 cos4 u � 7 sin2 u cos2 u
sin2 u

tan2 u � sec2 u
csc u

sin3 u � sin u cos2 u
cos u

6 � 6 cos2 u
2 sin u

sin u?cot2 u � 8,

1sec u � 1 22 � 2 sec u � tan2 u

14 sin u � 3 cos u 22 � 13 sin u � 4 cos u 22 � 25

cos5 u � cos u � 2 sin2 u cos u

cos3 u tan u �  sin u � sin3 u

cos u � 0.2cos u � 4cos u �
4
5

cos u �
23
2

sin u.cos u,

sin u � 3sin u �
5
7

sin u �
1

22
sin u �

1
2

cos u.sin u,
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When faced with this type of question, the strategy is to take one side (normally the left-
hand side) and work it through to produce the right-hand side.
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Example

Prove that 

 � RHS
 �  sin u cos u � sin u cos3 u

 �  sin u cos u11 � cos2 u 2

 �  sin u sin2 u cos u

 � sin3 u cos u

 �
sin4 u cos u

sin u

 LHS �
sin4 u
tan u

sin4 u
tan u

�  sin u cos u � sin u cos3 u.

Example

Solve for 

Using this becomes

By using the identity, the equation has been transformed into one that involves
only one type of trigonometric function, 

This is a quadratic equation where the variable is It can be solved using
factorisation or the quadratic formula.

Here, 

 1 u � 0.322, 1.01 or u �
3p
4

, 
7p
4

 1  tan u �
1
3

 or tan u � �1

 1 13 tan u � 1 2 1tan u � 1 2 � 0
3 tan2 u � 2 tan u � 1 � 0

tan u.

tan u.

 1 3 tan2 u � 2 tan u � 1 � 0

 31tan2 u � 1 2 � 2 tan u � 4 � 0

sec2 u � tan2 u � 1

0 � u 6 2p.3 sec2 u � 2 tan u � 4 � 0

Example

Solve for 

Here we can use the definitions of each of these three trigonometric functions
to simplify the equation.

 1
sin u � 5

cos u
�

�3 cos u
sin u

 
sin u
cos u

�
3 cos u
sin u

�
5

cos u

0 � u 6 2p.tan u � 3 cot u � 5 sec u

Since has no solution, the solution to the equation is u �
p

6
, 

5p
6

.sin u � �3

1  sin u �
1
2

 or sin u � �3

 1 12 sin u � 1 2 1sin u � 3 2 � 0
 1 2 sin2 u � 5 sin u � 3 � 0

 1 sin2 u � 5 sin u � �311 � sin2 u 2

 1 sin2 u � 5 sin u � �3 cos2 u

Exercise 1

7.2 Compound angle (addition) formulae
These formulae allow the expansion of expressions such as 

It is very important to recognize that 

This becomes clear by taking a simple example:

But sin 30° � sin 60° �
1
2

�
23
2

� 1.37 1 � 1 2

sin 90° � sin130 � 60 2° � 1

sin 1A � B 2 � sin A � sin B.

sin 1A � B 2 .
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The six addition formulae are:
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 tan1A � B 2 �
tan A � tan B

1 � tan A tan B

 tan1A � B 2 �
tan A � tan B

1 � tan A tan B

 cos1A � B 2 � cos A cos B � sin A sin B
 cos1A � B 2 � cos A cos B � sin A sin B
 sin1A � B 2 � sin A cos B � cos A sin B
 sin1A � B 2 � sin A cos B � cos A sin B

The formula for can be proved as follows:

Take two points on the unit circle, as shown.

These two points have coordinates

M(cos A, sin A) and N(cos B, sin B).

The square of the distance from 
M to N is given by Pythagoras’ theorem:

Using the cosine rule in triangle MON:

Equating these two results for 

The other formulae are easily proved from this one. The starting point for each is given
below:

tan1A � B 2 � tan �A � 1�B 2 �tan1A � B 2 �
sin1A � B 2

cos1A � B 2

sin1A � B 2 � sin�A � 1�B 2 �sin1A � B 2 � cosBp
2

� 1A � B 2R
cos1A � B 2 � cos �A � 1�B 2 �

 cos1A � B 2 � cos A cos B � sin A sin B

 2 � 2 cos1A � B 2 � 2 � 21cos A cos B � sin A sin B 2

MN2:

 � 2 � 2 cos1A � B 2

 MN2 � 12 � 12 � 2 � 1 � 1 � cos1A � B 2

 � 2 � 21cos A cos B � sin A sin B 2

 � 1 � 1 � 2 cos A cos B � 2 sin A sin B

 � cos2 A � 2 cos A cos B � cos2 B � sin2 A � 2 sin A sin B � sin2 B

 MN2 � 1cos A � cos B 22 � 1sin A � sin B 22

cos1A � B 2

�1 1

1

�1

A

M (cos A, sin A) N (cos B, sin B)
B

O
x

y

Angle MON � angle A � angle B

Example

Using find the exact value of

 �
1 � 23

222

 �
1

222
�
23

222

 � ¢1
2

�
1

22
≤ � ¢23

2
�

1

22
≤

 � cos 60° cos 45° � sin 60° sin 45°

 cos 15° � cos160 � 45 2°

cos 15°.15° � 60° � 45°,

This is a typical non-calculator
question.

Example

Prove that 

 � cos u � 23 sin u � RHS

 � 2¢1
2

 cos u �
23
2

 sin u≤
 � 2¢cos u cos 

p

3
� sin u sin 

p

3
≤

 LHS � 2 cos¢u �
p

3
≤

2 cos¢u �
p

3
≤ � cos u � 23 sin u.

Example

Simplify 

Recognizing this is of the form it can be written

 � 1
 � tan 45°

 
tan 96° � tan 51°

1 � tan 96° tan 51°
� tan196 � 51 2°

tan1A � B 2 ,

tan 96° � tan 51°

1 � tan 96° tan 51°
.

Example

In the diagram below, find the exact value of cos AB̂C.
A

B

5

12

3y°
x°

C



1 By considering find these.
a sin 75 b cos 75 c tan 75

2 Find sin 15 by calculating
a sin(60 – 45) b sin(45 – 30)

3 Find the exact value of cos 105 .

4 Find by using the fact that 

5 Prove that 

6 Prove that 

7 Prove that 

8 Simplify these.

a

b

9 A and B are acute angles as shown.

Find these.
a b c

10 In the diagram below, find 

11 In the diagram below, find sin AB̂C.

cos PQ̂R.

tan1B � A 2cos1A � B 2sin1A � B 2

sin 

p

2
 cos 

11p
6

� sin 

11p
6

 cos 

p

2

cos 310° cos 40° � sin 310° sin 40°

csc ¢p
2

� u≤ � sec u.

sin1x � y 2  sin1x � y 2 � sin2 x � sin2 y.

4 sin¢u �
p

6
≤ � 223 sin u � 2 cos u.

11p
12

�
p

4
�

2p
3

.cos 

11p
12

°

°°
°

°°°
75° � 30° � 45°,
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These identities can also be employed to solve equations, as in the following examples.
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In the diagram, 

Using Pythagoras’ theorem, we can calculate BC to be 4 and AB to be 13.

Hence 

So 

 � �
16
65

 �
20
65

�
36
65

 � ¢4
5

�
5
13
≤ � ¢3

5
�

12
13
≤

 � cos x° cos y° � sin x° sin y°

 cos AB̂C � cos1x � y 2°

 sin x° �
3
5

, sin y° �
12
13

 cos x° �
4
5

, cos y° �
5
13

AB̂C � x° � y°. For questions of this type it is
worth remembering the
Pythagorean triples (and 
multiples thereof) such as:

3, 4, 5
5, 12, 13
8, 15, 17
7, 24, 25
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Example

Solve for 

 1 u � 0.262, 3.40
 1  tan u � 2 � 23

 1
2 � 23

2
 cos u �

1
2

 sin u

 1  cos u �
1
2

 sin u �
23
2

 cos u

 cos u � sin u cos 
p

3
� cos u sin 

p

3

0 � u 6 2p.cos u � sin¢u �
p

3
≤

The difference between this
type of question and an identity
should be noted. An identity
holds true for all values of 
whereas this equation is true
only for certain values of u.

u,

Example

Solve for 

 1 x° � 52.5°, 232.5°

 1  tan x° �
22 � 1

23 � 22

 1
22 � 1

2
 cos x° �

23 � 22
2

 sin x°

 1
1

22
 cos x° �

1

22
 sin x° �

1
2

 cos x° �
23
2

 sin x°

 cos 45° cos x° � sin 45° sin x° � sin 30° cos x° � cos 30° sin x°

0° � x° 6 360°.cos145 � x 2° � sin130 � x 2°

Exercise 2

4

3

A B
24

7

PQ

R

4

12

3

5

A B

C

12

20
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12 In the diagram below, find 

13 A is acute, B is obtuse, and Without using a calculator, find

the possible values of and 

14 Solve for 

15 Show that 

16 The gradients of OP and OQ are and 3 respectively.

Find 

17

For the triangles above, and by considering 2A = A + A, find these.
a sin 2A b cos 2A c sin 2B d cos 2B

18 Solve the following equations for 

a

b

c

19 Solve the following equations for 

a

b

c cos¢x �
2p
3
≤ � sin¢x �

3p
4
≤

tan¢u �
p

4
≤ � sin 

p

3

sin u � cos u � cos¢u �
p

6
≤

0 � u 6 2p.

6 sin x° � cos1x � 30 2°

cos1x � 45 2° � sin1x � 45 2°

sin1x � 30 2° � 2 cos x°

0° � x° 6 360°.

cos PÔQ.

1
3

cos¢p
4

� u≤ � sin¢p
4

� u≤ � 0.

0° � x° 6 360°.cos145 � x 2° � sin130 � x 2°

cos1A � B 2 .sin1A � B 2

sin B �
2
3

.sin A �
3
7

tan PQ̂R.
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7

P
2

Q

R

xO

y Q

P

A
6

10

B
24

7

7.3 Double angle formulae
It is useful to consider the special cases of addition formulae that are the double angle
formulae.

It is often useful to rearrange cos 2A by using the identity 

So 

Or 

In this chapter we have met the Pythagorean identities, compound angle formulae and
double angle formulae. These are all summarized below.

 � 2 cos2 A � 1

 � cos2 A � 11 � cos2 A 2

 cos 2A � cos2 A � sin2 A

 � 1 � 2 sin2 A

 � 1 � sin2 A � sin2 A

 cos 2A � cos2 A � sin2 A

sin2 A � cos2 A � 1.

 �
2 tan A

1 � tan2 A

 �
tan A � tan A

1 � tan A tan A

 tan 2A � tan1A � A 2

 � cos2 A � sin2 A

 � cos A cos A � sin A sin A

 cos 2A � cos1A � A 2

 � 2 sin A cos A
 � sin A cos A � cos A sin A

 sin 2A � sin1A � A 2

Pythagorean identities

Compound angle formulae

Double angle formulae

 tan 2A �
2 tan A

1 � tan2 A

 � 1 � 2 sin2
˛A

 � 2 cos2 A � 1

 cos 2A � cos2 A � sin2 A

 sin 2A � 2 sin A cos A

 tan1A � B 2 �
tan A � tan B

1 � tan A tan B

 tan1A � B 2 �
tan A � tan B

1 � tan A tan B

 cos1A � B 2 � cos A cos B � sin A sin B
 cos1A � B 2 � cos A cos B � sin A sin B
 sin1A � B 2 � sin A cos B � cos A sin B
 sin1A � B 2 � sin A cos B � cos A sin B

1 � cot2 u � csc2 u

tan2 u � 1 � sec2 u

sin2 u � cos2 u � 1
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Example

By considering as use the double angle formulae to find these.

(a) (b) (c) 

(a) 

(b) 

(c) 

 � q

 �
2
0

 �
2

1 � 1

 tan 

p

2
�

2 tan 

p

4

1 � tan2 
p

4

 � 0

 � ¢ 1

22
≤2

� ¢ 1

22
≤2

 cos 

p

2
� cos2

 

p

4
� sin2

 

p

4

 � 1

 � 2 �
1
2

 � 2 �
1

22
�

1

22

 sin 

p

2
� 2 sin 

p

4
 cos 

p

4

tan 

p

2
cos 

p

2
sin 

p

2

2¢p
4
≤,p

2

Example

Find cos 2u.

9

12

�

Clearly 

So 

 � �
63
225

 �
162
225

� 1

 � 2¢ 9
15
≤2

� 1

 cos 2u � 2 cos2 u � 1

cos u �
9
15

Example

Find an expression for in terms of 

 � 3 sin u � 4 sin3 u

 � 2 sin u � 2 sin3 u � sin u � 2 sin3 u

 � 2 sin u11 � sin2 u 2 � sin u � 2 sin3 u

 � 2 sin u cos2 u � sin u � 2 sin3 u

 � 2 sin u cos u cos u � 11 � 2 sin2 u 2  sin u

 � sin 2u cos u � cos 2u sin u
 sin 3u � sin12u � u 2

sin u.sin 3u

Example

Find an expression for in terms of 

Here we can use the double angle formula – remember that the double angle
formulae do not apply only to they work for any angle that is twice the size
of another angle.

 � 8 cos4 u � 8 cos2 u � 1

 � 214 cos4 u � 4 cos2 u � 1 2 � 1

 � 212 cos2 u � 1 22 � 1

 cos 4u � 2 cos2 2u � 1

2u;

cos u.cos 4u

Example

Prove the identity 

 � cos 2u � RHS
 � cos2 u � sin2 u

 � cos2 u¢1 �
sin2 u
cos2 u

≤
 �

1 � tan2 u
sec2 u

 LHS �
1 � tan2 u
1 � tan2 u

1 � tan2 u
1 � tan2 u

� cos 2u.

Example

Prove the identity 

In this example, it is probably easiest to begin with the right-hand side and show
that it is identical to the left-hand side. Although it involves what appears to be
a double angle in fact it is not useful to use the double angle formulae.14a 2 ,

tan 3a � tan a �
sin 4a

cos 3a cos a
.



7.4 Using double angle formulae
Half angle formulae
It is useful to rearrange the double angle formulae to obtain formulae for a half angle.
We have seen that double angle formulae can be applied to different angles.

So we can find expressions for and 

These formulae are particularly applied when integrating trigonometric functions (see
Chapter 15).

 1 cos u � ;

B

1
2

 1cos 2u � 1 2

 1 cos2 u �
1
2

 1cos 2u � 1 2

 2 cos2 u � cos 2u � 1

 cos 2u � 2 cos2 u � 1 can be rearranged to

sin 

1
2

 u.cos 

1
2

 u
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1 Use the double angle formulae to find these.

a b c

2 Find sin 2u.

tan 

2p
3

cos 

5p
3

sin 

2p
3

172

To recognize this, it is important to look at the other side of the identity and
realize what the goal is.

 � tan 3a � tan a � LHS

 �
sin 3a cos a
cos 3a cos a

�
cos 3a sin a
cos 3a cos a

 �
sin 3a cos a � cos 3a sin a

cos 3a cos a

 �
sin13a � a 2

cos 3a cos a

 RHS �
sin 4a

cos 3a cos a
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Exercise 3

12

5

�

3 Find cos 2u.

�

17
8

4 Given that is an acute angle with calculate the exact value of these.

a b

5 Find an expression for in terms of and 
6 Find an expression for in terms of 

7 Find the exact value of given that ( is not acute).

8 Prove that 

9 Prove that 

10 Prove that 

11 Show that 

12 Prove that 

13 Prove that sin 2a �
2 tan a

1 � tan2 a
.

cos A � sin A
cos A � sin A

� sec 2A � tan 2A.

cos 3u � sin 4u � 4 cos3 u11 � 2 sin u 2 � cos u14 sin u � 3 2 .

cos f � sin f �
cos 2f

cos f � sin f
.

1 � cos 2y

sin 2y
�

sin 2y

1 � cos 2y
.

tan u �
1 � cos 2u

sin 2u
.

usin u �
12
13

cos 2u

sin u.sin 6u
cos u.sin ucos 5u

cos usin u

tan u �
1
2

,u

So cos 

u

2
� ;

B

1
2

 1cos u � 1 b

So sin 

u

2
� ;

B

1
2

 11 � cos u 2

Similarly

 1 sin u � ;

B

1
2

 11 � cos 2u 2

 1 sin2 u �
1
2

 11 � cos 2u 2

 1 2 sin2 u � 1 � cos 2u

 1 � 2 sin2 u � cos 2u

Example

Find the exact value of cos 15 .

 �
32 � 23

2

 �
C

2 � 23
4

 �
C

1
2

 ¢2 � 23
2

≤

 �
C

1
2

 ¢23
2

� 1≤

 cos 15° �
B

1
2

 1cos 30° � 1 2

°



An equation of this type is often solved using a calculator (when it is available). In fact,
in some cases this is the only appropriate method.
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Trigonometric equations involving double angles
We covered basic equations involving double angles that can be solved without using
the double angle formulae in Chapter 1.
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Example

Solve for 

 1 x° � 30°, 60°, 210°, 240°

 1 2x° � 60°, 120°

 sin 2x° �
23
2

0° � x° 6 360°.sin 2x° �
23
2

S A

T C

However, if there is another trigonometric term involved (and we cannot use a calculator
to solve the equation), then factorisation methods need to be employed.

Example

Solve for 

So or 
5p
3

.u � 0, 
p

3
, p

 1 u �
p

3
, 

5p
3

 1 u � 0, p  1 cos u �
1
2

 1 sin u � 0 or 2 cos u � 1 � 0
 1 sin u12 cos u � 1 2 � 0

 1 2 sin u cos u � sin u � 0
 sin 2u � sin u � 0

0 � u 6 2p.sin 2u � sin u � 0

Example

Solve for 

 1 x° � 120°, 240°

 1 cos x° � �
1
2

 or cos x° � 3

 1 2 cos x° � 1 � 0 or cos x° � 3 � 0
 1 12 cos x° � 1 2 1cos x° � 3 2 � 0

 1 2 cos2 x° � 5 cos x° � 3 � 0

 1 2 cos2 x° � 1 � 5 cos x° � 2

 cos 2x° � 5 cos x° � 2

0° � x° 6 360°.cos 2x° � 5 cos x° � 2

has no 
solution.
cos x° � 3

Example

Solve for 

 1 u �
7p
6

, 
11p

6

 1 sin u �
7
3

 or sin u � �
1
2

 1 13 sin u � 7 2 12 sin u � 1 2 � 0
 1 6 sin2 u � 11 sin u � 7 � 0

 1 3 � 6 sin2 u � 11 sin u � 4 � 0

 1 311 � 2 sin2 u 2 � 11 sin u � 4 � 0

0 � u 6 2p.3 cos 2u � 11 sin u � �4
The form of 
required is determined
by the other term in the
equation (sin or cos).

cos 2u

has no 

solution.

sin u �
7
3

Example

Solve for 

x° � 0°, 40.6°, 139°

0° � x° 6 180°.sin 3x° � cos 2x° � 1

Exercise 4

1 Prove 

2 Prove 

3 Find the value of sin 75 , using a half angle formula.

4 Find the exact value of using a half angle formula.

5 Solve these equations for 

a b

6 Solve these equations for 
a b

c d

e f

g h cos 2 � 7 sin x° � 42 cos 2x° � cos x° � 1 � 0

cos 2x° � 3 cos x° � 1 � 0cos 2x° � 5 cos x° � 2 � 0

cos 2x° � 4 sin x° � 5 � 0cos 2x° � cos x° � 1 � 0

sin 2x° � 4 sin x° � 0sin 2x° � cos x° � 0
0° � x° 6 360°.

6 cos 2u � 1 � 4sin 2u �
23
2

0 � u 6 2p.

cos 

p

8
,

°

2 sin2 
u

2
� 1 � cos u.

tan¢u
2
≤ � csc u � cot u.
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7 Solve these equations for 
a b

c d

e f

g

8 Solve these equations for 
a b
c d

9 Solve these equations for Give your answers to 3 sf.

a b 2 cos 2u � 3 sin u � 1 � 06 cos 2u � 5 cos u � 4 � 0

0 � u 6 2p.

cos 2u � 3 cos u � 2 � 02 cos u � 2 � cos 2u � 4
cos 2u � 1 � 3 cos usin 2u � 2 sin u

�p � u 6 p.

cos 2u � sin u � 1

cos 2u � 4 cos u � 5cos 2u � cos u

sin 2u � cos u � 02 cos 2u � 1 � 0

sin 2u � sin u � 0cos 2u � cos u � 0
0 � u 6 2p.
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7.5 Wave function
This refers to functions of the type where there are both
sine and cosine terms in one function.

What does the graph of this type of function look like?

This is the graph of y � 2 cos x° � 3 sin x°:

f1x 2 � a cos x° � b sin x°,

Although this part of
trigonometry is not 
explicitly stated as part
of the IB HL syllabus, it
is really an application
of compound angle
formulae and is worth
studying.

0

�3.61

3.61

y

x

It appears to have all of the properties of a single trigonometric function, in that it is a
periodic wave with symmetrical features. As its maximum and minimum values are
numerically the same, we can conclude that there is a stretch factor involved. As the
graph begins neither on the x-axis nor at a maximum/minimum, there must be a
horizontal shift.

This suggests a function of the form 

We can check this by finding k and a°.

k cos1x � a 2°.

Example

By dividing, we can find 

It is vital to consider which quadrant lies in. This is best 
achieved using the diagram.

In this case, we know that

Since (always), we can see that the quadrant with two ticks in it is the
first quadrant.

So here is acute.

Hence f1x 2 � 2 cos x° � 3 sin x° � 213 cos1x � 56.3 2°.

a°

k 7 0

 k cos a° � �

 k sin a° � �

a°

 1 a° � 56.3°

 1 a° � tan�1
 

3
2

 
k sin a°

k cos a°
� tan a° �

3
2

a°:

S A

T C
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Method for wave function

To express a function of the form as a single trigonometric
function:
1. Expand the desired form using the compound formula (if no form is given, use

).
2. Compare the two sides to find and (write them in this order).
3. Square and add to find 
4. Divide to find 
5. Use the positivity diagram to find a°.

tan a°.
k2.

k cos a°k sin a°

k cos1x � a 2°

f1u 2 � a sin u � b cos u

Example

Express as 

Let 

So 

Squaring and adding:

Dividing:

So 

Hence 3 cos x° � 4 sin x° � 5 cos1x � 306.9 2°

 � 306.9°
 a° � 360° � 53.1°

tan�1¢4
3
≤ � 53.1°

k sin a°

k cos a°
� tan a° � �

4
3

 k � 5
 k2 � 25

 k2 sin2 a° � k2 cos2 a° � 1�4 22 � 32

 k cos a° � 3
 k sin a° � �4

 � k cos x° cos a° � k sin x° sin a°

 3 cos x° � 4 sin x° � k cos1x � a 2°

k cos1x � a 2°, k 7 0, 0° � a° 6 360°.3 cos x° � 4 sin x°

S A

T C

Express in the form 

We know that so for f(x) to
be expressed in this form

Comparing the two sides, we can conclude that

By squaring and adding, we can find k:

 1 k � 213

 1 k2 � 13

 1 k21sin2 a° � cos2 a° 2 � 13

 k2 sin2 a° � k2 cos2 a° � 32 � 22

 k cos a° � 2
 k sin a° � 3

2 cos x° � 3 sin x° � k cos x° cos a° � k sin x° sin a°

k cos1x � a 2° � k cos x° cos a° � k sin x° sin a°,

k cos1x � a 2°.f1x 2 � 2 cos x° � 3 sin x°



This method can also be used to solve equations (if no calculator is available).

179

It is not always the form that is required, but the method is precisely the
same.

k cos1x � a 2°
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Example

Express as 

Let 

So

Squaring and adding:

Dividing:

So 

Hence cos u � 23 sin u � 2 sin¢u �
11p

6
≤

 �
11p

6

 a � 2p �
p

6

 tan�1¢ 1

23
≤ �
p

6

 
k sin a
k cos a

� tan a � �
1

23

 k � 2
 k2 � 4

 k2 sin2 a � k2 cos2 a � 1�1 22 � 232

 and k cos a � 23

1 k sin a � �1
�k sin a � 1

 � k sin u cos a � k cos u sin a

 cos u � 23 sin u � k sin1u � a 2

k sin1u � a 2 , k 7 0, 0 � a 6 2p.cos u � 23 sin u

S A

T C

This method works in the same way for functions involving a multiple angle (as long as
both the sine and cosine parts have the same multiple angle).

Example

Find the maximum value of and the smallest possible
positive value of where this occurs.

First, express this as a single trigonometric function. Any of the four forms can
be chosen, but the simplest is generally 

Let 

So 
 k cos a � 1
 k sin a � 1

 � k cos 2u cos a � k sin 2u sin a
 f1u 2 � 1 cos 2u � 1 sin 2u � k cos12u � a 2

k cos12u � a 2 .

u

f1u 2 � cos 2u � sin 2u

Squaring and adding:

Dividing:

So 

Hence 

The maximum value of is This normally occurs when for

and so here

 1 u �
p

8

 1 2u �
p

4

 2u �
p

4
� 0

cos u

u � 022.f1u 2

cos 2u � sin 2u � 22 cos¢2u �
p

4
≤

a �
p

4

 tan�111 2 �
p

4

 
k sin a
k cos a

� tan a �
1
1

� 1

 k � 22

 k2 � 2
 k2 sin2 a � k2 cos2 a � 12 � 12

S A

T C
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There will be an infinite
number of maximum
points but this is the
first one with a positive
value of u.

Example

Solve by first expressing in

the form 

Let 

So 

Squaring and adding:

Dividing:

tan�1¢ 1

23
≤ �
p

6

k sin a
k cos a

� tan a �
�1

23

 k � 2
 k2 � 4

 k2 sin2 a � k2 cos2 a � 1�1 22 � 232

 k cos a � 23

 k sin a � �1

 � k cos 2u cos a � k sin 2u sin a

 23 cos 2u � sin 2u � k cos12u � a 2

k cos12u � a 2 .

23 cos 2u � sin 2u23 cos 2u � sin 2u � 1 � 0

S A

T C
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1 Express each of these in the form where 
a b

c d

2 Express each of these in the form where 

a b

c d

3 Express each of these in the form where 

a b

4 Express each of these in the form where 

a b

5 Express each of these in the form where 

a b
6 Express each of these as a single trigonometric function.

a b

c d

7 Without using a calculator, state the maximum and minimum values of each
function, and the corresponding values of x , for 

a

b

c f˛1x 2 � 7 sin 2x° � 7 cos 2x° � 1

f˛1x 2 � 23 cos x° � sin x° � 5

f˛1x 2 � 5 cos x° � 5 sin x°

0° � x° 6 360°.°

sin 30u � cos 30u227 cos u � 3 sin u

cos 3x° � 23 sin 3x°cos 2x° � sin 2x°

23 cos x° � sin x°�sin x° � 3 cos x°

k 7 0, 0° � a° 6 360°.k sin1x � a 2°,

cos u � sin u23 cos u � sin u

k 7 0, 0 � a 6 2p.k sin1u � a 2 ,

2.5 cos x° � 3.5 sin x°15 cos x° � 8 sin x°

k 7 0, 0° � a° 6 360°.k cos1x � a 2°,

23 sin u � cos u�cos u � 2 sin u

cos u � sin u23 cos u � sin u

k 7 0, 0 � a 6 2p.k cos1u � a 2 ,

sin x° � 2 cos x°cos x° � 3 sin x°

5 cos x° � 12 sin x°6 cos x° � 8 sin x°
k 7 0, 0° � a° 6 360°.k cos1x � a 2°,

180

So 

Hence 

The equation becomes

There will be two more solutions one period away ( radians).

So u �
p

12
, 

9p
12

, 
13p
12

, 
21p
12

p

 1 u �
13p
12

, 
21p
12

 1 2u �
13p

6
, 

21p
6

 1 2u �
11p

6
�
p

3
, 

5p
3

 1 cos¢2u �
11p

6
≤ �

1
2

 2 cos¢2u �
11p

6
≤ � 1 � 0

23 cos 2u � sin 2u � 1 � 2 cos¢2u �
11p

6
≤ � 1

 �
11p

6

 a � 2p �
p

6
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Exercise 5

8 State the maximum and minimum values of each function, and the corresponding
values of for 

a

b

c

9 By expressing the left-hand side of each equation as a single trigonometric function,
solve the equation for 

a b

c d

10 By expressing the left-hand side of each equation as a single trigonometric function,
solve the equation for 

a b 8 cos 3x° � 15 sin 3x° � 133 sin x° � 5 cos x° � 4

0° � x° 6 360°.

cos 4u � 23 sin 4u � 1cos u � sin u � 1

23 cos u � sin u � 23cos u � sin u � �1

0 � u 6 2p.

f˛1u 2 � 26 sin 8u � 22 cos 8u � 3

f˛1u 2 � �23 cos 3u � sin 3u

f˛1u 2 � 28 sin u � 2 cos u

0 � u 6 2p.u,

Review exercise

1 If what are possible values for cos x ?

2 For the billiards shot shown in the diagram,
a prove that 

i
ii

b Find the value of 
i sin q ii cos q

3 Show that, for triangle KLM, 

4 Prove that 

5 Prove that 

6 Solve the equation 
for 

7 The function f is defined on the domain by 
a Express in the form where 

b Hence, or otherwise, write down the value of for which takes its maximum
value. [IB May 02 P1 Q12]

8 Find all the values of in the interval that satisfy the equation
[IB May 03 P1 Q2]

9 Use the fact that to find 

10 In the following diagram, find cos1a � b 2 .

sin1�15 2°.�15° � 145 � 60 2°

cos u � sin2 u.
30, p 4u

f˛1u 2u

R 7 0, 0 � a 6 2p.R cos1u � a 2f˛1u 2

f˛1u 2 � 4 cos u � 3 sin u.30, p 4
0 � u 6 p.

cos u � cos 3u � cos 5u � 0

2 csc x � tan ¢x
2
≤ � cot ¢x

2
≤.

1 � sin 2f

cos 2f
�

cos f � sin f

cos f � sin f
.

m �
k sin1a � b 2

sin a
.

°°

cos q° � �cos 2p°

sin q° � sin 2p°

°sin x° �
1
2

,

12

5

p	 p	q	

8

6
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11 Find csc 22.5° by using a half angle formula.

12 Find tan 2u.
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7

5

�

13 Express in the form where

14 Express in the form Hence solve
for 

15 Prove that 

16 K is the point with coordinates and L has coordinates

Find, in its simplest form, an expression for the 

gradient of the line KL.

17 The rotor blade of a helicopter is modelled using the following diagram, where
TUVW is a square.

¢sin¢u �
p

6
≤, cos¢u �

p

6
≤≤.

¢sin¢u �
p

6
≤, cos¢u �

p

6
≤≤

tan 3u �
3 tan u � tan3 u

1 � 3 tan2 u
.

0° � x° 6 90°.6 cos 8x° � 6 sin 8x° � 7 � 1
k cos18x � a 2°.6 cos 8x° � 6 sin 8x°

k 7 0, 0 � a 6 2p.

k sin1u � a 2248 cos u � 8 sin u

xO

W V

UT

y

�

a Show that the area of OTUVW is

b Express the area in the form 
c Hence find the maximum area of the rotor blade, and the smallest positive value

of when this maximum occurs.u

k cos12u � a 2 � p.

A � sin2 u �
1
4

 sin 2u

1

4
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The ideas that are the basis for calculus have been with us for a very long time.
Between 450 BC and 225 BC, Greek mathematicians were working on problems that
would find their absolute solution with the invention of calculus. However, the main
developments were much more recent; it was not until the 16th century that major
progress was made by mathematicians such as Fermat, Roberval and Cavalieri. In the
17th century, calculus as it is now known was developed by Sir Isaac Newton and
Gottfried Wilhelm von Leibniz.

8 Differential Calculus 1– Introduction

Sir Isaac Newton Gottfried Wilhelm von Leibniz

Sir Isaac Newton
famously “discovered”
gravity when an apple
fell on his head.

Consider the graph of a
quadratic, cubic or
trigonometric function.

Differential calculus is a branch of mathematics that is concerned with rate of change.
In a graph, the rate of change is the gradient. Although linear functions have a
constant gradient, most functions have changing gradients. Being able to find a
pattern for the gradient of curves is the aim of differentiation. Differentiation is the
process used to find rate of change.

The gradient of a straight line is constant.

For example, in the diagram below, the gradient � 2.

1

(1, 3)

y � 2x � 1

x

y
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y

B

C

O

E

D

F

A

x

x

y

O

A

P

B

However, when a curve is considered, it is obvious that the gradient is constantly
changing.

The sections AB, CD, EF have positive gradient (the function is increasing) and sections BC, DE

have negative gradient (the function is decreasing).The question we need to answer is: how

do we measure the gradient of a curve?

Example

Find the derivative of 

So (as )

Hence at any point on the curve, the gradient is given by 6x.

This process is known as differentiation by first principles.

3h S 0f¿ 1x 2 � lim
hS0

 

f 1x � h 2 � f 1x 2

h
� 6x

f 1x � h 2 � f 1x 2

h
�

6hx � 3h2

h
� 6x � 3h

f 1x � h 2 � f 1x 2 � 3x2 � 6hx � 3h2 � 3x2 � 6hx � 3h2

f 1x � h 2 � 31x � h 22 � 3x2 � 6hx � 3h2

f 1x 2 � 3x2.

The idea of a limit is similar to
sum of a infinite series met in
Chapter 6 and also to horizontal
asymptotes in Chapter 3.

The gradient of a function, known as the derivative, with notation is defined:

The notation means the limit as h tends to zero. This is the value to which the

expression converges as h becomes infinitesimally small.

lim
hS0

f¿ 1x 2 � lim
hS0

 

f 1x � h 2 � f 1x 2

h

f¿ 1x 2

8.1 Differentiation by first principles

We know , and one method of finding the gradient of a straight line is

to use 
y2 � y1

x2 � x1
.

gradient �
¢y

¢x

Consider the coordinates (x, f (x)) and – the gap between the x-
coordinates is h. This can be used to find an approximation for the gradient at P as seen
in the diagram.

This is calculating the gradient of the chord AB shown in the diagram. As the chord
becomes smaller, the end-points of the curve are getting closer together, and h becomes
smaller. Obviously, this approximation becomes more accurate as h becomes smaller.
Finally h becomes close to zero and the chord’s length becomes so small that it can be
considered to be the same as the point P.

Gradient �
y2 � y1

x2 � x1
�

f 1x � h 2 � f 1x 2

x � h � x
�

f 1x � h 2 � f 1x 2

h

1x � h, f 1x � h 2 2

Example

Find the derivative of 

So (as )3xh � h2
S 0f¿ 1x 2 � lim

hS0
 

f 1x � h 2 � f 1x 2

h
� 3x2

f 1x � h 2 � f 1x 2

h
�

3x2h � 3xh2 � h3

h
� 3x2 � 3xh � h2

f 1x � h 2 � f1x 2 � x3 � 3x2h � 3xh2 � h3 � x3 � 3x2h � 3xh2 � h3

f 1x � h 2 � 1x � h 23 � x3 � 3x2h � 3xh2 � h3

f 1x 2 � x3.

Example

Find the derivative of 

So f ¿1x 2 � lim
hS0

 

f 1x � h 2 � f 1x 2

h
� �7

f 1x � h 2 � f 1x 2

h
�

�7h
h

� �7

f 1x � h 2 � f 1x 2 � �7x � 7h � 1�7x 2 � �7h

f 1x � h 2 � �71x � h 2 � �7x � 7h

f 1x 2 � �7x.

8  Differential Calculus 1 – Introduction
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Example

Find the derivative of 

So f¿ 1x 2 � lim
hS0

 

f 1x � h 2 � f 1x 2

h
� 0

f 1x � h 2 � f 1x 2

h
�

0
h

� 0

f 1x � h 2 � f 1x 2 � 5 � 5 � 0

f 1x � h 2 � 5

f 1x 2 � 5.

Find using the method of differentiation from first principles:

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15 f 1x 2 � 2x �
1
x

f 1x 2 � x2 � 4x � 9f 1x 2 � 8 � 3x

f 1x 2 � x2 � 4f 1x 2 �
3
x

f 1x 2 � 9

f 1x 2 � 4x3f 1x 2 � 5x2f 1x 2 � 2x2

f 1x 2 � x4f 1x 2 � x3f 1x 2 � x2

f 1x 2 � �2xf 1x 2 � 8xf 1x 2 � 5x

f¿ 1x 2

Example

Find the derivative of 

So (as )3xh � h2
S 0f¿ 1x 2 � lim

hS0
 

f 1x � h 2 � f 1x 2

h
� 3x2 � 7

 � 3x2 � 3xh � h2 � 7

 
f 1x � h 2 � f 1x 2

h
�

3x2h � 3xh2 � h3 � 7h
h

 � 3x2h � 3xh2 � h3 � 7h

 f 1x � h 2 � f1x 2 � x3 � 3x2h � 3xh2 � h3 � 7x � 7h � 5 � x3 � 7x � 5

 � x3 � 3x2h � 3xh2 � h3 � 7x � 7h � 5

 f 1x � h 2 � 1x � h 23 � 71x � h 2 � 5

f1x 2 � x3 � 7x � 5.

What happens in a sum or difference of a set of functions? Consider the sum of the

previous three examples, i.e. f1x 2 � x3 � 7x � 5.

This demonstrates that differentiation of a function containing a number of terms can
be differentiated term by term.

Exercise  1

This rule can be used to perform differentiation. 

In particular, notice that gives f¿ 1x 2 � a.f1x 2 � ax

8.2 Differentiation using a rule
Looking at the patterns in Exercise 1, it should be obvious that for:

f¿ 1x 2 � axn�1

f 1x 2 � axn

Multiply by the power and
subtract 1 from the power

Unless specifically required,
differentiation by first
principles is not used – the
above rule makes the
process much shorter and
easier.

This is no surprise – the
gradient of a linear
function is constant.

The gradient of a
horizontal line is zero.

Also, gives f¿ 1x 2 � 0.f1x 2 � k

y

k y � k

O x

O

y
y � ax

x

Either notation can be used, and both will appear in questions.

Differential calculus was developed by two mathematicians, Isaac Newton and Gottfried
Leibniz. There are two commonly used notations:

Functional / Newtonian notation Geometrical / Leibniz notation

Derivative 
dy

dx
�f¿ 1x 2 �

y �f1x 2 �
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Sometimes it is necessary to
simplify the function before
differentiating.

Example

Find the derivative of 

f¿ 1x 2 � �
2
3

 x�4
3

f1x 2 � 2x�1
3

f1x 2 �
2
31x

.

Example

Differentiate 

 � 3x
1
2 � 5x�1

2

 
dy

dx
� 2 # 

3
2

 x
1
2 � 10 # 1

2
 x�1

2

 � 2x
3
2 � 10x

1
2

 y �
2x2 � 10x

x
1
2

y �
2x1x � 5 2

1x
.

Example

Find (4) for 

Here we are evaluating the derivative when 

First differentiate:

Then substitute 

So the gradient of g(x) at is 7.x � 4

g¿ 14 2 � 2 # 4 � 1 � 7x � 4:

g¿ 1x 2 � 2x � 1

x � 4.

g1x 2 � x2 � x � 6.g¿

Example

Find the coordinates of the points where the gradient is for 

Here we are finding the points on the curve where the derivative is 

First differentiate: 

Then solve the equation 

At and at 

So the coordinates required are and .¢3, �
25
2
≤¢�2, 

55
3
≤

x � 3, y � �
25
2

x � �2, y �
55
3

 1 x � �2 or 1 x � 3

 1 1x � 2 2 1x � 3 2 � 0

 1 x2 � x � 6 � 0

f¿ 1x 2 � x2 � x � 8 � �2

f¿ 1x 2 � x2 � x � 8

�2.

f 1x 2�
1
3

 x3 �
1
2

 x2 � 8x � 7.

�2

Example

Differentiate 

Simplifying, 

 � 15x2 �
4
x2

 � 15x2 � 4x�2

 
dy

dx
� 5 #3x 13�12 � 1�4 2 x 1�1�12

y � 5x3 � 4x�1

y � 5x3 �
4
x

.
As with first principles, we
can differentiate a sum by
differentiating term by term.

1 Differentiate these functions.

a b c

d e f

g h i

j k l

m n o

p q r

2 Find (3) for .

3 Find (6) for .

4 Find the gradient of when .

5 Find the gradient of when 

6 Find the coordinates of the point where the gradient is 4 for

.

7 Find the coordinates of the points where the gradient is 2 for

.f1x 2 �
2
3

 x3 �
9
2

 x2 � 3x � 8

f1x 2 � x2 � 6x � 12

x � 16.y �
4x2 � 9
1x

x � 2y � x3 � 6x � 9

g1x 2 �
4 � x2

x
g¿

f 1x 2 � x2 � 4x � 9f¿

y �
3x21x3 � 3 2

51x
y �

4x1x2 � 3 2

3x2y �
32x5

y �
41xy � 6x2 �

2
x

y � x3 � 5x2 � 7x � 4

f 1x 2 �
5

2x5
y � x2 � 5x � 6f 1x 2 � 51x

f 1x 2 �
4
x2f 1x 2 � 8x � 9f 1x 2 � 11x

f 1x 2 � 7xf 1x 2 � 12f 1x 2 � �3x5

f 1x 2 � 6x4f 1x 2 � 10x3f 1x 2 � 9x2

Exercise  2
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Differentiation can be used to find the value of the gradient at any particular point on
the curve. At this instant the value of the gradient of the curve is the same as the
gradient of the tangent to the curve at that point.

y

O x

Finding the gradient using a graphing calculator

Using a graphing calculator, the value of the gradient at any point can be calculated.

For example, for at x � �1y � x2 � x � 6,

Tangents and normals
The gradient at a point is the same as the gradient of the tangent to the curve at that
point. Often it is necessary to find the equation of the tangent to the curve.

This is helpful, especially for
checking answers. However,
we often need the derivative
function and so need to
differentiate by hand. The
calculator can only find the
gradient using a numerical
process and is unable to
differentiate algebraically.

Method for finding the equation of a tangent

1. Differentiate the function.
2. Substitute the required value to find the gradient.
3. Find the y-coordinate (if not given).
4. Find the equation of the tangent using this gradient and the point of contact

using y � y1 � m1x � x1 2 .

Example

Find the equation of the tangent to at 

Differentiating,

and so at , 

The point of contact is when , and so 

i.e. 

Using the equation of the tangent is 

1x��1 2 1 y � �3x � 7y � 1�4 2 � �3

y � y1 � m1x � x1 2 ,

1�1, �4 2

y � 1�1 22 � 1�1 2 � 6 � �4,x � �1

dy

dx
� 2 � 1�1 2�1 � �3x � �1

dy

dx
� 2x � 1

x � �1.y � x2 � x � 6

8.3 Gradient of a tangent
A tangent is a straight line that touches a curve (or circle) at one point.

The normal to a curve is also a straight line. The normal to the curve is perpendicular to
the curve at the point of contact (therefore it is perpendicular to the tangent).

1

1

2

2

3

3

4

4�1
�1
�2

�3

�4

�2�3�4

y

x

Finding the equation of a normal to a curve is a very similar process to finding the tangent.

Method for finding the equation of a normal

1. Differentiate the function.
2. Substitute the required value to find the gradient.
3. Find the gradient of the perpendicular using 
4. Find the y-coordinate (if not given).
5. Find the equation of the tangent using this gradient and the point of contact

using y � y1 � m1x � x1 2 .

m1m2 � �1.

Example

Find the equation of the tangent, and the equation of the normal, to

at 

Using the method, 

At 

At x � 3, y � 32 � 913 2 � 12 � �30.

x � 3, 
dy

dx
� 213 2 � 9 � �3.

dy

dx
� 2x � 9.

x � 3.y � x2 � 9x � 12
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1 Find the equation of the tangent and the equation of the normal to:

a at b at 

c at d at 

e at f at 

2 The curve meets the x-axis at A and the y-axis at B.

Find the equation of the tangents at A and B.

3 Find the equation of the normal to at 

4 The tangent at P(1, 0) to the curve meets the curve again

at Q. Find the coordinates of Q.

5 Find the equation of the tangent to at x � �1.y � 9 � 2x � 2x2

y � x3 � x2 � 2

x � 2.y �
16
x3

y � 1x2 � 3 2 1x � 1 2

x � �3y � 20 � 3x2x � 1y �
4
x2

x � 9y � 1xx � �1y � x4

x � 2y � x2 � 3xx � 1y � 3x2

Example

Find the equation of the tangent, and the equation of the normal, to 

where the curve crosses the x-axis.

The curve crosses the x-axis when So i.e. (1,0)

Differentiating, 

At 

Using the equation of the tangent is

Then the gradient of the normal will be 

Using the equation of the normal is 

1 y � �
1
3

 x �
1
3

y � �
1
3

 1x � 1 2y � y1 � m1x � x1 2

�
1
3

.

y � 31x � 1 2 � 3x � 3.

y � y1 � m1x � x1 2 ,

x � 1, 
dy

dx
� 311 22 � 3.

dy

dx
� 3x2.

x3 � 1 1 x � 1,y � 0.

y � x3 � 1

Exercise  3
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To find the perpendicular
gradient turn the fraction
upside down and change the
sign.

8.4 Stationary points
The gradient of a curve is constantly changing. In some regions, the function is increasing,
in others it is decreasing, and at other points it is stationary.

So the equation of the tangent is 

The equation of the normal uses the same point but the gradient is different.

Using the gradient of the normal is 

Using the equation of the normal is 

1 y �
1
3

 x � 31

y � 30 �
1
3

 1x � 3 2y � y1 � m1x � x1 2

1
3

.m1m2 � �1,

1 y � �3x � 21

y � 30 � �31x � 3 2
6 Find the equations of the tangents to the curve at the

points where the curve cuts the x-axis. Find the point of intersection of these
tangents.

7 Find the equations of the tangents to the curve at the

points of intersection of the curve and the line 

8 Find the equation of the normal to , which has a gradient of 3.

9 Find the equations for the tangents at the points where the curves

and meet.

10 For find the equation of the tangent at 

For find the equation of the normal to the curve at 

Now find the area of the triangle formed between these two lines and the y-axis.

Tangents on a graphing calculator
It is possible to draw the tangent to a curve using a graphing calculator.

To find the equation of the tangent to at the calculator

can draw the tangent and provide the equation of the tangent.

x � 3,y � x2 � x � 12

x � 4.y � x2 � x � 12,

x � 1.y � x2 � 7,

y � �x2 � x � 6y � x2 � x � 6

y � x2 � 3x � 2

y � 6x � 5.

y � 3x2 � 5x � 9

y � 12x � 1 2 1x � 1 2

At points A, B, C and D, the tangent to the curve is horizontal and so the gradient is zero.
These points are known as stationary points. Often these points are very important to
find, particularly when functions are used to model real-life situations.

y

O

A

B

C

D

x
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Note that the maximum turning point is not necessarily the maximum value of that
function. Although it is the maximum value in that region (a local maximum) there may
be greater values. For example, for the cubic function the
greatest value is not a turning point as it tends to infinity in the positive x-direction.

y � x3 � 2x2 � 3x � 4

y

O x

Example

Find the stationary points of 

Differentiating, 

When 
dy

dx
� 0, 3x2 � 14x � 5 � 0

dy

dx
� 3x2 � 14x � 5

y � x3 � 7x2 � 5x � 1.

2 4

h(t)

t0

and so when 

i.e. 

So the maximum height of the stone is given by metres, which is the point
where the gradient is zero. We have met this concept before as maximum and
minimum turning points in Chapters 2, 3 and 4, and these are in fact examples of
stationary points.

h12 2 � 4

t � 2

4 � 2t � 0h¿ 1t 2 � 0h¿ 1t 2 � 4 � 2t

1. Differentiate the function.

2. Solve the equation 

3. Find the y-coordinate of each stationary point.

dy

dx
� 0.

Method for finding stationary points

Determining the nature of stationary points
There are four possible types of stationary point.

Maximum Minimum turning Rising point of Falling point of
turning point point inflexion inflexion

� �

0

�
�

0

�

�

0

�

�

0

A stationary point of inflexion is when the
sign of the gradient does not change either
side of the stationary point.

•

• Stationary points are coordinate points.
• The x-coordinate is when the stationary point occurs.
• The y-coordinate is the stationary value.

Stationary points are when 
dy

dx
� 0.

r
r

So 

or 

When and when 

So the stationary points are and 1�5, �274 2 .¢1
3

, �
38
27
≤

x � �5, y � �274x �
1
3

, y � �
38
27

x � �51 x �
1
3

13x � 1 2 1x � 5 2 � 0

There are two methods for testing the nature of stationary points.

Method 1 — Using the signs of f ’(x)

Here the gradient immediately before and after the stationary point is examined. This is
best demonstrated by example.

Example

Find the stationary points of and determine their nature.

Using the steps of the method suggested above,

1.

2.

 1 x � �3 or x � 2
 1 61x � 3 2 1x � 2 2 � 0
 1 6x2 � 6x � 36 � 0

dy

dx
� 0

dy

dx
� 6x2 � 6x � 36

y � 2x3 � 3x2 � 36x � 5

For example, a stone is thrown and its height, in metres, is given by 
0 � t � 4.

h1t 2 � 4t � t2,



Method 2 — Using the sign of f ”(x)

When a function is differentiated a second time, the rate of change of the gradient of
the function is found. This is known as the concavity of the function.
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2

0 0

Shape

����
dy

dx

2�2��3��3�3�x �

We can choose values either side of the stationary point to test the gradient

either side of the stationary point. This is the meaning of the notation and

means taking a value just on the positive side of –3, that is slightly

higher than –3. means taking a value just on the negative side of –3, that

is slightly lower than –3.

It is important to be careful of any vertical asymptotes that create a discontinuity.

So for could be used and so What

is important is whether this is positive or negative. The brackets are both negative

and so the gradient is positive. A similar process with, say 

fills in the above table.

This provides the shape of the curve around each stationary value and hence
the nature of each stationary point.

So is a maximum turning point and is a minimum turning
point. Strictly these should be known as a local maximum and a local minimum
as they are not necessarily the maximum or minimum values of the function –
these would be called the global maximum or minimum.

12, �39 21�3, 86 2

x � 3,

x � �2, x � 1,

dy

dx
� 61�4 � 3 2 1�4 � 2 2 .�3�, x � �4

�3�

�3�. �3�

�3�

Example

3. When i.e. (0, 0)

4. 0

0

Shape

��
dy

dx

0�0�x �

x � 0, y � 0,

This means the negative
side of �3

This means the positive
side of �3

The two notations used here for the second derivative are:

in functional notation and in Leibniz notation.

This Leibniz notation arises from differentiating again.

This is 
d
dx

 ¢dy

dx
≤ �

d2y

dx2
.

dy

dx

d2y

dx2f– 1x 2

r r

Find the stationary point for and determine its nature.

1.

2. when 

1 x � 0

3x2 � 0
dy

dx
� 0

dy

dx
� 3x2

y � x3

3. When 

When 

Therefore the coordinates of the stationary points are and 

To find the nature of the stationary points, we can examine the gradient before
and after and using a table of signs.x � 2x � �3

12, �39 2 .1�3, 86 2
� �39

x � 2, y � 212 23 � 312 22 � 3612 2 � 5

� 86
x � �3, y � 21�3 23 � 31�3 22 � 361�3 2 � 5
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So the stationary point (0, 0) is a rising point of inflexion.

For a section of curve, if the gradient is increasing then it is said to be concave up.

The curve is getting less steep in this
section, i.e. it is becoming less negative
and so is increasing.

Similarly, if the gradient is decreasing it is said to be concave down.

Looking at the sign of can help us determine the nature of stationary points.

Consider a minimum turning point:

d2y

dx2

At the turning point, although the gradient is zero, the gradient is increasing

(moving from negative to positive) and so is positive.
d2y

dx2

dy

dx
� 0,

r



This table summarizes the nature of stationary points in relation and 
d2y

dx2
.dy

dx
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Maximum Minimum turning Rising point of Falling point of
turning point point inflexion inflexion

0 0 0 0

0 0��
d2y

dx2

dy

dx

This method is often considered more powerful than method 1 (when the functions
become more complicated). For examination purposes, it is always best to use the
second derivative to test nature. However, note that for stationary points of inflexion, it
is still necessary to use a table of signs.

Although the table above is true, it is unfortunately not the whole picture. A positive or

negative answer for provides a conclusive answer to the nature of a stationary point.
d2y

dx2

Example

Find the stationary points of ,

1.

2. This is stationary when 

So 

or 

3. When i.e. and when i.e. (2, 4)

4. To test the nature using the second derivative,

At and since this is negative, this is a maximum

turning point.

At and since this is positive, this is a minimum turning

point.

So stationary points are a local maximum, and (2, 4), a local minimum.1�2, �4 2 ,

x � 2, 
d2y

dx2 �
8
8

� 1

x � �2, 
d2y

dx2 �
8

�8
� �1

d2y

dx2 � 8x�3 �
8
x3

x � 2, y � 4,1�2, �4 2x � �2, y � �4,

x � 21 x � �2

1 x2 � 4

1

4
x2 � 1

1 � 4x�2 � 0

dy

dx
� 0.

dy

dx
� 1 � 4x�2

y � x �
4
x
.

At the turning point, although the gradient is zero, the gradient is decreasing

(moving from positive to negative) and so is negative.

At a point of inflexion, is zero.
d2y

dx2

d2y

dx2

dy

dx
� 0,

Consider a maximum turning point:
is not quite as helpful. In most cases, this will mean that there is a stationary 

point of inflexion. However, this needs to be tested using a table of signs as it is possible
that it will in fact be a minimum or maximum turning point. A table of signs is also
required to determine whether a stationary point of inflexion is rising or falling. See the
second example below for further clarification.

d2y

dx2 � 0

Example

Find the stationary point(s) of 

1.

2. Stationary when 

So 

1 x � 0

1 x3 � 0

4x3 � 0

dy

dx
� 0,

dy

dx
� 4x3

y � x4.



1 Find the stationary points and determine their nature using a table of signs.

a

b

c

d

e

2 Find the stationary points and determine their nature using the second derivative.

a

b

c

d

e f1x 2 � 3x5

y � 2x3 � 9x2 � 12x � 5

f1x 2 � x1x � 4 22
y � 14 � x 2 1x � 6 2

y � 2x2 � 8x � 5

f1x 2 � 4x �
1
x

y � 13x � 4 2 1x � 2 2

f1x 2 � 5x4

y � x3 � 12x � 7

f1x 2 � x2 � 8x � 3
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Exercise 4

8.5 Points of inflexion
The concavity of a function is determined by the second derivative.

Concave up

Concave down

So what happens when 

We know that when and there is a stationary point – normally a
stationary point of inflexion (with the exceptions as previously discussed).

In fact, apart from the previously noted exceptions, whenever it is known as a
point of inflexion. The type met so far are stationary points of inflexion when the gradient
is also zero (also known as horizontal points of inflexion).

However, consider the curve:

f– 1x 2 � 0

f– 1x 2 � 0,f¿ 1x 2 � 0

f– 1x 2 � 0?

 f– 1x 2 6 0

 f– 1x 2 7 0

8  Differential Calculus 1– Introduction

3. When i.e. (0, 0).

4. To test the nature using the second derivative,

At 

As for this stationary point, no assumptions can be made about its

nature and so a table of signs is needed.

0

0

Shape

��
dy

dx

0�0�x �

d2y

dx2 � 0

x � 0, 
d2y

dx2 � 12 � 03 � 0

d2y

dx2 � 12x2

x � 0, y � 0,

Hence (0, 0) is a minimum turning point. This can be verified with a calculator.

This is an exceptional case,
which does not often occur.
However, be aware of this
“anomaly”.

3 Find the stationary points and determine their nature using either method.

a

b

c

d

e

4 Find the distance between the turning points of the graph of

y � �1x2 � 4 2 1x2 � 2 2 .

y � x5 � 2x3 � 5x2 � 2

y � x6

f1x 2 � 16x �
1
x2

y � 12x � 5 22

f1x 2 �
1
3

 x3 � 2x2 � 3x � 4

A

B

Looking at the gradient between the turning points, it is constantly changing, the curve
becoming steeper and then less steep as it approaches B. So the rate of change of
gradient is negative (concave down) around A and then positive (concave up) around B.

Clearly the rate of change of gradient must be zero at some point between A 

and B. This is the steepest part of the curve between A and B, and it is this point that is
known as a point of inflexion. This is clearly not stationary. So a point of inflexion can
now be defined to be a point where the concavity of the graph changes sign.

If there is a point of inflexion:
d2y

dx2 � 0,

¢d2y

dx2≤
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1. Differentiate the function twice to find 

2. Solve the equation 

3. Find the y-coordinate of each point.

4. Test the concavity around this point, i.e. must change sign.
d2y

dx2

d2y

dx2 � 0.

d2y

dx2
.

Method for finding points of inflexion

Example

Find the points of inflexion of the curve and determine

whether they are stationary.

1.

2. For points of inflexion, 

So 

3.

f ¢ 3

22
≤ � �100.2324

f 10 2 � 0

f ¢� 3

22
≤ � 100.2324

1 x � 0 or x �
;3

22

1 x � 0 or x2 �
9
2

1 10x12x2 � 9 2 � 0

20x3 � 90x � 0

f– 1x 2 � 0

 f– 1x 2 � 20x3 � 90x

 f¿ 1x 2 � 5x4 � 45x2

f1x 2 � x5 � 15x3

0

0 0 ����f– 1x 2

0�0��
3

22
��

3

22
�

3

22
�x �

0 ��f– 1x 2

3

22
�3

22

3

22
�x �

There is a change in concavity (the sign of the second derivative changes)
around each point. So each of these three points is a point of inflexion.

To test whether each point is stationary, consider 

Hence provides a non-stationary point of inflexion.

Hence also provides a non-stationary point of inflexion.

Hence provides a stationary point of inflexion.

The three points of inflexion are (0 , 0) and 

This can be verified on a calculator.

¢ 3

22
, �

405
4
≤.¢� 3

22
, �

405
4
≤,

x � 0

� 0f¿ 10 2 � 510 24 � 4510 22

x � �
3

22

� �
405
4

f¿ ¢� 3

22
≤ � 5 ¢� 3

22
≤4

� 45 ¢� 3

22
≤2

x �
3

22

� �
405
4

f¿ ¢ 3

22
≤ � 5 ¢ 3

22
≤4

� 45 ¢ 3

22
≤2

f¿ 1x 2 .

If                it is a stationary 

If it is a non-stationary 

point of inflexion (assuming a 
point change in concavity)

e.g.

Anomalous case

dy

dx
� 0,

4.
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1 Find the points of inflexion for the following functions and determine
whether they are stationary.

a

b

c i y � x2 � x � 18

f1x 2 � x3 � 3x2 � 6x � 7

f1x 2 � x5 �
40
3

 x3

Exercise 5

dy

dx
� 0,



8.6 Curve sketching
Bringing together knowledge of functions, polynomials and differentiation, it is now
possible to identify all the important features of a function and hence sketch its curve.

The important features of a graph are:

8  Differential Calculus 1– Introduction
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Oblique asymptotes
In Chapter 3 we met horizontal asymptotes. These occur where This is also
true for oblique asymptotes.

Consider the function 

It is clear that as the becomes negligible and so 

Hence is a horizontal asymptote for this function.y � 2

y S 2.
3

x � 1
x S ;q,

y � 2 �
3

x � 1
.

x S ;q.

y

O

2

1�1 x

Now consider the function 

In a similar way, the fractional part tends to zero as and so

This means that is an oblique asymptote (also known as a 
slant asymptote).

y � 2x � 1y S 2x � 1.

x S ;q¢ 5
3x � 2

≤
y � 2x � 1 �

5
3x � 2

.

1. Find the vertical asymptotes (where the function is not defined).
2. If it is an improper rational function (degree of numerator degree of

denominator), divide algebraically to produce a proper rational function.

3. Consider what happens for very large positive and negative values of x. This will
provide horizontal and oblique asymptotes.

4. Find the  intercepts with the axes.
These are when and 

5. Find the stationary points and points of inflexion (and their nature).

Determine when and when 

6. Sketch the curve, ensuring that all of the above important points are annotated
on the graph.

d2y

dx2 � 0.
dy

dx
� 0

y � 0.x � 0

�

Method for sketching a function

• Vertical asymptotes (where the function is not defined)
This is usually when the denominator is zero.

• Intercepts
These are when and 

• Stationary points and points of inflexion

Determine when and when 

• Behaviour as
This provides horizontal and oblique asymptotes.

x S ;q

d2y

dx2 � 0.
dy

dx
� 0

y � 0.x � 0

ii

iii

Make a general statement about quadratic functions.

2 Find the points of inflexion for the following functions and determine whether

they are stationary.

a

b

c

d

Make a general statement about cubic functions.

3 Find the points of inflexion for the following functions and determine whether

they are stationary.

a

b

c

d

4 Find the equation of the tangent to at the point of 

inflexion.

5 For the graph of find the distance between the

point of inflexion and the root.

y � 2x3 � 12x2 � 5x � 3,

y � x3 � 9x2 � 6x � 9

y � x4 � 3

f1x 2 � x5 � 3x4 � 5x3

y � 3x4 � 5x3 � 3x2 � 7x � 3

f1x 2 � x4 � 6x2 � 8

f1x 2 � ax3 � bx2 � cx � d

y � �x3 � 6x2 � 8x � 3

f1x 2 � x3 � 3x2 � 7

y � 4x3

f1x 2 � ax2 � bx � c

y � 5x2 � 9

Example

Find the asymptotes of 

Clearly the function is not defined at and so this is a vertical asymptote.x � 4

y �
�2x2 � 7x � 1

x � 4
.

� 61
�15x � 60
�15x � 1

� 2x2� 8x

1x � 4 2 2 � 2x2� 7x � 1

� 2x � 15

With the exception of oblique asymptotes, all of the necessary concepts have been met
in this chapter, and in Chapters 1, 2, 3 and 4.

Dividing,
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y

O 4 x

Example

Sketch the graph of identifying all asymptotes, intercepts, stationary

points, and non-horizontal points of inflexion.

There is a vertical asymptote at 

This gives 

So is an oblique asymptote.

Putting and gives an intercept at (0 ,0). There are no other roots.

Preparing for differentiation, 

Differentiating, 

Stationary when i.e. when 

Substituting into the original function provides the coordinates (0 , 0) and

For the nature of these stationary points,

1�2, �4 2 .

 1 x � �2 or x � 0

 1 x � 1 � �1 or x � 1 � 1

1
1x � 1 22

� 1
dy

dx
� 0,

dy

dx
� 1 � 1x � 1 2�2

� x � 1 � 1x � 1 2�1

y � x � 1 �
1

x � 1

y � 0x � 0

y � x � 1

y � x � 1 �
1

x � 1
.

x � �1

y �
x2

x � 1
,

so (0, 0) is a local minimum turning point.

is a local maximum point.

As there are no non-horizontal points of inflexion.
d2y

dx2 �
2

1x � 1 23
� 0 ∀x H �,

 At x � �2, 
d2y

dx2 � �2 6 0 so 1�2, �4 2

 At x � 0, 
d2y

dx2 � 2 7 0

 
d2y

dx2 � 21x � 1 2�3 �
2

1x � 1 23

y

O�1 x

y � x � 1

(�2, �4)

All of these features can be checked using a graphing calculator, if it is available. In some
cases, an examination question may expect the use of a graphing calculator to find some
of these important points, particularly stationary points.

For example, the calculator provides this graph for the above function:

Hence and so as 

Therefore is an oblique asymptote.

This is clear from the graph:

y � �2x � 15

x S ;q, y S �2x � 15.y � �2x � 15 �
61

x � 4
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1

x2 � x

1x � 1 2  2  
x � 1

In fact, it is possible to be asked to sketch a graph that would be difficult without use of
the calculator. Consider the next example.

Example

In order to graph this function using a calculator, we need to rearrange into a

x2

9
�

y2

4
� 36

y � form.

x2

9
�

y2

4
� 36

x2

�x �1
� x

Dividing,

The notation ∀ means “for
all”. So ∀ means for
all real values of x.

x H �,



Find all asymptotes (vertical and non-vertical) for these functions.

1 2 3

4 5 6

7 8

9 10

11 12

Sketch the graphs of these functions, including asymptotes, stationary points
and intercepts.

13 14 15 y �
x

x � 4
y �

x � 1
x1x � 1 2

y �
x � 1
x � 1

y �
4x3 � 9

x2 � x � 6
y �

3x2 � 8
x2 � 9

f1x 2 �
x2 � 6
x2 � 1

y �
5x

1x � 1 2 1x � 4 2

y �
x3 � 4x
x2 � 1

f1x 2 �
x3 � 2x2 � 3x � 5

x2 � 4

y �
2x2 � 3x � 5

x � 3
f1x 2 �

x2 � 1
x � 2

f1x 2 �
x � 3
x � 2

y �
x2 � 5

x
y �

x
x � 3

y �
2
x
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Clearly this function is not defined for a large section (in fact ).

The oblique asymptotes are not immediately obvious. Rearranging the equation

to give makes it clearer.

As 

1 y S ; 
2
3

 x

x S ;q,  

y

x
S ;

2
3

y

x
� ;

B

4
9

�
144
x2

�18 6 x 6 18

Exercise 6

8.7 Sketching the graph of the derived
function

Given the graph of the original function it is sometimes useful to consider the graph of
its derivative. For example, non-horizontal points of inflexion now become obvious from
the graph of the derived function, since they become stationary points. Horizontal
points of inflexion are already stationary.

If the original function is known, then it is straightforward to sketch the graph of the
derived function. This can be done by:

a) finding the derivative and sketching it

b) using a graphing calculator to sketch the derived function.

1 y � ;

C

4x2

9
� 144

1 y2 �
4x2

9
� 144

1

y2

4
�

x2

9
� 36
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16 17 18

19 20

21 22
x2

16
�

y2

9
� 25y �

4
x2 � 2

y �
1

x2 � x � 12
y �
12x � 5 2 1x � 4 2

1x � 2 2 1x � 3 2

y �
x2

1 � x
y �

x
x2 � 1

y �
2x2

x � 1

Example

Sketch the derivative of y � x3 � 6x2 � 3x � 5.

y

x

y

xO

Using method a)

Differentiating gives 
dy

dx
� 3x2 � 12x � 3
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Using method b)

These methods are possible only if the function is known.

If the function is not known, the gradient of the graph needs to be examined.

Example

Sketch the graph of the derivative of this graph.

y

x

(�1, 1)

(2, �4)

y

x

(�1, 1)

(2, �4)

�1 2

Note where the graph is increasing, stationary and decreasing. Stationary points

on the original graph become roots of the derived function increasing

regions are above the x-axis and decreasing regions are below the 

x-axis So the graph becomes¢dy

dx
6 0≤.

¢dy

dx
7 0≤,

¢dy

dx
� 0≤,

We can consider this process in reverse, and draw a possible graph of the original
function, given the graph of the derived function. In order to do this note that:

Example

Given this graph of the derived function sketch a possible graph of
the original function y � f1x 2 .

y � f¿ 1x 2 ,

5 x

y

1

y � f 	(x)

–3

1. roots of the derived function are stationary points on the original graph
2. stationary points on the derived function graph are points of inflexion on the

original graph.

8  Differential Calculus 1– Introduction

With polynomial functions,
the degree of a derived
function is always one less
than the original function.

We cannot determine 
the y-values of the points
on the curve but we can
be certain of the shape 
of it. This will be covered
in further detail in
Chapter 14.

We can see that there are roots on this graph and hence stationary points on
the original at and 
It is helpful to consider the gradient of the original to be able to draw a curve.

x � 5.x � �3, x � 1,

So a possible graph of the original function isy � f1x 2

1O 5 x

y

�3

1 5

0 0 0 ����f– 1x 2

SSS�3Sx �

Sketching the reciprocal function

Sometimes we are asked to sketch the graph of a reciprocal function, i.e. 

If f(x) is known and a calculator is used, this is easy. However, if it is not known, then we
need to consider the following points.

1
f1x 2

.



This is the standard way of drawing the curves of and y � cot x.y � sec x, y � csc x
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We will now demonstrate this by example.

Example

If draw 
1

f1x 2
.f1x 2 � sin x, 0 � x � 2p

1

O

y � sin x

x

y

2


�1

y � csc x

x

y

2
�1

1
O

Example

For the following graph of draw the graph of y �
1

f1x 2
.y � f1x 2 ,

–4 2

(–2, –6)

(1, 1)

O x

y y � f(x)

�4 2

(�2, 6)

(1,�1)

x

y

Exercise 7

1 Sketch the graph of the derived function of the following:

a b c

d e f

g h i y �
1
4

 x4y �
1
3

 x3 � 2x2 � 3x � 8y � x3

y � x2 � x � 7y � �4x2y � x2

y � 4y � �xy � 4x

1. At Hence roots on the original graph become vertical 

asymptotes on the reciprocal graph.

2. At a vertical asymptote, Hence vertical asymptotes on f(x)

become roots on the reciprocal graph.

3. Maximum turning points become minimum turning points and minimum turning
points become maximum turning points. The x-value of the turning point stays
the same but the y-value is reciprocated.

4. If f(x) is above the x-axis, is also above the x-axis, and if f(x) is below the

x-axis, is also below the x-axis.
1

f1x 2

1
f1x 2

f1x 2 S q 1

1
f1x 2

� 0.

f1x 2 � 0, 
1

f1x 2
S q.

2 Sketch the graph of the derived function of the following:

a b

(1, 3)

Lineary

xO O

(4, 8) Quadratic
y

x

6

Quadraticy

O x

O x

(2, �4)

�1

y Cubic

Cubic

5

(1, 4)

y

x x
(1, 1)

(4, 5) Cubic

Cubic

O

(a, b)

(c, d)

y

x O

(–1, 1)

x

y

(6, 1)

(3, 7)
Quartic

c d

e f

g h



3 Sketch a possible graph of the original function given the derived
function graph in each case.

a b

y � f¿ 1x 2
y � f1x 2 ,
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O

Quartic

(2, 3)

(�2, �4)

y

x

(�1, 3)

1

(6, �4)

x

y
(3, 7)

Fifth degreei j

�1

y

xO
�2

y

xO

�1 7 x

y

(3, 4)

O
61�5 x

y

O

�3

2

O

y

x O�2 4

y

(1, �6)

x

O 2 x

y

O–3 3 x

y

c d

4 For the following functions, draw the graph of 

a b

c d

e f

g h

5 For the following graphs of sketch the graph of the reciprocal

function 

a b 

y �
1

f1x 2
.

y � f1x 2 ,

f1x 2 �
6

1x � 3 2
f1x 2 � cos x, 0 � x � 2p

f1x 2 � ln xf1x 2 � ex

f1x 2 � 2x3 � 15x2 � 24x � 16f1x 2 � x3 � 2x2 � 5x � 6

f1x 2 � 1x � 2 22f1x 2 � 2x � 1

1
f1x 2

c d 

e f

O x

y

(4, 1)

(–3, 4)

(–1, 7)

O x

y

(3, 8)

(�1, 5)

7�2

Review exercise

1 Differentiate using first principles.

2 For find .

3 Given that find .

4 A function is defined as Find values of x for which the

function is increasing.

5 Given that and find Hence

find 

6 Find the positive value of x for which the gradient of the tangent is for

Hence find the equation of the tangent at this point.

7 Sketch the graph of the derivative for the graph below.

y � 6x � x3.

�6

h¿ 1x 2 .

h1x 2 � f1g1x 2 2 .g1x 2 � 3x � 2,f1x 2 � 5x2 � 1

f1x 2 � 2x � 3 �
64
x2 .

dy

dx
y �

3x � x9

21x
,

f¿ 14 2f1x 2 � 1x �
2
x2,

f1x 2 � x3 � 4x � 5

(–1, 2)

(2, 7)

3

O 6 x

y

�2

1

4

7

C

M

0
=

+

2

5

8

CE
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6
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÷
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8 Find the stationary points of and investigate their

nature.

9 Find the equation of the tangent to at and find the

equation of the normal to at Find the point where

these lines cross.

10 Sketch the graph of including all asymptotes, stationary

points and intercepts.

11 Find the equations of all the asymptotes of the graph of 

[IB Nov 02 p1 Q4]

12 The line is a tangent to the curve at

the point (1, 7). Find the values of a and b. [IB Nov 01 p1 Q7]

13 For the following graphs of draw the graphs of 

a b

y �
1

f1x 2
.y � f1x 2 ,

y � 2x3 � ax2 � bx � 9y � 16x � 9

y �
x2 � 5x � 4
x2 � 5x � 4

y �
x3

x2 � x � 6
,

x � �1.y � 9 � x2

x � �1y � x5 � 3

y � 14x � 1 2 12x2 � 2 2

–3 O

y

x

(–2, 4)

(1, –7)

4

O�4

(3, 7)

(1, 3)
1

y

x

1

4

7

C
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=
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9 Differentiation 2 – Further
Techniques

Leonhard Euler is considered
to be one of the most
important mathematicians of
all time. He was born on 15
April 1707 in Basel,
Switzerland, and died on 18
September 1783 in St
Petersburg, Russia, although
he spent much of his life in
Berlin. Euler’s mathematical
discoveries are in many
branches of mathematics
including number theory,
geometry, trigonometry,
mechanics, calculus and
analysis. Some of the 
best-known notation was
created by Euler including the
notation f(x) for a function, e
for the base of natural logs, i
for the square root of 
for pi, for summation and
many others. Euler enjoyed his
work immensely, writing in
1741, “The King calls me his
professor, and I think I am the
happiest man in the world.”
Even on his dying day he
continued to enjoy

©

�1, p

mathematics, giving a mathematics lesson to his grandchildren and doing some work on
the motion of ballons.

In Chapter 8, the basic concepts of differentiation were covered. However, the only functions
that we differentiated all reduced to functions of the form In this
chapter, we will meet and use further techniques to differentiate other functions. These
include trigonometric, exponential and logarithmic functions, functions that are given
implicitly, and functions that are the product or quotient of two (or more) functions.

y � axn � p � k.



It is clear that, as 

Now we can use differentiation by first principles to find the derivative of 

So using the above results.

Hence 

Therefore if 

What about the derivative of cos x?

Examining the graph of the derived function using the calculator, this would appear 
to be �sin x.

f1x 2 � sin x, f¿ 1x 2 � cos x.

lim
hS0

 

f1x � h 2 � f1x 2

h
� cos x

lim
hS0

 

f1x � h 2 � f1x 2

h
� 0 � cos x

 
f1x � h 2 � f1x 2

h
�

sin x1cos h � 1 2

h
�

cos x sin h
h

 � sin x1cos h � 1 2 � cos x sin h

 � sin x cos h � cos x sin h � sin x

 f1x � h 2 � f1x 2 � sin1x � h 2 � sin x

f1x � h 2 � sin1x � h 2

f1x 2 � sin x.

h S 0, 
cos h � 1

h
S 0.
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9.1 Differentiating trigonometric functions
What is the derivative of sin x?
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Using our knowledge of sketching the derived function, we know that the graph must
be of this form:

We can use a calculator to draw the derivative graph as above.

This graph looks very much like the cosine function. We now need to see if it is.

In order to prove this, there are two results that need to be investigated. First, we need

to consider what happens to for small values of h. The calculator can be used to

investigate this:

sin h
h

It is clear that, as 

Second, we also need to investigate for small values of h.
cos h � 1

h

h S 0, 
sin h

h
S 1.

When dealing with trigonometric
functions it is vital that radians
are used. This is because of the
results that we investigated
above.

In degrees, as

seen below.

lim
hS0

 

sin h
h

�� 11

So in degrees, the derivative of 
sin x is not cos x.

Therefore, for calculus, we must
always use radians.

Again, we can use using differentiation by first principles to find the derivative of 

So using the previous results.

Hence 

Therefore if f1x 2 � cos x, f¿ 1x 2 � �sin x.

lim
hS0

 

f1x � h 2 � f1x 2

h
� �sin x

lim
hS0

 

f1x � h 2 � f1x 2

h
� 0 � sin x

 
f1x � h 2 � f1x 2

h
�

cos x1cos h � 1 2

h
�

sin x sin h
h

 � cos x1cos h � 1 2 � sin x sin h

 � cos x cos h � sin x sin h � cos x

 f1x � h 2 � f1x 2 � cos1x � h 2 � cos x

f1x � h 2 � cos1x � h 2

f1x 2 � cos x.



9.2 Differentiating functions of functions
(chain rule)
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Summarizing:
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dy

dx
� �sin x

dy

dx
� cos x

y � cos xy � sin x

It is clear that these are connected (as the two functions themselves are). Starting with
sin x, repeated differentiation gives cos x, and then back to sin x. This
cycle can be remembered by

We now have the derivatives of two of the six trigonometric functions. The other four

functions are all defined in terms of sin x and cos x (remembering ) and so

this information provides the derivatives of the other four functions.

Proofs of these require the use of rules that have not yet been covered, and hence these
are to be found later in the chapter. However, the results are shown below.

tan x �
sin x
cos x

Differentiate    

S
C

�  S
�C

�sin x, �cos x

dy

dx
� �csc2 x

dy

dx
� sec x tan x

dy

dx
� �csc x cot x

dy

dx
� sec2 x

y � cot xy � sec xy � csc xy � tan x

Example

Find the derivative of 
dy

dx
� �sin x � sec x tan x

y � cos x � sec x.

Example

Find the derivative of 
dy

dx
� 8 cos x

y � 8 sin x.

Exercise  1

Find the derivative of each of these.

1 2

3 4
5 6

7 8 y � 7x � 5 sin x � sec xy � 9x2 � 4 cos x

y � �3 sec xy � 7 cot x
y � 5 cos xy � sin x � 6x2

y � sin x � csc xy � tan x � 3

We can consider this as
differentiating the bracket to
the power n and then
multiplying by the derivative
of the bracket.

This is not due to cancelling!

This is where y is a function of a function. This means that we can consider y as a function
of u and u as a function of x.

Proof
Consider where 

If is a small increase in x, then we can consider and as the corresponding
increases in u and y.

Then, as and also tend to zero.

We know from Chapter 8 that 

So 

The use of this rule is made clear in the following examples.

dy

dx
�

dy

du
#
du
dx

 � lim
duS0
¢dy
du
≤ # lim
dxS0
¢du
dx
≤

 � lim
dxS0
¢dy
du
≤ # lim
dxS0
¢du
dx
≤

 � lim
dxS0
¢dy
du

#
du
dx
≤

 
dy

dx
� lim
dxS0
¢dy
dx
≤

dydudx S 0,

dydudx

u � f1x 2 .y � g1u 2

dy

dx
�

dy

du
#
du
dx

The chain rule is a very useful and important rule for differentiation. This allows us to
differentiate composite functions. First consider 

Investigation
Consider these functions:

1 2 3

4 5 6

Using knowledge of the binomial theorem and differentiation, find the derivatives of the
above functions. Factorise the answers.

You should have noticed a pattern that will allow us to take a “shortcut”, which we
always use, when differentiating this type of function.

This is that for functions of the form 

This is a specific case of a more general rule, known as the chain rule, which can be
stated as:

dy

dx
� an1ax � b 2n�1

y � 1ax � b 2n,

y � 14 � x 23y � 14 � x 22y � 13x � 2 25
y � 13x � 2 24y � 12x � 1 23y � 12x � 1 22

y � 1ax � b 2n.



This is the formal version of the working for chain rule problems. In practice, the
substitution is often implied, as shown in the following examples. However, it is
important to be able to use the formal substitution, both for more difficult chain rule
examples and as a skill for further techniques in calculus.
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We will now apply the chain rule to other cases of a function of a function.
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Example

Differentiate 

Let and 

Then and 

Hence 

Substituting back for x gives
dy

dx
� 1213x � 4 23.

dy

dx
� 4u3 # 3 � 12u3.

du
dx

� 3.
dy

du
� 4u3

y � u4.u � 3x � 4

y � 13x � 4 24.

Example

Differentiate 

Let and 

Then and 

Hence 

Substituting back for x gives
dy

dx
� �1415 � 2x 26.

dy

dx
� 7u6 # �2 � �14u6.

du
dx

� �2.
dy

du
� 7u6

y � u7.u � 5 � 2x

y � 15 � 2x 27.

Example

Differentiate 

Let and 

Then and 

Hence 

Substituting back for x gives
dy

dx
� 4 cos 4x.

dy

dx
� 4 cos u.

du
dx

� 4.
dy

du
� cos u

y � sin u.u � 4x

y � sin 4x.

Example

Differentiate 

Remember that this means 
Here there is more than one composition and so the chain rule must be extended
to:

Let and and y � u2.u � cos vv � 3x

dy

dx
�

dy

du
#
du
dv

#
dv
dx

y � 1cos 3x 22.

y � cos213x 2 .

Then and 

Hence 

Substituting back for x gives 
dy

dx
� �6 cos 3x sin 3x.

dy

dx
� �6u sin v.

dv
dx

� 3.
dy

du
� 2u, 

du
dv

� �sin v

Example

 � �3617 � 3x 25 � 2 sec2 2x

 f¿ 1x 2 � 1217 � 3x 25 # 1�3 2 � 2 sec2 2x

 f1x 2 � 217 � 3x 26 � tan 2x

This working is sufficient and
is what is usually done.

Example

 � 6x sec213x2 � 4 2 �
2

12x � 1 2
3
2

 f¿ 1x 2 � 3sec213x2 � 4 2 # 6x 4 � B2 # �
1
2

 12x � 1 2� 
3
2 # 2R

 f1x 2 � tan13x2 � 4 2 �
2

22x � 1
� tan13x2 � 4 2 � 212x � 1 2� 

1
2

Exercise  2

Differentiate the following:

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21 y � sec 9xy � tan 6xy � �sin 

1
2

 x

y � cos 3xy � sin 4xN �
5

218 � 5p 23

P �
3

14 � 3k 22
f1x 2 �

7
3 � 8x

f1x 2 �
4

5x � 4

y �
1

23x � 2
y � 326x � 5y � 12x � 9 2

5
3

y � 13x � 8 2
1
2y � 412x � 3 26y � 19 � 4x 25

f1x 2 � 17 � 2x 24f1x 2 � 15 � x 23f1x 2 � 15x � 2 24

f1x 2 � 13x � 4 22f1x 2 � 12x � 3 22f1x 2 � 1x � 4 22



During the study of exponential functions in Chapter 5, we met the natural exponential
function, The significance of this function becomes clearer now: the derivative
of is itself.ex

y � ex.
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22 23

24 25 26

27 28

29 30

9.3 Differentiating exponential and
logarithmic functions

Investigation
Draw graphs of: (a) (b) (c) (d) 

For each graph, draw the derivative graph, using a graphing calculator.

You should notice that the derivative graph is of a similar form to the original, that is, it
is an exponential graph.

For the derivative graph is just above the original.y � 3x,

y � 2xy � 3xy � 5xy � 10x

y � tan12x � 1 2y � cos ¢3x �
p

4
≤

y �
2

13x � 4 25
� sec212x 2y � 3x4 � cos3 x

y � tan214x 2y � sin3 xy � sin 5x �
4

213x � 4 25

y � csc 2x � 13x � 2 24y � 6x � cot 3x

9  Differentiation 2 – Further Techniques

224

For the derivative graph is below the original.y � 2x,

This suggests that there is a function for which the derivative graph is identical to the
original graph and that the base of this function lies between 2 and 3. What is this base?

This question was studied for many years by many mathematicians including Leonhard
Euler, who first used the symbol e. The answer is that this base is e. Check that 
produces its own graph for the derived function on your calculator. Remember that

is an irrational number.e � 2.71828 p

y � ex

d
dx

 1ex 2 � ex

y

x

y � ax

x�

A

B

1

Gradient of the chord 

Gradient at 

Now consider two general points on the exponential curve.

A � lim
dxS0
¢adx � 1
dx

≤

AB �
adx � 1
dx

y � ax
y

xx

1 C

D

x � x�

x�

Gradient 

Gradient at 

Hence the gradient at multiplied by the gradient at A.

But when the gradient at (this can be checked on a graphing calculator).
Gradient at 

Hence 
d
dx

 1ex 2 � ex

C � ex # 1
A � 1a � e,

C is ax

C � lim
dxS0

 

ax1adx � 1 2

dx

CD �
ax�dx � ax

x � dx � x

Below is a formal proof of this.

Proof of derivative of ex

Consider the curve y � ax.

This is another property of the
curve . At (0,1) its
gradient is 1.

y � ex



Using the results for and ln x helps us generalize so that we can find the derivatives
of any exponential or logarithmic function.

To find out how to differentiate we first consider 

Since we can rewrite this function as 

In general, 

and so 
dy

dx
� ln a # ex ln a � ln a # ax

 � ex ln a ax � 1eln a 2 x

1

dy

dx
� ln 4 # 4x

1

dy

dx
� ln 4ex ln 4

 y � ex ln 4

 y � 1eln 4 2 x.eln 4 � 4,

y � 4x.y � ax

ex
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The result for can be combined with the chain rule to create a general rule for
differentiating exponential functions.

ex
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Example

Differentiate

This can be considered as where 

Since and 

 � 5e5x

 
dy

dx
� eu # 5

dy

du
� eudu

dx
� 5

u � 5x.y � eu

y � e5x.

Example

1

dy

dx
� 2xex2�1

y � ex2�1

d
dx

 1ef 1x2 2 � f¿ 1x 2ef 1x2

This now allows us to differentiate the inverse function of known as the
natural logarithmic function

As and are inverse functions, from Chapter 5 we know that 

We can differentiate both sides of this equation (with respect to x).

This is a very important result.

 1

d
dx

 1ln x 2 �
1
x

 1

d
dx

 1ln x 2 �
1

eln x

 1 eln x #
d
dx

 1ln x 2 � 1

d
dx

 1eln x 2 �
d
dx

 1x 2

eln x � x.y � ln xy � ex

y � ln x.
y � ex,

d
dx

 1ln x 2 �
1
x

Example

Differentiate 

dy

dx
� 4 #

1
4x

�
1
x

y � ln14x 2 .

Example

Differentiate 

 � cot x

 
dy

dx
�

1
sin x

# cos x

y � ln1sin x 2 .

Example

Differentiate 

 �
3

3x � 2

 
dy

dx
�

1
3x � 2

# 3

y � ln13x � 2 2 .

If

Then

 �
f¿ 1x 2

f1x 2

 
dy

dx
�

1
f1x 2

# f¿ 1x 2

y � ln1f1x 2 2

d
dx

 1ax 2 � ln a # ax

We will now look at In this case the change of base formula will help.y � loga x.

The result for ln x can be combined with the chain rule to create this general result:

This result is particularly
important for integration in
Chapter 15.



Differentiate the following:

1 2 3

4 5 6

7 8 9

10 11. 12

13 14 15

16 17 18

19 20 21

22 23

9.4 Product rule
Using the chain rule, can be differentiated without multiplying out the

brackets first. However, this does not really help to differentiate 

without some unpleasant simplification. Equally, we cannot currently differentiate

These functions are products of two functions, and to be able to

differentiate these we need to use the product rule.

y � ex sin x.

y � 13x � 2 2 12x � 3 23
y � 12x � 3 24

y � tan1ln x 2y � ln1tan x 2

y � ln1cos x 2y � e4x � sin 2x � ln xy � 4x � log5 x

y � log8 xy � log2 xy � ln 2x � 2x

y � e3x � 3xy � 6 # 5xy � 10x

y � 4xf1x 2 � ln12x2 � 4 2f1x 2 � �2 ln 4x

f1x 2 � ln 7xf1x 2 � ln 3xf1x 2 � e2x�3

f1x 2 � ex2

f1x 2 � �
6

e9xf1x 2 �
2

e5x

f1x 2 � �e4xf1x 2 � e7xf1x 2 � e3x
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Differentiating gives us

 �
1

x ln a

 
d
dx

 1loga x 2 �
1

ln a
#
1
x

loga x �
ln x
ln a

�
1

ln a
# ln x
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d
dx

 1loga x 2 �
1

x ln a

Considering these two general results, it is clear that the results for and ln x are
actually just special cases.

ex

Example

Differentiate 

dy

dx
�

3
x ln 7

y � 3 log7 x.

Example

Differentiate 

dy

dx
� 2k ln 6 # 62x

y � k # 62x.

Example

Differentiate 

We can consider this as 

So

 �
�9

12x � 1 2 1x � 4 2

 �
21x � 4 2 � 12x � 1 2

12x � 1 2 1x � 4 2

  
dy

dx
�

2
2x � 1

�
1

x � 4

y � ln12x � 1 2 � ln1x � 4 2 .

y � ln¢2x � 1
x � 4

≤.

Exercise  3

For where u and v are functions of x,

dy

dx
� v 

du
dx

� u 

dv
dx

y � uv

Proof
Consider where u and v are functions of x.

If is a small increase in x, and and are the corresponding increases in u,
v and y, then

As 

So                

Now when 

Therefore

1

dy

dx
� u 

dv
dx

� v 

du
dx

1

dy

dx
� u 

dv
dx

� v 

du
dx

� 0

dy

dx
� lim
dxS0
¢dy
dx
≤

dx S 0, 
dy

dx
S

dy

dx
, 
du
dx

S

du
dx

, 
dv
dx

S

dv
dx

, du S 0

dy

dx
� u 

dv
dx

� v 

du
dx

� du 

dv
dx

y � uv,  dy � udv � vdu � dudv

y � dy � 1u � du 2 1v � dv 2 � uv � udv � vdu � dudv

dydvdu,dx

y � uv

This is sometimes
remembered in the shortened

form 
dy

dx
� v du � u dv

Sometimes it is useful to use laws of logarithms to assist the differentiation.



Find the derivative of each of these.

1 2 3

4 5 6

7 8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

9.5 Quotient rule
This rule is used for differentiating a quotient (one function divided by another) such as

Consider the function 

We can differentiate this using the product rule.

Let where and 

 
dy

dx
� 6x�213x � 4 2 � 2x�313x � 4 22

dv
dx

� �2x�3du
dx

� 613x � 4 2

v � x�2.u � 13x � 4 22y � uv

y �
13x � 4 22

x2   � x�213x � 4 22

y �
u
v

.

y � e3x1x � 2 22 tan xy � x2 ln x sin x

y �
3
x4 tan ¢3x �

p

2
≤y � e3x sec ¢2x �

p

4
≤

y � 4x2 ln1x2 � 2x � 5 2y � x ln12x � 3 2

y � 4x log8 xy � 12x � 1 23 csc 3x

y � e4x sec 3xy � x3 log6 x

y � 5x cos xy � 13x � 4 23 sin x

y � 15 � 2x 2313x � 4 22y � 1x � 5 2213x � 2 24

y � 1x � 2 2 12x � 1 23y � 2x313x � 2 22

y � x31x � 2 24y � x21x � 1 22y � sin 3x cos 2x

y � sin x cos xy � ln x sin xy � e3x sin x

y � 3x2exy � x3 cos xy � x2 sin x
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Example

Differentiate 

Let where 

 � 312x � 3 2218x � 1 2

 � 312x � 3 22 3213x � 2 2 � 2x � 3 4

 
dy

dx
� 13x � 2 2 # 612x � 3 22 � 312x � 3 23

 � 612x � 3 22

 
dv
dx

� 312x � 3 22 # 2
du
dx

� 3

u � 3x � 2 and v � 12x � 3 23.y � uv

y � 13x � 2 2 12x � 3 23.

There are often common
factors which can be used to
simplify the answer.

Example

Differentiate 

Let where 

 � ex1sin x � cos x 2

 
dy

dx
� ex sin x � ex cos x

dv
dx

� cos x
du
dx

� ex

u � ex and  v � sin x.y � uv

y � ex sin x.

This is the mechanics of the
solution. It is not absolutely
necessary for it to be shown as
part of the solution.

Example

Differentiate 

Let where 

 � 4x12 ln x � 1 2
 � 8x ln x � 4x

 
dy

dx
� 8x ln x � 4x2 #

1
x

dv
dx

�
1
x

du
dx

� 8x

u � 4x2 and  v � ln x.y � uv

y � 4x2 ln x.

Example

Differentiate 

This example is a product of three functions. We need to split it into two parts
and then further split the second part.

Let where 

For we need to use the product

rule again.

 � 612x � 1 22

dv
dx

 
du
dx

� 312x � 1 22 # 2

u � 12x � 1 23    and    v � e2x cos x.y � uv

y � 12x � 1 23e2x cos x.

Let where and

 � 12x � 1 22e2x 36 cos x � 12x � 1 2 12 cos x � sin x 2 4

 
dy

dx
� 612x � 1 22e2x cos x � 12x � 1 23e2x12 cos x � sin x 2

 � e2x12 cos x � sin x 2

 
dv
dx

� 2e2x cos x � e2x sin x

dg

dx
� �sin x 

df
dx

� 2e2x

g � cos xf � e2x v � fg

Exercise  4



Use the quotient rule to differentiate these.

1 2 3

4 5 6 f1x 2 �
x � 3
x � 3

f1x 2 �
ex

x � 4
f1x 2 �

ln x
4x

f1x 2 �
7x

tan x
f1x 2 �

6x2

x � 3
f1x 2 �

ex

cos x
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In this case it was reasonably easy to rearrange into a product, but that is not always so.
Generally, it is not wise to use the product rule for differentiating quotients as it often
leads to an answer that is difficult to simplify, and hence a rule for differentiating
quotients would be useful.

Consider where u and v are functions of x.

This can be written as 

Using the product rule:

This is the quotient rule:

 �

v 

du
dx

� u 

dv
dx

v2

 �
v
v2

#
du
dx

� �
u
v2

#
dv
dx

 
dy

dx
�

1
v

#
du
dx

� u # �
1
v2

#
dv
dx

 � �
1
v2

#
dv
dx

 
d
dx

 ¢1
v
≤ � �v�2 #

d
dx

 1v 2

y � u #
1
v

.

y �
u
v

 �
813x � 4 2

x3

 � 2x�313x � 4 2 14 2

 � 2x�313x � 4 2 33x � 13x � 4 2 4
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This is a slightly different
application of the chain rule.

dy

dx
�

v 

du
dx

� u 

dv
dx

v2

This is often remembered as

The numerator of the quotient
rule is very similar to the
product rule but the sign is
different.

dy

dx
�

v du � u dv
v2

Example

Differentiate using the quotient rule.

Let 

So 

 �
2x13x � 4 2 33x � 13x � 4 2 4

x4

 
dy

dx
�

6x213x � 4 2 � 2x13x � 4 22

x4

du
dx

� 613x � 4 2          
dv
dx

� 2x

u � 13x � 4 22                 v � x2                  v2 � x4

y �
13x � 4 22

x2

Once again, this is the
mechanics of the solution and
so does not necessarily need
to be shown.

 �
813x � 4 2

x3

 �
213x � 4 2 14 2

x3

Example

Differentiate 

Let  

So

 �
e2x12 sin x � cos x 2

sin2 x

 
dy

dx
�

2e2x sin x � e2x cos x
sin2 x

 
du
dx

� 2e2x      
dv
dx

� cos x

u � e2x               v � sin x          v2 � sin2 x

y �
e2x

sin x
.

Example

Differentiate 

Let 

So 

 �
2x � 5 � 6x ln x

x12x � 5 24

 �

1
x

 12x � 5 2 � 6 ln x

12x � 5 24

 
dy

dx
�

1
x

 12x � 5 23 � 6 ln x12x � 5 22

12x � 5 26

du
dx

�
1
x

            
dv
dx

� 612x � 5 22

u � ln x           v � 12x � 5 23             v2 � 12x � 5 26

y �
ln x

12x � 5 23
.

Exercise  5
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7 8 9

10 11 12

13 14 15

16 17 18

19

20 Use the quotient rule to prove the results for tan x, csc x, sec x and cot x. You need

to remember that 

9.6 Implicit differentiation
This is the differentiation of functions that are stated implicitly. Until now we have
mostly considered functions that are stated explicitly, that is, 

Functions defined implicitly have equations that are not in the form Some of

these equations are easily made explicit (such as ) but others are more

difficult to rearrange. Some of these implicit equations may be familiar, such as the circle

equation Differentiating implicit functions does not require

any further mathematical techniques than those covered so far. The key concept utilized

in implicit differentiation is the chain rule.

1x � 4 22 � 1y � 3 22 � 36.

2x � 3y � 5

y � p

y � p

tan x �
sin x
cos x

.

y �

cot ¢2x �
p

3
≤

ln13x � 1 2

y �

sec ¢x �
p

4
≤

e2xy �
x2e3x

1x � 5 22
y �

x sin x
ex

y �
413x � 2 25

12x � 3 23
y �

sin 2x
e6xy �

ex

ex � e�x

y �
ln x

ln1x � 4 2
y �

log6 x

x � 6
y �

e3x

9x2

f1x 2 �
2x

2x � 1
f1x 2 �

4x

1x
f1x 2 �

2x � 9
x2
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Also consider how you could
have proved these two results
using only the chain rule.

1. Differentiate each term, applying the chain rule to functions of the variable.

2. Rearrange the answer to the form
dy

dx
.

Example

Find and for 

Differentiating with respect to x:

 1 2y 

dy

dx
� �6x

6x � 2y 

dy

dx
� 0

3x2 � y2 � 7
d2y

dx2

dy

dx

It is possible to rearrange this
function to an explicit form.
However, unless you are told
otherwise, it is often better to
leave it in this form and
differentiate implicitly.

We can now find the second derivative by differentiating this again. 

Using the quotient rule:

We would usually leave the answer in this form. However, if we wanted as
a function of x, we could proceed as follows:

 �
� 21

17 � 3x2 2
3
2

 �
�317 � 3x2 2 � 9x2

17 � 3x2 2
3
2

d2y

dx2

d2y

dx2

 �
�3y2 � 9x2

y3

 �

�3y �
9x2

y
y2

 �

�3y � 3x ¢�3x
y
≤

y2

d2y

dx2 �

�3y � 3x 

dy

dx
y2

� �
3x
y

 1

dy

dx

Method for implicit differentiation

We know that

1 y2 � 7 � 3x2

3x2 � y2 � 7

In a case like this it is important

to be able to explicitly state

so that the second

derivative can be found, but this

is not always the situation.

dy

dx
� ...

Example

Find for 

Differentiating with respect to x:

 1

dy

dx
�

2 cos x
e3xy2 � y

 1 y �
dy

dx
�

2 cos x
e3xy2

 1 3e3xy2¢y �
dy

dx
≤ � 6 cos x

6 cos x � ¢3e3xy3 � e3x3y2
 

dy

dx
≤ � 0

6 sin x � e3xy3 � 9.
dy

dx

Use the product rule to
differentiate .e3xy3

Applying the chain rule gives

d
dx

 1y2 2 � 2y #
dy

dx
.

Note that the answer contains
both x and y.



Some questions will require the second derivative to be found, and a result to be

shown to be true that involves and y. In the examples so far we have found

and then differentiated this again with respect to x to find With other

questions, it is best to leave the result as an implicit function and differentiate for a

second time, implicitly. The following two examples demonstrate this.

d2y

dx2.
dy

dx
� ...

d2y

dx2, 
dy

dx

237
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Example

Find for 

Differentiating with respect to p:

 1

dQ
dp

�
1p � 3 22

2p
�
p

2
 1p � 3 22 cos pp �

2Q
 p � 3

 1 2 

dQ
dp

�
1p � 3 22

p
� p1p � 3 22 cos pp �

4Q
p � 3

 1

2 

dQ
dp

1p � 3 22
�

1
p

� p cos pp �
4Q

1p � 3 23

 1

2 

dQ
dp

1p � 3 22
�

4Q
1p � 3 23

�
1
p

� p cos pp

 1

2 

dQ
dp

 1p � 3 22 � 4Q1p � 3 2

1p � 3 24
�

1
p

� p cos pp

p cos pp �

2 

dQ
dp

 1p � 3 22 � 21p � 3 2 # 2Q

1p � 3 24
�

1
p

sin pp �
2Q

1p � 3 22
� ln p.

dQ
dp

Example

Find the equations of the tangents to when 

Differentiating with respect to x:

To find we now require the y-coordinates. So, from the formula

when we find

At (2, 3) At (2 , 9)

 � 18 � �6

 �
�108

�6
 �

�36
6

 
dy

dx
�

�6 # 2 # 9
12 � 18

 
dy

dx
�

�6 # 2 # 3
12 � 6

 1 y � 3, y � 9

 1 1y � 3 2 1y � 9 2 � 0

 1 y2 � 12y � 27 � 0

12y � y2 � 27

x � 2,3x2y � y2 � 27,

dy

dx

 1

dy

dx
�

�6xy

3x2 � 2y

 1

dy

dx
 13x2 � 2y 2 � �6xy

6xy � 3x2
 

dy

dx
� 2y 

dy

dx
� 0

x � 2.3x2y � y2 � 27

So the equation of the tangent is So the equation of the tangent is

 1 y � 18x � 27 1 y � �6x � 15

 y � 9 � 181x � 2 2 y � 3 � �61x � 2 2
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Example

Show that for 

Differentiating with respect to x:

Differentiating again with respect to x:

1 x2
 

d2y

dx2 � 4x 

dy

dx
� 2y � �

1
x

2y � 2x 

dy

dx
� 2x 

dy

dx
� x2

 

d2y

dx2 �
1
x

� 0

 1 2xy � x2
 

dy

dx
� ln x � 1 � 6

 2xy � x2
 

dy

dx
� ln x �

1
x

# x � 6

x2y � x ln x � 6x.x2
 

d2y

dx2 � 4x 

dy

dx
� 2y � �

1
x

Example

Given that show that 

Differentiating with respect to x:

Differentiating again with respect to x:

From the original function, 

So we have exy � ex
 

dy

dx
� ex

 

dy

dx
� ex

 

d2y

dx2 � �exy

�cos x � �exy

exy � ex
 

dy

dx
� ex

 

dy

dx
� ex

 

d2y

dx2 � �cos x

exy � ex
 

dy

dx
� �sin x

2y � 2 

dy

dx
�

d2y

dx2 � 0.exy � cos x,



This is because 

 1 cos y � 21 � x2

 1 cos2 y � 1 � x2
1

dy

dx
�

1

21 � x2

 1 1 � cos2 y � x2
1

dy

dx
�

1
cos y

 1 sin2 y � x2sin y � x
1 � cos y #

dy

dx
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1 Find for:

a b c

d e f

g h i

j k

2 Find and for:

a b c

3 For the function defined implicitly by find the equations

of the tangents at 

4 Show that for 

5 Given that show that 

6 Show that for 

7 Given that show that 

9.7 Differentiating inverse trigonometric
functions
In order to find the derivative of (or arcsin x), we apply implicit differentiation.

Consider 

Differentiating with respect to x:

1 x � sin y

y � sin�1 x

sin�1 x

x2e2x¢4y � 4 

dy

dx
�

d2y

dx2≤ � �1.e2xy � ln x,

xy � ln x.x3
 

d2y

dx2 � x2
 

dy

dx
� xy � �2

x2
 

d2y

dx2 � 2x 

dy

dx
� x2y � 0.xy � sin x,

exy � sin x.2y �
dy

dx
�

d2y

dx2 � 0

x � 1.

x4 � 2xy � y2 � 4,

xey � 84xy � sin x � y4y � 3y2 � x2

d2y

dx2

dy

dx

1x � y 24

y
� 8x � ex1x � y 23 � ey

x4 � y ln yy � cos1x � y 2e2xy3 � 9 � sin 3x

ey � 1x � y 22xy � y2 � 71x � 3 2 1y � 2 2 � ln x

y3 � 1x � 04x2 � y2 � 9x3 � xy � 4

dy

dx

238

Dividing by (since ):

1 2y � 2 

dy

dx
�

d2y

dx2 � 0

ex � 0 ∀ x H �ex

 1 2exy � 2ex
 

dy

dx
� ex

 

d2y

dx2 � 0

 1 exy � 2ex
 

dy

dx
� ex

 

d2y

dx2 � �exy
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Exercise  6 For 
dy

dx
�

1

21 � x2
y � sin�1 x

We can now consider 

Differentiating with respect to x:

 �
1

2a2 � x2

 �
2a2

a2a2 � x2

 1

dy

dx
�

1

a
C

1 �
x2

a2

1

dy

dx
�

1
a cos y

1 � a cos y 

dy

dx

 1 x � a sin y

 1

x
a

� sin y

y � sin�1¢x
a
≤

For 
d
dx

�
1

2a2 � x2
y � sin�1 a

x
a
b

Similarly can be obtained for and 

For 

For 

Now consider 

1 x � tan y

y � tan�11x 2

y � cos�1 a
x
a
b      

dy

dx
�

�1

2a2 � x2

y � cos�1 x           
dy

dx
�

�1

21 � x2

y � cos�1¢x
a
≤.y � cos�11x 2

dy

dx

This is because 

 1 1 � cos2 y �
x2

a2

 1 1 � cos2 y �
x2

a2
sin y �

x
a



We could also consider these examples to be applications of the chain rule. This may be
easier and shorter (but both methods are perfectly valid). This is demonstrated below.

In some cases it is not possible to use the stated results, and the chain rule must be
applied.

 �
4

21 � 16x2

 Then 
dy

dx
�

1

21 � 14x 22
#4

y � sin�114x 2

9  Differentiation 2 – Further Techniques

241

Differentiating with respect to x:

1

dy

dx
�

1
x2 � 1

1

dy

dx
�

1
sec2 y

1 � sec2 y #
dy

dx
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For y � tan�1x       
dy

dx
�

1

1 � x
2

A similar result can be found for tan�1¢x
a
≤.

For 
dy

dx
�

a
a2 � x2y � tan�1¢x

a
≤

Example

Differentiate 

 
dy

dx
�

�1

29 � x2

y � cos�1¢x
3
≤.

Example

Differentiate 

 �
4

21 � 16x2

 �
1

B

1
16

 21 � 16x2

 
dy

dx
�

1

B

1
16

� x2

y � sin�114x 2 .

Example

Differentiate 

Here we must use the chain rule.

 �
1

21x11 � x 2

 
dy

dx
�

1
1 � 11x 22

#
1
2

 x� 
1
2

y � tan�11x.

Differentiate the following functions.

1

2

3

4

5

6

7

8

9 y � sin�11ln 5x 2

y � tan�112x � 1 2

y � cos�12x � 4

y � tan�1¢ex

2
≤

y � cos�113x 2

y � sin�1¢2x
3
≤

y � tan�1¢ x
10
≤

y � cos�1¢x
8
≤

y � sin�1¢x
5
≤

Exercise  7

Remember that

So 

 � x2 � 1

 sec2 y � tan2 y � 1

sec2 x � tan2 x � 1

In this case a �
1
4

.



Differentiate the following functions using the appropriate techniques and results.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 Find for 

18 Find for 19 Find for 

20 Find for 

9.9 Further differentiation problems
The techniques covered in this chapter can also be combined to solve differentiation
problems of various types, including equations of tangents and normals, and stationary
points. Problems of this type are given in Exercise 9.

x4y3 � y sin x � 2.
dy

dx

x2y � exy2 � 9.
dy

dx
f1x 2 �

1
x

 tan�1¢x
4
≤.f¿ 14 2

f1x 2 �
x31x � 7 22

12x � 1 23
.f¿ 12 2y �

ln1cot x 2

ex

y � x sin x ln xf1x 2 �
cos�1 x

3x2y � 6 sin�1 2x

y � 3 cos 2x sin 4xf1x 2 �
x2 ln x
x � 9

y �
log2 x

1x � 4 23

f1x 2 � 3x sin xy �
x sin x

e4xf1x 2 �
sin 3x

ex

y � x2 ln xf1x 2 � x3e�4xy � sec x � e5x

f1x 2 � cos 8x � 29xy � 12x � 7 23f1x 2 � x2 � 5x � 9
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9.8 Summary of standard results
This chapter has covered a variety of techniques including the chain rule, product rule,
quotient rule and implicit differentiation. These have produced a number of standard
results, which are summarized below.
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sin x cos x

cos x

tan x

csc x

sec x sec x tan x

cot x

ln x

a
a2 � x2tan�1¢x

a
≤

�1

2a2 � x2
cos�1¢x

a
≤

1

2a2 � x2
sin�1¢x

a
≤

1
1 � x2tan�11x 2

�1

21 � x2
cos�11x 2

1

21 � x2
sin�11x 2

1
x ln a

loga x

ax ln aax

1
x

exex

�csc2 x

�csc x cot x

sec2 x

�sin x

dy

dx
y �

Within this chapter and Chapter 8, we have covered all of the differentiation techniques
and skills for IB Higher Level. One of the key skills in an examination is to be able to
identify which technique is required to solve a particular problem. Exercise 8 contains a
mixture of examples that require the knowledge and use of standard results and the
above techniques.

Exercise  8

Example

Find the stationary point for and determine its nature.

In this case, it is easiest to consider this as 

Using the product rule, 

For stationary points, 

Hence 

At 

Hence the stationary point is 

 � ex1x � 2 2

 
d2y

dx2 � ex1x � 1 2 � ex

¢�1, �
1
e
≤

 � �
1
e

 y � e�1 # �1

 x � �1, 

1 x � �1

ex1x � 1 2 � 0

dy

dx
� 0

 � ex1x � 1 2

 
dy

dx
� exx � ex

y � xex.

y

ex � x



6 Find the exact value of the gradient of the tangent to where

7 Find the gradient of the tangent to at the point where

and [IB May 01 P1 Q4]

8 A curve has equation 
Find the equation of the tangent to this curve at the point (1, 1).

[IB May 02 P1 Q17]

9 A curve has equation 
Find the equation of the normal to the curve at the point (2,1).

[IB May 03 P1 Q10]

10 Find the stationary points of 

11 Find the stationary points of for 

12 Show that the point lies on the circle with equation

and the parabola with equation 

Also show that these curves share a common tangent at P, and state the

equation of this tangent.

13 If find [IB Nov 04 P1 Q5]

14 Consider the function 

a Find 

b Find the exact values of
i
ii [IB Nov 03 P1 Q8]

15 Consider the equation 
a Find y when and 

b Find when and [IB Nov 03 P1 Q15]y 6 0.x � 1
dy

dx

y 6 0.x � 1
2xy2 � x2y � 3.

f¿ 1p 2 .
f1p 2

f¿ 1t 2 .

f1t 2 � 3 sec 2t � 5t.

d2y

dx2
.y � ln12x � 1 2 ,

y2 � 12 � 4x.1x � 2 22 � 1y � 2 22 � 32

P12, �2 2

0 6 x 6 p.y �
e2x sin x
x � 1

y � x2 tan�1 x.

x3y2 � 8.

xy3 � 2x2y � 3.

y 7 0.x � 1

3x2 � 4y2 � 7

x �
p

4
.

y �
1

x sin x

9  Differentiation 2 – Further Techniques

245

1 Find the gradient of the tangent to where 

2 Find the gradient of the tangent to where 

3 Given find the rate of change where 

4 Find the equation of the tangents to at 

5 Find the gradient of the tangent to at the point 

6 Find the value of when for 

7 Find the stationary points of 

8 Find the stationary points of 

9 Find the stationary points, and their nature, of the curve given by 

10 Show that the gradient of the tangent to the curve given by

at is ln p.x � p
xy
p

� sin x ln x � cos x � 1

y �
x3

ex.

y � 4x2 ln x, x 7 0.

y �
x2

ex
.

y

x
�

sin 2x
ex

.x � p
d2y

dx2

1e, e2 2 .2x ln x � y ln y � 2e11 � e 2

x � 1.x2y � y2 � 6

x � 2.y �
4x

ex1x � 2 2
,

x �
p

4
.y � ln21 � cos 2x

x �
1

23
.y � tan�1 3x

244

So, at 

So therefore is a local minimum turning point.¢�1, �
1
e
≤d2y

dx2 7 0,

 �
1
e

 x � �1, 
d2y

dx2 � e�111 2
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Exercise  9

Review exercise

1 Differentiate these functions.

a b c 

d e 

2 Differentiate these functions.

a b c 

d e 

3 Find for: a b 

4 Find for 

5 Differentiate y � 2 tan�1¢1 � cos x
sin x

≤.
x2 sin x � exy � 7.

d2y

dx2

x3 � y ln x4y2 � 3x2y � 5
dy

dx

y � log10¢e2x cos 3x
1x � 4 22

≤y � ln¢3x � 4
2x � 1

≤
f1x 2 �

e5x

2x � 4
y � ln1x sin x 2y � e4x sin 3x

y � ln 6x � 3xf1x 2 � 6e8x

y � 6t � sec 3tf1x 2 �
7

213 � 2x2 2
y � 513x � 2 24
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Because it is based on “real life” situations, the problem is not always as simple as it
might first seem. At its most basic level, optimization is just applying differentiation to a
formula given in a “real life” scenario. However, in more complex questions there are
often a number of steps that may need to precede this.

Method for solving optimization problems
1 Draw a diagram and write down the formula suggested by the question.
2 If the formula involves three variables, find a link between two of them.
3 Now substitute into the original formula. We now have a formula that links two

variables.
4 Differentiate.
5 Make the equation equal to zero and solve.
6 Find the other value(s) by substitution.
7 Check whether it is a maximum or minimum point.

We will now demonstrate this with a number of examples.
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10 Differentiation 3 – Applications

1

Differential calculus is widely used in both the natural sciences and the human sciences. In
physics, if we want to investigate the speed of a body falling under gravity, the force that
will give a body a certain acceleration and hence a certain velocity, or the rate of decay of a
radioactive material, then differential calculus will help us. In chemistry, we determine rates
of reaction using calculus, and in biology a problem such as the rate of absorption of
aspirin into the bloodstream as a function of time would have its solution based on
differential calculus.
Differentiation may also be applied to a large number of problems that deal with the issue
of extremes; this could include the biggest, the smallest, the greatest or the least.These
maximum or minimum amounts may be described as values for which a certain rate of
change (increase or decrease) is zero, i.e. stationary points. For example, it is possible to
determine how high a projectile will go by finding the point at which its change of
altitude with respect to time, that is, its velocity, is equal to zero.

10.1 Optimization problems
We have already met the idea of stationary points on a curve, which can give rise 
to local maxima and minima. This idea of something having a maximum and a minimum value
can be used in a variety of situations. If we need to find out when a quantity is as small as
possible or as large as possible, given that we can model the situation mathematically, then we
can use differential calculus.

Imagine a car manufacturing company that is aiming its new model at the cheaper end of
the market. One of the jobs of the marketing department in this company is to decide how
much to sell each car for. If they decide to sell at just above cost price, then the company will
only make a small amount of profit per car, but provided all other features of the marketing
are correct the company will sell a large number. If they decide to charge a higher price,
then the company will make more profit per car, but will probably sell fewer cars. Hence the
marketing department need to find the right price to charge that will maximize the
company’s profit.

Obviously to maximize a function f(x) you are looking for the greatest value within a given
region. Similarly to minimize a function, you are looking for the smallest. This may or may not
be a stationary point. Many economists and engineers are faced with problems such as these,
and this area of study is known as optimization. For the purposes of this course the greatest
and least values will always occur at a stationary point.

Always check that it is
the two variables that
the question is talking
about!

Example 

In design technology class, Ayesha is asked to make a box in the shape of a
cuboid from a square sheet of card with each edge being 1.5 metres long. To do
this she removes a square from each corner of the card. What is the biggest box
that she can make?
The diagram below shows the cardboard with a square of side x metres removed
from each corner, and the box into which it is made.

Step 1. Volume of the box, In this case the formula has only

two variables: hence steps 2 and 3 can be ignored.
Step 4.

 1

dV
dx

� 2.25 � 12x � 12x2

 � 2.25x � 6x2 � 4x3

 V � x12.25 � 6x � 4x2 2

V � x11.5 � 2x 22.

1.
5 

m

x x

x x

x x

x x

1.5 m

1.5 � 2x

1.5 � 2x

x
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Step 5. This is stationary when 

Using a calculator to solve the quadratic equation gives or 

Step 6. or 0

For step 7, to test that this is indeed a maximum, we differentiate and apply

the second derivative test.

When and when Hence the maximum

value occurs when and the maximum volume is 

This question can also be done on a calculator by inputting the curve 

and finding the maximum value.
The calculator display is shown below.

Hence the maximum volume is 
1
4

 m3.

x11.5 � 2x 22y �

1
4

 m3.x �
1
4

x �
3
4

, 
d2

˛V
dx2 � 6.x �

1
4

, 
d2

˛V
dx2 � �6

d2
˛V

dx2 � �12 � 24x

dV
dx

V �
1
4

x �
3
4

.x �
1
4

2.25 � 12x � 12x2 � 0.
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Example

A farmer wishes to fence in part of his field as a safe area for his sheep. The
shape of the area is a rectangle, but he has only 100 m of fencing. What are the
dimensions of the safe area that will make it as large as possible?
The area is a rectangle with dimension x m by y m.
This is shown below.

Step 1. i.e. Hence we have a formula with three variables.
Step 2. We know that the farmer has 100 m of fencing, hence 

Therefore y �
100 � 2x

2
� 50 � x

2x � 2y � 100.
A � xy.Area � xy,

x m

y m

Step 3. Find a formula for the area in terms of x. In this case it does not matter
if we substitute for x or for y, as we need to find both in the end.
So 

Step 4. 

Step 5. This is stationary when 

Step 6. and therefore 

For step 7, to test that this is indeed a maximum, we differentiate and

apply the second derivative test.

Since it is negative, the area of is a maximum value. Hence the maximum

value is given when m. This should come as no surprise, as the

maximum area of any rectangle is when it is a square.

x � y � 25

625 m2

d2
˛A

dx2 � �2

dA
dx

A � 252 � 625y � 25

1 x � 25
50 � 2x � 0

dA
dx

� 50 � 2x

1 A � 50x � x2

A � x150 � x 2

Even though it is obvious that
the value given is a maximum,
it is still important that we
demonstrate it.

Example

The diagram shows a solid body made from a cylinder fixed to a cuboid. The

cuboid has a square base with each edge measuring 4x cm and a height of x cm.

The cylinder has a height of h cm, and the base of the cylinder fits exactly on the

cuboid with no overlap. Given that the total volume of the solid is find

the minimum surface area.

Step 1.

(Surface area) 

Hence we have a formula with three variables:

Step 2. We know that the volume of the body is hence:

Step 3.

A � 48x2 � 4px ˛¢80 � 16x3

4px2 ≤

1 h �
80 � 16x3

4px2

16x3 � p12x 22˛h � 80

80 cm3,

A � 48x2 � 4pxh

p12x 22 � 2p12x 2h� p12x 22 �

A � 4x2 � 4x2 � 4x2 � 4x2 � 16x2 � 16x2

80 cm3,

4x

h

4x

x These are the areas of
the four sides.

This is the area of the
top and bottom.

These are the areas of
the circles. You need to
add on the top one, but
subtract the bottom, as
the area showing is a
square minus a circle.
The radius of the circle
is 2x.

This is the curved
surface area of the
cylinder.

w

u c

d
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1 The amount of power a car engine produces is related to the speed at

which the car is travelling. The actual relationship is given by the formula

Find the speed when the car is working most efficiently,

i.e. when the power is the least.

2 A cuboid has a square base and a total surface area of Find the

dimensions of the cuboid for the volume to be a maximum.

3 The base for a table lamp is in the shape of a cylinder with one end open

and one end closed. If the volume of the base needs to be find

the radius of the base such that the amount of material used is a minimum.

4 For stacking purposes, a manufacturer of jewellery boxes needs to make them

in the shape of a cuboid where the length of the box must be three times

the width. The box must have a capacity of Find the dimensions

of the box that would have the smallest surface area.
5 The diagram below shows a rectangle with an equilateral triangle on top. If

the perimeter of the shape is 28 cm, find the length of the sides of the 
rectangle such that the area of the shape is a maximum.

6 One of the clients of a packaging company is a soup manufacturer who
needs tin cans manufactured. To maximize the profit, the surface area of
the can should be as small as possible. Given that the can must hold 
0.25 litres and is cylindrical, find the minimum surface area.

7 Consider the semicircle below. It has diameter XY and the point A is any
point on the arc XY. The point A can move but it is required that

Find the maximum area of the triangle XAY.XA � AY � 25.

400 cm3.

1000 cm3,

300 cm2.

P � 15v �
7500

v
.

251250

Step 4.

Step 5. This is stationary when

Step 6 allows us to find that and 

For step 7, to test that this is indeed a maximum, differentiate and apply
the second derivative test.

So when Since it is positive the area of is

a minimum value.

111 cm2x � 1.07 p , 
d2

˛A
dx2 � 192 p .

 
d2

˛A
dx2 � 64 �

160
x3

 
dA
dx

� 64x � 80x�2

dA
dx

h � 4.11pA � 111p

 1 x � 3

B

80
64

� 1.07 p

 1 64x3 � 80

 64x �
80
x2 � 0

dA
dx

� 64x �
80
x2

 1 A � 32x2 �
80
x

 A � 48x2 �
80
x

� 16x2
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Example

The marketing director for MacKenzie Motors has calculated that the profit
made on each car is given by the formula where x is the selling
price of each car (in thousands of pounds sterling) and y is the number of cars
sold, which is affected by the time of year. Given that x and y are related by the
formula find the maximum profit that can be made.

Step 1. 

Step 2. The link between two of the variables is 

Step 3. 
Steps 4, 5 and 6. This can be differentiated, but the resulting equation will need
to be solved on a calculator. Hence it will be more effective to find the maximum
value of the curve at this stage. Because this is a sinusoidal curve, we need to
find where the first maximum occurs.

P � x sin x � 5000 sin x.

y � sin x.

P � xy � 5000y.

y � sin x,

P � xy � 5000y

� �

P � x sin x � 5000 sin x

Hence we know the maximum value of and occurs when

For step 7 it is not sensible to do a second derivative test. Instead we put in a
sketch of the curve above and state that the y-values either side of the maximum
are less than the maximum. It is important that actual values are given.
When 
and when which are both less than 
and hence the maximum value of £4995.P �

4995.27 px � 4.72, P � 4995.14 p

x � 4.70, P � 4994.91 p

x � 4.71.
P � 4995.27 p

Exercise 1

A

YX



that Given that the drug is initially administered at time

find the first two times when the quantity of drug in the bloodstream

is the greatest, and verify using differentiation that these are in fact maximum

values.

12 The population P, in thousands, of mosquitoes in the Kilimanjaro region of

Tanzania over a 30-day period in May is affected by two variables: the average

daily rainfall, r, and the average daily temperature, The rainfall is given

by the function and the temperature is given by

where t is the time in days. It has been found that

Find the minimum number of mosquitoes after the first five

days of May and verify that it is a minimum.

13 In Japan the running cost of a car in yen per hour, Y, is dependent on its 

average speed v. This is given by the formula , where v is

the speed in tens of kilometres per hour. Write down the cost of a journey

of 200 km covered at an average speed of and find the speed

that would make the cost of this journey a minimum.

14 A new car hire company, Bob’s Rentals, has just opened and wants to make
the maximum amount of profit. The amount of profit, P, is dependent on
two factors: x, the number of tens of cars rented; and y, the distance travelled
by each car. The profit is given by the formula where

Find the smallest number of cars that the company needs to rent
to give the maximum amount of profit.

15 In a triangle PQR, angle PQR is 90 , cm and The
rectangle QFGH is such that its vertices F, G and H lie on QR, PR and PQ
respectively. This is shown below.
a Given that cm and cm, find a relationship between x and y.
b Hence express the area of the rectangle in terms of x only.
c Calculate the maximum value of this area as x varies.

GH � yQH � x

PR � 25 cm.PQ � 7°

y � sin x.
P � xy � 40,

50 km h�1

Y � 6 �
v2 � 1
v � 1

P � r � u.

u � e
t

10 � 7,

r � t cos t � 6

u.

t � 0,

y � P1t 2 � Q1t 2 .
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8 A cone is cut from a sphere as shown below. The radius of the sphere is r
and x is the distance of the base of the cone from the centre of the sphere.

a Prove that the volume V of the cone is 

b Find the height of the cone when the volume of the cone is a maximum.
9 A courier company requires that parcels be secured by three pieces of string.

David wants to send a parcel in the shape of a cuboid. The cuboid has
square ends. The square is of side x cm and the length of the parcel is y cm.
This is shown in the diagram below.

Given that the total length of string used is 900 cm, find the volume of the
parcel in terms of x. Hence find the values of x and y for which the volume has
a stationary value and determine whether this is a maximum or a minimum.

10 An open container is made from four pieces of sheet metal. The two end pieces

are both isosceles triangles with sides of length 13x, 13x and 24x as shown

below. The other two pieces that make up the container are rectangles of

length y and width 13x. The total amount of sheet metal used is 

a Show that 

b Find the volume of the container in terms of x.
c Find the value of x for which the volume of the container, V, has a

stationary value and determine whether this is a maximum or a minimum.

11 In an intensive care unit in hospital, the drug adrenalin is used to stabilize 

blood pressure. The amount of the drug in the bloodstream y at any time t is

the combination of two functions, P(t) and Q(t), which takes into consideration

the fact that the drug is administered into the body repeatedly. Researchers at

the hospital have found that while the manufacturers of the

drug have found that The researchers have also found Q1t 2 � cos t � 2.

P1t 2 � e�t sin t,

y �
450 � 60x2

13x
.

900 cm2.

V �
p

3
 1r � x 2 1r � x 22.

10  Differentiation 3 – Applications

252

x

r

13x

24x

y

13x

y

x

x

R F Q

G

P

H 7 cm
25 cm

10.2 Rates of change of connected variables

Consider a variable x. If the rate of change of the variable x is then what we

mean is that the rate of change of x with respect to time is 2, i.e. The units of

the variable give this information. Now, sometimes we want to find the rate of change

with respect to time of a variable that is connected to x, say y, where at the

point when To do this, we use the chain rule In this case we

would use the formula 
dy

dt
�

dx
dt

�
dy

dx
.

dy

dx
�

dy

du
�

du
dx

.x � 10.

y � x2,

dx
dt

� 2.

2 m s�1,



Before we proceed with further examples we need to establish the result that 

We know that 
dy

dx
� lim
dxS0

 

dy

dx
.

dx
dy

�
1
dy

dx
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Example

The radius, r, of an ink spot is increasing at the rate of Find the rate at

which the area, A, is increasing when the radius is 8 mm.

Step 1. The rate of change required is 

Step 2. The known rate of change is 

Step 3. The connection is 

Step 4. We now need an equation linking A and r. For a circle 

Step 5. 

Step 6.

 1

dA
dt

� 32p

 1

dA
dt

� 4 � p � 8

 1

dA
dt

� 4pr

 1

dA
dt

� 2 � 2pr

 
dA
dt

�
dr
dt

�
dA
dr

dA
dr

� 2pr

A � pr2.

dA
dt

�
dr
dt

�
dA
dr

.

dr
dt

� 2.

dA
dt

.

2 mm s�1.

Since 

Therefore 

This is known as a connected rate of change.

Method for finding connected rates of change

dy

dt
� 2 � 20 � 40 m s�1.

1

dy

dx
� 20.

dy

dx
� 2x Since is a fraction 

However, as 

Therefore , giving the result that

dx
dy

�
1
dy

dx

dx
dy

� lim
dyS0

 

1
dy

dx

dy S 0, dx S 0.

dx
dy

� lim
dxS0

 

1
dy

dx

.
dy

dx

Example

A spherical balloon is blown up so that its volume, V, increases at a constant

rate of Find the equation for the rate of increase of the radius r.

Step 1. The rate of change required is 

Step 2. The known rate of change is 

Step 3. The connection is .

Step 4. We now need an equation linking V and r. For a sphere It is

much easier to find than and hence we use the rule above.

Step 5. 

Step 6.

 
dr
dt

� 3 �
1

4pr2 �
3

4pr2

 
dr
dt

�
dV
dt

�
dr
dV

dV
dr

� 4pr2.

dr
dV

,
dV
dr

V �
4
3

 pr3.

dr
dt

�
dV
dt

�
dr
dV

dV
dt

� 3.

dr
dt

.

3 cm3
 s�1.

Remember and are 

numbers whereas is a 

notation.

dy

dx

dxdy

Example

The surface area, A, of a cube is increasing at a rate of Find the rate

of increase of the volume, V, of the cube when the edge of the cube is 10 cm.

Step 1. The rate of change required is 

Step 2. The known rate of change is 

Step 3. The connection is 

A formula linking volume and area is not very straightforward, and nor is 
differentiating it. Hence we now connect the volume and area using the length
of an edge, x.

This gives 
dV
dA

�
dV
dx

�
dx
dA

dV
dt

�
dA
dt

�
dV
dA

.

dA
dt

� 3.

dV
dt

.

20 cm2 s�1.

This is rather different from
what has been asked 
previously, where questions
have required that we 
differentiate the dependent
variable directly with respect
to what is known as the 
independent variable. In the

case of y is the 

dependent variable and x is
the independent variable.
However in a case like this
the independent variable is t
since all the other variables
are dependent on this.
Which variable is the 
independent one is not 
always immediately obvious.

dy

dx
,

This occurs when a question asks for a rate of change of one quantity but does not give
a direct equation, and hence it is necessary to make a connection to another equation.

1 Write down the rate of change required by the question.
2 Write down the rate of change given by the question.
3 Write down an expression that connects the rate of change required and the one given.
4 This connection produces a third rate of change, which needs to be calculated.

Find an equation that will give this new rate of change.
5 Differentiate the new equation.
6 Multiply the two formulae together and substitute to find the required rate of change.
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which leads to the formula 

Step 4. We now need equations linking V and x and A and x. For a cube 

and 

Step 5. and 

Step 6. 

So when 

Now steps 5 and 6 can be done in an alternative way.

Step 5. and 

When and 

Step 6. 

The method to use is personal choice, although if a formula is required, then
the first method must be used.

dV
dt

�
dA
dt

�
dV
dx

�
dx
dA

� 20 � 300 �
1

120
� 50 cm3 s�1

dA
dx

� 120.
dV
dx

� 300x � 10,

dA
dx

� 12x
dV
dx

� 3x2

dV
dt

� 50 cm3 s�1.x � 10,

dV
dt

�
dA
dt

�
dV
dx

�
dx
dA

� 20 � 3x2 �
1

12x
� 5x

dA
dx

� 12x
dV
dx

� 3x2

A � 6x2.

V � x3

dV
dt

�
dA
dt

�
dV
dx

�
dx
dA

.
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Water is being poured into a cone, with its vertex pointing downwards. This is

shown below. The cone is initially empty and water is poured in at a rate of

Find the rate at which the depth of the liquid is increasing after 30

seconds.

Step 1. The rate of change required is , where h is the depth of the liquid.

Step 2. The known rate of change is 

Step 3. The connection is 

Step 4. We need to find a formula linking V and h. For a cone We

now need to find a formula that connects h and r. From the diagram

 1 V �
1
3

 p � 3h2 � h

 1 r � h23

tan 60° �
r
h

V �
1
3

 pr2
˛h.

dh
dt

�
dV
dt

�
dh
dV

.

dV
dt

� 25.

dh
dt

25 cm3 s�1.

h

r

60�

Step 5. 

Step 6. 

After 30 seconds, the volume will be Using 

gives 

 1

dh
dt

�
25

3p � 6.202 � 0.0689 cm s�1

 1 h � 6.20 p

750 � ph3

V � ph330 � 25 � 750 cm3.

1

dh
dt

� 25 �
1

3ph2 �
25

3ph2

dh
dt

�
dV
dt

�
dh
dV

dV
dh

� 3ph2.

 1 V � ph3

Example

A point P moves in such a way that its coordinates at any time t are given by

and Find the gradient of the line OP after 5 seconds.

Step 1. The rate of change required is 

Step 2 is not required.

Step 3. The connection is 

Step 4 is not required.
Step 5. 

When 

and

When 

Step 6.

 1

dy

dx
� �1.93

 1

dy

dx
� �1.09 �

1
0.564

 
dy

dx
�

dy

dt
�

dt
dx

 � �1.08 p

 
dy

dt
� 2 sin 5e�2 cos 5

t � 5,

 1

dy

dt
� 2 sin te�2 cos t

 y � e�2 cos t

 � 0.563 p

 
dx
dt

� e2 sin 5 � 2 � 5 cos 5e2 sin 5

t � 5,

 1
dx
dt

� e2 sin t � 2t cos te2 sin t

x � te2 sin t

dy

dx
�

dy

dt
�

dt
dx

.

dy

dx
.

y � e�2 cos t.x � te2 sin t



10 A circular disc of radius r rolls, without slipping, along the x-axis. The plane
of the disc remains in the plane Oxy. A point P is fixed on the circumference
of the disc and is initially at O. When the disc is rolled through radians,
the point of contact is now Q and the length of the arc PQ is now the same
as OQ. This is shown below.

a Find the coordinates of P in terms of r and 

b Using connected rates of change, show that the gradient of the curve is

11 A balloon is blown up so that its surface area is increasing at a rate of

What is the rate of increase of the volume when its radius is 

8 cm? Assume the balloon is spherical at all times.

12 A point moves on a curve such that and 

where t is the time taken. Show that the gradient at any time t is given by

the formula 

13 Water is being poured into a cone, with its vertex pointing downwards. This
is shown below.

The cone is initially empty and water is poured in at a rate of

Find the rate of increase of:
a the radius of the circular surface of the water after 4.5 seconds
b the area of the circular surface of the water after 4.5 seconds.

2p23 cm3 s�1.

dy

dx
� tan¢3t �

p

4
≤.

y � e3t sin 3t,x � e3t cos 3t

25 cm2 s�1.

cot 

u

2
.

u.

u
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1 The surface area of a sphere is given by the formula where r is

the radius. Find the value of when The rate of increase of

the radius is Find the rate of increase of the area when 

2 Orange juice is being poured into an open beaker, which can be considered

to be a cylinder, at a rate of The radius of the cylinder is 8 cm.

Find the rate at which the depth of the orange juice is increasing.
3 The cross-sectional area of a trough is an isosceles triangle of height 36 cm

and base 30 cm. The trough is 3 m long. This is shown below.

If water flows into the trough at a rate of find the rate at

which the water level is increasing when the height is h.

4 The population, P, of termites varies with time t hours according to the formula

where is the initial population of termites and m is a variable

given by Find the rate of change of the termite population after

6 hours, giving your answer in terms of 

5 A wine glass has been made such that when the depth of wine is x, the

volume of wine, V, is given by the formula Alexander pours

wine into the glass at a steady rate, and at the point when its depth is 4 cm, 

the level is rising at a rate of Find the rate at which the wine is 

being poured into the glass.

6 Bill, who is 1.85 m tall, walks directly away from a street lamp of height 6 m

on a level street at a velocity of Find the rate at which the length

of his shadow is increasing when he is 4 m away from the foot of the lamp.
7 Consider the segment of a circle of fixed radius 8 cm. If the angle increases

at a rate of 0.05 radians per second, find the rate of increase of the area of
the segment when radians.u � 1.5

u

2.5 m s�1.

1.5 cm s�1.

V � 3x3 �
1
3x

.

N0.

m � 3esin t.

N0P � N0e
3m

500 cm3 s�1,

30 cm3 s�1.

r � 4 cm.4 cm s�1.

r � 3 cm.
dA
dr

A � 4pr2,
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Exercise 2

36 cm

3 m

30 cm

xQ

P

r

r
�

O

y

10.3 Displacement, velocity and
acceleration

This is another important application of differential calculus, which goes back to the
basic definitions met in Chapter 8. Usually we define s as the displacement, v as the
velocity, and a as the acceleration. If we consider a body moving 100 m in 25 seconds,

some very basic knowledge will tell us that its average speed is i.e. total

distance travelled divided by total time taken. However, unless the body keeps a constant
speed we have no idea what the velocity was after 4 seconds. In order to deal with this
we now deal with velocity in a different way. By definition, velocity is the rate of change

100
25

  m s�1,

8 cm

�

8 An empty hollow cone of radius a and height 4a is held vertex downwards

and water is poured in at a rate of Find the rate at which the

depth of water is increasing after 25 seconds.

9 A point P moves in such a way that its coordinates at any time t are given by

and Find the gradient of the line OP after 3 seconds.y � tan�1
˛t.x �

1
1 � t2

8p cm3 s�1.
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of displacement with respect to time. In questions like this displacement and distance
are often used interchangeably, but because direction matters, we technically need to
use a vector quantity and hence we usually talk about displacement. The distinction
between vector and scalar quantities is discussed in Chapter 12. Since the differential

operator means “rate of change with respect to time”, we now find that velocity,

Using a similar argument, acceleration or alternatively Hence if

we have a displacement formula as a function of time, we can now work out its velocity

and acceleration.However, what happens when acceleration is related to displacement?

We know that From the work on connected rates of change, could be

written as However, is actually v. Hence This now gives a

formula that links velocity and displacement.

To summarize:

a � v 

dv
ds

.
ds
dt

ds
dt

�
dv
ds

.

dv
dt

a �
dv
dt

.

d2
˛s

dt2.a �
dv
dt

v �
ds
dt

.

d
dt
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Example

A boat travels with variable speed. Its displacement at any time t is given by

After how long in the journey:
a) is its displacement a maximum and what is its displacement at that point?
b) is its velocity a minimum and what is its velocity at that point?
a) To find the maximum displacement we differentiate:

For a maximum displacement

Now 

Hence when which is positive and therefore a minimum.

When which is negative and therefore a maximum.

When 

b) To find the minimum velocity we use i.e. 

For a minimum velocity 

When 

To test whether it is a minimum we find 

Since it is a minimum.
d2

˛v
dt2 � 12,

d2
˛v

dt2 .

v � 6¢4
3
≤2

� 16¢4
3
≤ � 8 � �

8
3

 m s�1.t �
4
3

,

1 t �
4
3

 sec

12t � 16 � 0

 
dv
dt

� 12t � 16

 v � 6t2 � 16t � 8

d2
˛s

dt2.
dv
dt

,

s �
64
27

 m.t �
2
3

,

t �
2
3

, 
d2

˛s
dt2 � �4,

t � 2, 
d2

˛s
dt2 � 4,

d2
˛s

dt2 � 6t � 8.

1 t �
2
3

  or t � 2

 1 13t � 2 2 1t � 2 2 � 0

 1 3t2 � 8t � 4 � 0

 v � 6t2 � 16t � 8 � 0

 v �
ds
dt

� 6t2 � 16t � 8

 s � 2t3 � 8t2 � 8t

s � 2t3 � 8t2 � 8t.

The maximum 
displacement occurs
when the velocity is zero

Quantity Notation

Velocity

Acceleration or or v 

dv
ds

d2
˛s

dt2

dv
dt

ds
dt

Example

If the displacement of a particle is given by the formula 

find:
a) the displacement after 3 seconds
b) the formula for the velocity at any time t
c) the values of t when the particle is not moving
d) the initial velocity of the particle
e) the formula for the acceleration at any time t
f) the initial acceleration of the particle.

a) When 
b) To find the velocity, differentiate the formula for s.

Hence 

c) When the particle is not moving 

d) The initial velocity occurs when 

e) To find the acceleration, differentiate the formula for v

a �
dv
dt

� 18t � 40

1 v � 40 ms�1

t � 0

 1 t �
8
3

 secs or t �
5
3

 secs 

 1 13t � 8 2 13t � 5 2 � 0

 1 9t2 � 40t � 40 � 0

v � 0

v � 9t2 � 40t � 40.

v �
ds
dt

� 9t2 � 40t � 40

s � 3 � 27 � 20 � 9 � 40 � 3 � 21 m.t � 3,

s � 3t3 � 20t2 � 40t,

f) The initial acceleration occurs when 

1 a � �40 ms�2

t � 0. The negative sign means
it is a deceleration rather
than an acceleration.
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Example

If the velocity of a particle is proportional to the square of the displacement
travelled, prove that the acceleration is directly proportional to the cube of the
displacement.

We know that the acceleration, a, is given by 

Now 

Therefore

Therefore the acceleration is directly proportional to the cube of the displacement

as is a constant.2k2

 � 2k2 

˛s3

 a � ks2 � 2ks

dv
ds

� 2ks.

v 

dv
ds

.

 1 v � ks2

 v r s2

This equation has
multiple solutions, but
we only need to consider
the first two positive
solutions as after this it
will just give repeated
maxima and minima.

Example

The displacement of a particle is given by the equation 

a) Give a formula for its velocity at any time t.
b) What is its initial velocity?
c) What is the minimum displacement of the particle?
d) Give a formula for its acceleration at any time t.

a) 

b) The initial velocity is when 

c) The minimum displacement occurs when i.e. 

Now when, is negative and when is

positive.
Hence gives the minimum displacement. In this case 

d) The acceleration is given by i.e. 

Hence a �
�5p2

9
 cos 

p

3
 t �

10p2

9
 sin 

p

3
 t.

d2
˛s

dt2.
dv
dt

,

s � � 11.2 m.t � 4.05 p

d2
˛s

dt2t � 4.05 p ,
d2

˛s
dt2t � 1.05 p ,

d2
˛s

dt2 �
�5p2

9
 cos 

p

3
 t �

10p2

9
 sin 

p

3
 t

 1 t � 1.05 p , 4.05 p

 1

p

3
 t � 1.10 p , 4.24 p

 1 tan 

p

3
 t � 2

 1

sin 

p

3
 t

cos 

p

3
 t

�

10p
3

5p
3

 
�5p

3
 sin 

p

3
 t �

10p
3

 cos 

p

3
 t � 0

v � 0.
ds
dt

� 0,

 1 v �
10p

3
 m s�1

 v �
�5p

3
 sin 0 �

10p
3

 cos 0

t � 0.

ds
dt

� v �
�5p

3
 sin 

p

3
 t �

10p
3

 cos 

p

3
 t

s � 5 cos 

p

3
 t � 10 sin 

p

3
 t

s � 5 cos 

p

3
 t � 10 sin 

p

3
 t.

Example

The displacement of a particle is given by the formula 

Find:
a) the formula for the velocity of the particle at any time t
b) the velocity of the particle after 3 seconds
c) the formula for the acceleration of the particle
d) the acceleration after 2 seconds.

a) 

b) When 

c) 

d) When t � 2, a �
6 ln 2 � 5

16
� �0.0526 m s�2.

 1 a �
6 ln t � 5

t4

 1 a �
t21�2 � 3 � 6 ln t 2

t6

a �
dv
dt

�
d2

˛s
dt2 �

t3 ¢�2
t
≤ � 3t211 � 2 ln t 2

t6

t � 3, v �
1 � 2 ln 3

27
� �0.443 m s�1.

v �
ds
dt

�

t2
 

1
t

� 2t ln t

t4 �
1 � 2 ln t

t3

s �
ln t
t2 .

The negative sign
means the velocity is in
the opposite direction.
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1 The displacement, s, travelled in metres by a bicycle moving in a straight line

is dependent on the time, t, and is connected by the formula 

a Find the velocity and the acceleration of the cyclist when 

b At what time does the cyclist stop?

2 If and the body is initially at O, find:
a the velocity when secs
b an expression for the acceleration at any time t

c the acceleration when secs.

3 The velocity of a car is dependent on time and is given by the formula

a Find the acceleration of the car after t seconds.
b When does the car first stop?
c What is the acceleration at the instant when the car stops?

4 The displacement of a particle is given by the formula 

( ). Find:

a a general formula for the velocity v
b the velocity when secs
c a general formula for the acceleration a.

5 If the velocity of a particle is inversely proportional to the square root of the
displacement travelled, prove that the acceleration is inversely proportional
to the square of the displacement.

6 If the velocity of a particle is given by show that the 

acceleration is 
7 A particle is moving along a straight line such that its displacement at any

time t is given by the formula 
a Show that the acceleration is directly proportional to the displacement.

b Using the compound angle formula where and

show that the velocity is periodic and find the period.0 � a �
p

2
,

R 7 0R cos12t � a 2 ,

s � 2 cos 2t � 6 sin 2t.

e4s1cos 4s � sin 4s � 1 2 .

v � e2s cos 2s,

t � 2

t H �, t � 1

s �
t sin t
t � 1

v � 11 � 2t 22.

t � 3

t � 2
v � 16t � 6t2

t �
1
2

 sec.

s � 4t � t3.

c Given that he has a horizontal displacement of m after 10 seconds

and a horizontal velocity of after 15 seconds, find the value of

the acceleration after 20 seconds.

11 For a rocket to leave the earth’s atmosphere, its displacement from the

earth’s surface increases exponentially with respect to time and is given by

the formula (for ). Find:
a the value of k, given that when seconds, m
b a general formula for the velocity at any time t
c a general formula for the acceleration at any time t

d the time when numerically the acceleration is twice the velocity 

12 The displacement of the East African mosquito has been modelled as a formula

related to time, which is However, this formula is not 

totally successful, and works only for certain values of t. The maximum

value of t is 20 seconds. The minimum value of t is the minimum point of

the curve.

a Sketch the curve on a calculator and find the minimum value of t.
b Find the velocity of the mosquito at any time t and state any restrictions on

the time t.
c Find the acceleration of the mosquito at any time t, stating any restrictions

on t.
d Find the velocity and acceleration of the mosquito after 10 seconds.

13 The displacement of a train at any time t is given by the formula

Find:
a the velocity in terms of s and t
b the acceleration in terms of s and t
c the relationship between the displacement and the time when the

velocity has a stationary value.

s2 � 2st � 2t2 � 4.

s � ln¢ t2

t � 1
≤.

1t 7 0 2 .

s � 3000t � 10
t 7 0s � tekt2

3k23
2

 m s�1

3

22
Exercise 3

Review exercise

1 An airplane is flying at a constant speed at a constant altitude of 3 km in a

straight line that will take it directly over an observer at ground level. At a 

given instant the observer notes that the angle is radians and is 

increasing at radians per second. Find the speed, in kilometres per hour, 

at which the airplane is moving towards the observer. [IB Nov 03 P1 Q20]

1
60

1
3

 pu

x

�

Airplane

Observer

3 
km

1

4

7

C

M

0
=

+

2

5

8

CE

M–

3

6

9

%

M+

X

–

÷

ON

8 The displacement of a particle is given by the formula 

Find:
a a formula for the velocity of the particle at any time t
b the velocity of the particle after 2 seconds
c a formula for the acceleration of the particle
d the acceleration after 2 seconds in terms of e.

9 The velocity of a particle is given by Show that the acceleration

of the particle is given by the formula 

10 David is visiting the fairground and his favourite ride is the big wheel. At any
time t his horizontal displacement is given by the formula

where k and c are constants.

a Find his horizontal velocity at any time t.
b Find a general formula for the time when he first reaches his maximum

horizontal velocity.

s � 3 sin1kt � c 2 ,

a �
12s3 � 12s � 1

21s2 � 1 2
3
2

.

v2 �
6s2

2s2 � 1
.

s �
e2t

t2 � 1
, t H �, t �1.
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2 Particle A moves in a straight line starting at O with a velocity in metres per

second given by the formula Particle B also moves in a

straight line starting at O with a velocity in metres per second given by the

formula Find:
a the acceleration of particle A when 
b the times when the particles have the same velocity

c the maximum and minimum velocity of particle B in the range 

3 Air is pumped into a spherical ball, which expands at a rate of per

second Find the exact rate of increase of the radius of the ball

when the radius is 2 cm. [IB Nov 02 P1 Q16]
4 For a regular hexagon of side a cm and a circle of radius b cm, the sum of

the perimeter of the hexagon and the circumference of the circle is 300 cm.
What are the values of a and b if the sum of the areas is a minimum?

5 An astronaut on the moon throws a ball vertically upwards. The height, s

metres, of the ball after t seconds is given by the equation

where a is a constant. If the ball reaches its maximum

height when find the value of a. [IB May 01 P1 Q17]
6 A manufacturer of cans for Lite Lemonade needs to make cans that hold

500 ml of drink. A can is manufactured from a sheet of aluminium, and the
area of aluminium used to make the cans needs to be a minimum.
a If the radius of the can is r and the height of the can is h, find an expression

for the area A of aluminium needed to make one can.
b Hence find the radius of the can such that the surface area is a minimum.
c Find the surface area of this can.

7 A particle moves such that its displacement at any time t hours is given by

the function Find:
a the velocity at any time t
b the time when the particle first comes to rest
c the time when the particle first has its maximum velocity.

8 A rectangle is drawn so that its lower vertices are on the x-axis and its upper
vertices are on the curve where 
a Write down an expression for the area of the rectangle.
b Find the maximum area of the rectangle. [IB May 00 P1 Q17]

9 A triangle has two sides of length 5 cm and 8 cm. The angle between

these two sides is changing at a rate of radians per minute. What is the 

rate of change of the area of the triangle when 

10 A particle moves along a straight line. When it is a distance s from a fixed

point O, where the velocity v is given by Find the

acceleration when [IB May 99 P1 Q20]

11 The depth h of the water at a certain point in the ocean at time t hours is
given by the function 
a Find the first time when the depth is a maximum.
b How long will it be before the water reaches its maximum depth again?

h � 2 cos 3t � 3 cos 2t � 6 cos t � 15, t 7 0.

s � 2.

v �
3s � 2
2s � 1

.s 7 1,

u �
p

3
?

p

30

u

0 � x � p.y � sin x,

f1t 2 � 3t2 sin 5t, t 7 0.

t � 25,

s � 40t � 0.5at2,

18 cm3  s�1 2 .

8 cm3

0 � t � 3.

t � 5
vB � 2te0.5t � 3t2.

vA � t2 � 3t � 4.

12 A square-based pyramid has a base of length x cm. The height of the pyramid

is h cm. If the rate of change of x is and the rate of change of h is

find the rate of change of the volume V when cm and

cm.
13

A company makes channelling from a rectangular sheet of metal of width
2x. A cross-section of a channel is shown in the diagram, where

The depth of the channel is h. AB and CD are 
inclined to the line BC at an angle Find:
a the length of BC in terms of x, h and 
b the area of the cross-section

c the maximum value of the cross-section as varies.

14 A drop of ink is placed on a piece of absorbent paper. The ink makes a cirular

mark, which starts to increase in size. The radius of the circular mark is 

given by the formula where r is the radius in centimetres of 

the circular mark and t is the time in minutes after the ink is placed on the
paper.

a Find t when 

b Find a simplified expression, in terms of t, for the rate of change of the
radius.

c Find the rate of change of the area of the circular mark when 

d Find the value of t when the rate of change of the radius starts to

decrease, that is, find the value of t, at the point of inflexion on

the curve [IB May 98 P2 Q2]r �
411 � t4 2

8 � t4 .

t 7 0,

r �
17
6

.

r �
17
6

.

r �
411 � t4 2

8 � t4 ,

u

u

u.
AB � BC � CD � 2x.

h � 12

x � 82 cm s�1,

3 cm s�1,

B

� �

h
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The concept of matrices and determinants was probably first understood by the
Babylonians, who were certainly studying systems of linear equations. However, it was
Nine Chapters on the Mathematical Art, written during the Han Dynasty in China between
200 BC and 100 BC, which gave the first known example of matrix methods as set up
in the problem below.

There are three types of corn, of which three bundles of the first, two of the second,
and one of the third make 39 measures.Two of the first, three of the second and one
of the third make 34 measures. One of the first, two of the second and three of the
third make 26 measures. How many measures of corn are contained in one bundle of
each type?

The author of the text sets up the coefficients of the system of three linear equations
in three unknowns as a table on a “counting board” (see Matrix 1).The author now
instructs the reader to multiply the middle column by 3 and subtract the right
column as many times as possible.The right column is then subtracted as many times as
possible from 3 times the first column (see Matrix 2).The left-most column is then
multiplied by 5 and the middle column is subtracted as many times as possible (see
Matrix 3).

Matrix 1 Matrix 2 Matrix 3

Looking at the left-hand column, the solution can now be found for the third type of
corn.We can now use the middle column and substitution to find the value for the
second type of corn and finally the right-hand column to find the value for the first
type of corn.This is basically the method of Gaussian elimination, which did not
become well known until the early 19th century and is introduced in this chapter.

0 0 3
0 5 2

36 1 1
99 24 39

0 0 3
4 5 2
8 1 1

39 24 39

1 2 3
2 3 2
3 1 1

26 34 39

11 Matrices

This chapter will reveal
that we now write linear
equations as the rows of
a matrix rather than
columns, but the
method is identical.
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11.1 Introduction to matrices
Definitions
Elements: The numbers or symbols in a matrix.

Matrix: A rectangular array of numbers called entries or elements.

Row: A horizontal line of elements in the matrix.

Column: A vertical line of elements in the matrix.

Order: The size of the matrix. A matrix of order has m rows and n columns.

Hence the matrix has six elements, two rows, three columns, and its

order is 

The most elementary form of matrix is simply a collection of data in tabular form like this:

2 � 3.

A � ¢2 4 �1
3 7 1

≤
m � n

A matrix is usually denoted
by a capital letter.

A square matrix is one that
has the same number of
rows as columns.

Week
Sales of 1 2 3
Butter 75 70 82
Cheese 102 114 100
Milk 70 69 72

Operations
Equality

Two matrices are equal if they are of the same order and their corresponding elements
are equal.

Example

Find the value of a if 

Clearly in this case, a � 2.

¢ 2 5
�3 4

≤ � ¢ a 5
�3 4

≤.

This data can be represented using the matrix £
75 70 82

102 114 100
70 69 72

≥.

Addition and subtraction

To add or subtract two or more matrices, they must be of the same order. We add or
subtract corresponding elements.
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matrix by an matrix is possible because the first matrix has n columns
and the second matrix has n rows. If this is not the case, then the multiplication cannot
be carried out. The answer matrix has the same number of rows as the first matrix and
the same number of columns as the second.

To find the element in the first row and first column of the answer matrix we multiply
the first row by the first column. The operation is the same for all other elements in the
answer. For example, the answer in the second row, third column of the answer comes
from multiplying the second row of the first matrix by the third column of the second
matrix.

The matrices and are and so they can be

multiplied to find AB, which will be a matrix.

In this case BA could also be found, and would

be a matrix.

If we consider the case of and then it is not possible to find

either CD or DC since we have a matrix multiplied by a matrix or a 

matrix multiplied by a matrix.2 � 2

3 � 13 � 12 � 2

D � £
t
u
v
≥,C � ¢p q

r s
≤

3 � 3

AB � ¢ap � br � ct aq � bs � cu
dp � er � ft dq � es � fu

≤.

2 � 2

3 � 2,2 � 3B � £
p q
r s
t u

≥A � ¢a b c
d e f

≤

1m � n 2 � 1n � p 2

n � pm � n

This is the size of the answer
matrix, m � p.

This tells us the matrix can be multipled.

Example

Evaluate 

We have a matrix multiplied by a matrix, and hence they can be
multiplied and the answer will be a matrix.

§
27 15
�2 14
�5 �16
1 �24

¥�

§
3 6

�2 4
1 �5
3 �7

¥ ¢5 �1
2 3

≤ � §
13 � 5 2 � 16 � 2 2 13 � �1 2 � 16 � 3 2
1�2 � 5 2 � 14 � 2 2 1�2 � �1 2 � 14 � 3 2
11 � 5 2 � 1�5 � 2 2 11 � �1 2 � 1�5 � 3 2
13 � 5 2 � 1�7 � 2 2 13 � �1 2 � 1�7 � 3 2

¥

4 � 2
2 � 24 � 2

§
3 6

�2 4
1 �5
3 �7

¥ ¢5 �1
2 3

≤.

We can now return to the example of a matrix given at the beginning of the chapter
where the table

Example

Evaluate 

In this case the answer is ¢8 2 10
3 �1 5

≤.

¢ 2 4 3
�1 3 7

≤ � ¢6 �2 7
4 �4 �2

≤. If the question appears
on a calculator paper and
does not involve variables,
then a calculator can be
used to do this.

Week
Sales of 1 2 3
Butter 75 70 82
Cheese 102 114 100
Milk 70 69 72

can be represented as the matrix 

If this were to represent the sales in one shop, and the matrix 

represents the sales in another branch of the shop, then adding the matrices together 

would give the total combined sales i.e.  

Multiplication by a scalar

The scalar outside the matrix multiplies every element of the matrix.

£
154 148 161
199 215 209
151 144 146

≥.

£
79 78 79
97 101 109
81 75 74

≥

£
75 70 82
102 114 100
70 69 72

≥.

Example

Evaluate 

In this case the answer is £
�3 �6 12
�9 �3 �6
3 �9 �15

≥.

�3£
1 2 �4
3 1 2

�1 3 5
≥.

This can be done by 
calculator, but is probably
easier to do mentally.

Multiplication of matrices

To multiply two matrices there are a number of issues we need to consider. In matrix
multiplication we multiply each row by each column, and hence the number of columns
in the first matrix must equal the number of rows in the second matrix. Multiplying an
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possible both ways, the matrices are of different orders. Only in the case of a square
matrix is it possible to multiply both ways and gain an answer of the same order, and
even then the answers are often not the same.

Example

If and find:

a) AB
b) BA

a) 

b) BA � ¢3 �2
3 4

≤ ¢2 �1
3 4

≤ � ¢ 0 �11
18 13

≤
AB � ¢2 �1

3 4
≤ ¢3 �2

3 4
≤ � ¢ 3 �8

21 10
≤

B � ¢3 �2
3 4

≤,A � ¢2 �1
3 4

≤

Hence if we have a matrix A and multiply it by a matrix X, then we need to state whether
we want XA or AX as they are often not the same thing. To do this we introduce the
terms pre- and post-multiplication. If we pre-multiply a matrix A by X we are finding
XA, but if we post-multiply a matrix A by X we are finding AX.

Identity matrix

Under the operation of multiplication, the identity matrix is one that fulfils the following
properties. If A is any matrix and I is the identity matrix, then In
other words, if any square matrix is pre- or post-multiplied by the identity matrix, then
the answer is the original matrix. This is similar to the role that 1 has in multiplication of
real numbers, where for x H �.1 � x � x � 1 � x

A � I � I � A � A.

is the identity matrix for matrices and is the identity

matrix for matrices.3 � 3

£
1 0 0
0 1 0
0 0 1

≥2 � 2¢1 0
0 1

≤

For a matrix the zero matrix is and for a matrix it is

¢0 0 0
0 0 0

≤.
2 � 3¢0 0

0 0
≤2 � 2

Zero matrix

Under the operation of addition or subtraction, the matrix that has the identity property
is the zero matrix. This is true for a matrix of any size.

Only square matrices
have an identity of this
form.

Commutativity

Commutativity is when the result of an operation is independent of the order in which
the elements are taken. Matrix multiplication is not commutative because in general

In many cases multiplying two matrices is only possible one way or, if itAB � BA.

Example

If find 

As with algebra, means 

Hence A2 � ¢ 3 �1
�4 5

≤ ¢ 3 �1
�4 5

≤ � ¢ 13 �8
�32 29

≤
A � A.A2

A2.A � ¢ 3 �1
�4 5

≤

Example

Find the value of x and of y if 

Multiplying the left-hand side of the equation 

Equating elements:

We now check which is true.6x � 2 � �32,

 1 x � �5
 1 2x � 6 � �4

 2x � 2y � �4
 1 y � 3

 6 � y � 3

¢ 3 19
�4 �32

≤1 ¢ 6 � y 19
2x � 2y 6x � 2

≤ �

¢3 �1
x 2

≤ ¢2 6
y �1

≤ � ¢ 3 19
�4 �32

≤.

Example

If and find 

We begin by finding 

and

Hence

¢�18 158 � 20k
�2 �8k � 8

≤�

�2A˛1B � 2C 2 � ¢�10 �18
4 �2

≤ ¢0 �5 � 2k
1 �6

≤

�2A � ¢�10 �18
4 �2

≤

B � 2C � ¢2 �5
1 �2

≤ � ¢2 2k
0 4

≤ � ¢0 �5 � 2k
1 �6

≤

�2A˛1B � 2C 2 .C � ¢1 k
0 2

≤,B � ¢2 �5
1 �2

≤A � ¢ 5 9
�2 1

≤,
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The role of the zero matrix is similar to the role that 0 has in addition of real numbers,
where for If we multiply by a zero matrix, the answer will be
the zero matrix.

Associativity

Matrix multiplication is associative. This means that 

We will prove this for matrices. The method of proof is the same for any three
matrices that will multiply.

Let and 

Hence matrix multiplication on matrices is associative.

Distributivity

Matrix multiplication is distributive across addition. This means that 

We will prove this for matrices. The method of proof is the same for any three
matrices that will multiply.

Let and 

 � ¢ae � ai � bg � bk af � aj � bh � bl
ce � ci � dg � dk cf � cj � dh � dl

≤

 � ¢a b
c d

≤ B¢ e � i f � j
g � k h � l

≤R

 A˛1B � C 2 � ¢a b
c d

≤ B¢e f
g h

≤ � ¢ i j
k l
≤R

C � ¢ i j
k l
≤.B � ¢e f

g h
≤A � ¢a b

c d
≤,

2 � 2

A˛1B � C 2 � AB � AC.

2 � 2

 � ¢aei � afk � bgi � bhk aej � afl � bgj � bhl
cei � cfk � dgi � dhk cej � cfl � dgj � dhl

≤

 � ¢aei � bgi � afk � bhk aej � bgj � afl � � bhl
cei � dgi � cfk � � dhk cej � dgj � cfl � � dhl

≤

 � B¢ae � bg af � bh
ce � dg cf � dh

≤R ¢ i j
k l
≤

 1AB 2C � B¢a b
c d

≤ ¢e f
g h

≤R ¢ i j
k l
≤

 � ¢aei � afk � bgi � bhk aej � afl � bgj � bhl
cei � cfk � dgi � dhk cej � cfl � dgj � dhl

≤

 � ¢a b
c d

≤ B¢ei � fk ej � fl
gi � hk gj � hl

≤R

 A˛1BC 2 � ¢a b
c d

≤ B¢e f
g h

≤ ¢ i j
k l
≤R

C � ¢ i j
k l
≤.B � ¢e f

g h
≤A � ¢a b

c d
≤,

2 � 2

1AB 2C � A˛1BC 2 .

x H �.0 � x � x � 0 � x
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Hence matrix multiplication is distributive over addition in matrices.2 � 2

 � ¢ae � ai � bg � bk af � aj � bh � bl
ce � ci � dg � dk cf � cj � dh � dl

≤

 � ¢ae � bg af � bh
ce � dg cf � dh

≤ � ¢ai � bk aj � bl
ci � dk cj � dl

≤

 AB � AC � ¢a b
c d

≤ ¢e f
g h

≤ � ¢a b
c d

≤ ¢ i j
k l
≤

Exercise 1

1 What is the order of each of these matrices?

a b

c d

2 Alan, Bill and Colin buy magazines and newspapers each week. The tables
below show their purchases in three consecutive weeks.

§
1
k

6k
2

¥£
2 6 �1

�3 3 7
1 �3 2

≥

¢2 6 �1
4 3 7

≤11 2 �3 2

Magazines Newspapers
Alan 3 1
Bill 2 2
Colin 4 4

Magazines Newspapers
Alan 1 2
Bill 4 1
Colin 0 1

Magazines Newspapers
Alan 4 2
Bill 1 0
Colin 1 1

Write each of these in matrix form. What operation do you need to perform
on the matrices to find the total number of magazines and the total number
of newspapers bought by each of the men? What are these numbers?

3 Simplify these.

a b

c d 1k � 1 2¢ 3 2
�1 0

≤k£
3 6

�4 �1
12 4

≥

�6£
3 4

�1 2
�3 �4

≥4£
2 1 3
5 �2 3
7 �4 1

≥

Week 1

Week 2

Week 3
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8 Find the values of x and y.

a

b

c

d

9 If find and 

10 a The table below shows the number of men, women and children dieting
in a school on two consecutive days.

A3.A2A � ¢4 �1
3 0

≤

¢3 x
1 �3

≤ ¢4 1
y 4

≤ � ¢ 0 19
13 �11

≤
¢2 4
0 �1

≤ ¢3 �7
y 4

≤ � ¢ x 2
�1 �4

≤
¢ 3 7
�2 5

≤ ¢x
y
≤ � ¢7

5
≤

¢ 2 x
�1 2

≤ ¢1 y
3 2

≤ � ¢8 6
5 3

≤

Men Women Children
Day 1 3 2 4
Day 2 5 7 2

Calories
Men 1900
Women 1300
Children 1100

Write this in matrix form, calling the matrix A.
b The minimum number of calories to stay healthy is shown in the table below.

Write this in matrix form, calling the matrix B.
c Evaluate the matrix AB and explain the result.

d If and find:

i EAB
ii AC
iii DB
In each case, explain the meaning of the result.

11 The table below shows the numbers of games won, drawn and lost for five
soccer teams.

E � 11 1 2C � £
1
1
1
≥, D � 11 1 1 2 ,

Won Drawn Lost
Absolutes 3 4 7
Brilliants 6 2 6
Charismatics 10 1 3
Defenders 3 9 2
Extras 8 3 3

4 Find the unknowns in these equations.

a

b

c

d

e

f

g

5 For 

and find, if possible:

a b c
d e f

g h

6 Multiply these matrices.

a

b

c

d

e

f

7 If and find:

a AB b A(BC ) c (AB)C d C(AB)
e 3BC f g h 31A � B 2 1A � B 212A � B 2 1A � C 21A � B 2C

C � ¢1 k
0 1

≤,A � ¢ 3 4
�2 5

≤, B � ¢3 4
9 �2

≤

11 2 �1 k 2§
7 0 k 2
3 �k 2 k � 1
6 5 2k 3

3k � 4 2 0 �2k

¥

¢ 2 k
�1 k

≤ ¢3 1
k 2

≤

£
3 5 �2
2 5 2
1 �4 �3

≥ £
2 2 �2
3 7 �1

�4 1 0
≥

£
3 �4
2 �4
1 7

≥ ¢5 7
1 �2

≤

12 �4 2¢3
8
≤

¢2 �3
4 1

≤ ¢�3 7
6 1

≤

�P � 2S � 3U2R � 3T

P � S � US � UR � T

Q � RP � SP � Q

U � ¢1 0
0 1

≤,T � £
8 �1

�4 �3
�4 7

≥

S � ¢ 8 1
�1 4

≤,R � £
�3 4
2 �3
4 8

≥,Q � ¢�4
1
≤,P � ¢2 �3

1 0
≤,

¢3 �4
4 x

≤ � ¢1 y
5 1

≤ � ¢ 4 7
�6 1

≤
¢2 3
2 �k

≤ � ¢3 2
k 1

≤ � ¢5 5
7 6 � 2k

≤

1
2

 £
2 3

�1
3
2
≥ �

k
2

 ¢ 4 6
�2 3k

≤

3¢ 2 k
�1 3

≤ � ¢ 6 k2

�3 9
≤

£
2 1
3 7
1 k2

≥ � £
2 k
3 7
1 k

≥

¢2 5
7 k

≤ � ¢2 5
7 k2≤

¢2 4 �1
3 1 k

≤ � ¢2 4 �1
3 1 6

≤

a Write this as matrix P.
b If a team gains 3 points for a win, 1 point for a draw and no points for

losing, write down a matrix Q that when multiplied by P will give the total
points for each team.

c Find this matrix product.

12 Given that find:

a b c N2 � 3N � 2IN2 � 2I2N � 3I

N � ¢ 1 3
�2 2

≤
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Using a similar method we find

 �
1

ad � bc
 ¢ d �b

�c a
≤

 so A�1 � §
d

ad � bc
q �

�b
ad � bc

q �
�c

ad � bc
q �

a
ad � bc

¥

 and s �
a

ad � bc

 r �
�c

ad � bc

 q �
�b

ad � bc

 1 p �
d

ad � bc

 1v 2 � 1vi 2 1 adp � bcr � d

is known as the determinant of a matrix.2 � 2ad � bc

Provided the determinant does not equal zero, the matrix has an inverse. A matrix where
is called a singular matrix and if then it is called a 

non-singular matrix.
ad � bc � 0ad � bc � 0

The notation for the 
determinant of matrix A is
Det(A) or and for the 
matrix above is written 

as 2a b
c d

2.
�A�

Example

Find the determinant of the matrix 

Det˛1B 2 � 13 2 16 2 � 12 2 11 2 � 16

B � ¢3 1
2 6

≤.

Example

Find the inverse of 

so exists.

M�1 �
1

�1
 ¢�5 �7

2 3
≤ � ¢ 5 7

�2 �3
≤
M�1Det˛1M 2 � �15 � 1�14 2 � �1

M � ¢ 3 7
�2 �5

≤.

Method to find the inverse of a matrix2 � 2

If a calculator cannot be used then:

1. Evaluate the determinant to check the matrix is non-singular and divide
each element by the determinant.

2. Interchange the elements a and d in the leading diagonal.
3. Change the signs of the remaining elements b and c.

On a calculator paper where no variables are involved, a calculator should 
be used.

13 If and find the values of m and n such that

the multiplication of A and B is commutative.

14 If and find the value of k.

15 If where M is any matrix, show that

16 Given that and find the value of c.

17 If and find the value of c

such that 

18 If and find the products PQ and QP.

19 Find the values of x and y for which the following pairs of matrices are 
commutative.

a and 

b and 

c and 

20 Find in general form the matrix A that commutes with ¢1 1
0 1

≤.2 � 2

Y � ¢x y
1 1

≤X � ¢8 y
3 �2

≤
Y � ¢�1 y

2 1
≤X � ¢3 y

x �2
≤

Y � ¢3 y
5 1

≤X � ¢x 2
1 �2

≤

Q � £
5 1
2 0
3 c

≥,P � ¢1 4 �3
c 2 0

≤

AB � 2C.

C � £
3 �6

2
1
2
≥,A � ¢1 3 c

2 0 1
≤, B � £

1 c
3 0

�c 5
≥

A2 � 6A � cI � 0,A � ¢ 2 �1
�3 4

≤
M4 � 2M2 � 8M � 5I.

2 � 2M2 � 2M � I

M2 � M � 4I � ¢k 0
0 k

≤,M � ¢4 2
1 �3

≤

B � ¢m 2
n �3

≤A � ¢2 �1
3 4

≤

A � A�1 � A�1 � A � I

11.2 Determinants and inverses of matrices
Finding inverse matrices
If we think of a matrix A multiplied by a matrix B to give the identity matrix, then the

matrix B is called the inverse of A and is denoted by If A is any matrix and I is the

identity matrix, then the inverse fulfils the following property:

A�1.

Consider a matrix Let its inverse be so that

Equating elements: 

 1ii 2 � b 1 bcp � bdr � 0  1vi 2

 1i 2 � d 1 adp � bdr � d  1v 2
cq � ds � 1  1iv 2
cp � dr � 0  1iii 2
aq � bs � 0  1ii 2
ap � br � 1  1i 2

¢a b
c d

≤ ¢p q
r s

≤ � ¢1 0
0 1

≤.
A�1 � ¢p q

r s
≤A � ¢a b

c d
≤.2 � 2
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General results for inverse matrices

Example

If and find the values of m and n.

so 

and 2mn � 1 1 n �
1
2

m � 1

 1 £
2mn 0 0

0 1 0
0 0 m

≥ � £
1 0 0
0 1 0
0 0 1

≥

 £
0 0 2m
0 1 0
m 0 0

≥ £
0 0 1
0 1 0
n 0 0

≥ � £
1 0 0
0 1 0
0 0 1

≥

A�1 � £
0 0 1
0 1 0
n 0 0

≥,A � £
0 0 2m
0 1 0
1 0 0

≥

If then and A � B�1.B � A�1AB � I

That is, the matrices are inverses of each other.

Proof

Let 

If we pre-multiply both sides of the equation by then

Similarly if we post-multiply both sides of the equation by then

 1 A � B�1

 1 AI � IB�1

 A˛1BB�1 2 � IB�1

B�1

 1 B � A�1

 1 IB � A�1
˛I

 1A�1
˛A 2B � A�1

˛I

A�1

AB � I.

1AB 2�1 � B�1
˛A�1

Proof
We begin with 

Pre-multiplying by AB:

 � I
 � AA�1

 � AIA�1

 1AB 2 1B�1
˛A�1 2 � ABB�1

˛A�1

B�1
˛A�1.

It is not part of this syllabus to find the inverse of a matrix by hand, but you need
to be able to do this on a calculator, and you need to be able to verify that a particular
matrix is the inverse of a given matrix.

3 � 3

Example

Find the inverse of 

On a calculator this appears as:

£
1 3 1
3 �1 1
1 �2 1

≥.

and the answer is:

Example

Verify that is the inverse of 

If we multiply these together then the answer is:

£
2 1 4
2 �3 �1

�1 2 2
≥.¶

4
7

�6
7

�11
7

3
7

�8
7

�10
7

�1
7

5
7

8
7

μ

Since this is the identity matrix, the matrices are inverses of each other.
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General results for determinants

Example

Find the values of y for which the matrix is singular.

For the matrix to be singular 

We solve this using a calculator.

0.947 or 8.861 y � �0.805,

 1 �4y3 � 36y2 � 2y � 27 � 0

 1 1�2y � 9 2 � 413 � 9y2 2 � 21�3 � 2y3 2 � 0

 1 22y 9
1 �1

2 � 42�3 9
y2 �1

2 � 22�3 2y
y2 1

2 � 0

Det1M 2 � 0.

M � £
1 4 2

�3 2y 9
y2 1 �1

≥

Therefore the inverse of AB is so 

Finding the determinant of a matrix
This is done by extracting the determinants from the determinant, and
although it can be done on a calculator very easily, it is important to know how to do
this by hand.

Method
If the row and column through a particular entry in the determinant are crossed
out, four entries are left that form a determinant, and this is known as the

determinant through that number. However, there is a slight complication. Every
entry in a determinant has a sign associated with it, which is not the sign of the
entry itself. These are the signs:

Therefore in the determinant the determinant through 6 is 

In the same determinant the determinant through 4 is

To find the determinant of a matrix, we extract three determinants and
then evaluate these as before. It is usual to extract the determinants from the top
row of the determinant.3 � 3

2 � 2
2 � 23 � 3

�22 3
0 5

2.

2 � 23
6 2 3
4 �1 �2

�3 0 5
3,

2�1 �2
0 5

2.

2 � 23
6 2 3
4 �1 �2

�3 0 5
3

3
� � �

� � �

� � �

3

3 � 3
2 � 2

2 � 2
3 � 3

3 � 32 � 2

3 � 3

1AB 2�1 � B�1
˛A�1

B�1
˛A�1,

determinants are 
particularly important when
we come to work with vector
equations of planes in 
Chapter 13.

3 � 3

Example

Without using a calculator, evaluate 

� �13 � 288 � 126 � �427

� 1�8 � 5 2 � 618 � 40 2 � 912 � 16 2

3
1 6 9
2 �2 5

�8 1 4
3 � 12�2 5

1 4
2 � 62 2 5

�8 4
2 � 92 2 �2

�8 1
2

3
1 6 9
2 �2 5

�8 1 4
3.

Det1AB 2 � Det1A 2 � Det1B 2

This is a useful result, which can save time, and is proved below for matrices.
The proof for matrices would be undertaken in exactly the same way.

Proof

Let and 

Now and  Det1B 2 � ps � qr Det1A 2 � ad � bc

 � adps � bcqr � adqr � bcps

 � acpq � adps � bcqr � bdrs � acpq � adqr � bcps � bdrs

 Det1AB 2 � 1ap � br 2 1cq � ds 2 � 1aq � bs 2 1cp � dr 2

AB � ¢ap � br aq � bs
cp � dr cq � ds

≤

B � ¢p q
r s

≤.A � ¢a b
c d

≤

3 � 3
2 � 2
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Exercise 2

1 Find the inverse of each of these matrices.

a b c

d e f

g h

2 If 

and find the matrices X, Y and Z.

3 Evaluate these determinants.

a b

c d

4 Expand and simplify these.

a b c

d e f

g

5 Using determinants, find the area of the triangle PQR, where P, Q and R are
the points:
a

b

c 1�3, 5 2 , 19, 1 2 , 15, �1 2

13, 7 2 , 1�4, �4 2 , 11, 5 2

11, 4 2 , 13, �2 2 , 14, �1 2

3
1 1 1
b2 a2 a2

a b a
3

3
y � 1 0 y � 1

1 1 �1
y � 1 1 1

33
cos u sin u tan u
 tan u cos u sin u
sin u tan u cos u

33
0 a c
a 0 b
c b 0

3

2x � 1 x � 1
x x � 2

22sin u cos u
sin u �cos u

22 cos u sin u
�sin u cos u

2

3
2 5 �3
7 3 6
2 1 �5

33
3 2 �1
1 6 3
2 1 4

3

2 6 �1
�4 8

224 7
6 3

2

RZ � S, PX � Q, QY � R

P � ¢3 �1
2 4

≤, Q � ¢ 4 �1
�2 1

≤, R � ¢3 �3
2 4

≤, S � ¢4 7
9 1

≤,
¢ 3k k
2k � 1 k � 2

≤¢ k 5
3k 1

≤

£
4 6 �6
2 5 1
8 3 8

≥£
6 5 7

�9 2 6
0 5 �3

≥£
3 8 �1
2 5 3
8 �4 2

≥

¢ 4 8
�9 1

≤¢ 2 7
�3 10

≤¢1 �2
3 5

≤

Example

Without using a calculator, find the area of the triangle PQR whose vertices
have coordinates (1, 2), and 

 �
1
2

 113 � 11 � 7 2 �
31
2

 units2

 �
1
2

 3 1�2 � 15 2 � 1�1 � 10 2 � 1�3 � 4 2 4

 Area �
1
2
3
1 1 1
1 2 5
2 �3 �1

3

15, �1 2 .12, �3 2

Proof

Example

If find Det(AB). If possible find

Using a calculator, and Hence 
Since the matrix is singular so AB has no inverse.Det1AB 2 � 0,

Det1AB 2 � 0.Det1B 2 � �85.Det1A 2 � 0

1AB 2�1.

A � £
3 1 2
2 �4 3
6 2 4

≥ and B � £
1 2 �4
3 7 2

�1 4 3
≥,

The area of a triangle with vertices and is 
1
2
3
1 1 1
x1 x2 x3

y1 y2 y3

3.1x3, y3 21x1, y1 2 , 1x2, y2 2

S

A
(x1,y1)

(x3, y3)

(x2, y2)

C

B

T U

y

x

Considering the diagram shown above:

If A, B and C lie on a straight line (are collinear), then the area of the triangle is zero, and
this is one possible way to show that three points are collinear.

 �
1
2
3
1 1 1
x1 x2 x3

y1 y2 y3

3

 �
1
2

 1x2y3 � x3y2 � x1y3 � x3y1 � x1y2 � x2y1 2

x2y2 � x1y1 � x1y2 2 �

 �
1
2

 1x3y1 � x3y3 � x1y1 � x1y3 � x2y2 � x2y3 � x3y2 � x3y3 � x2y1

 �
1
2

 1y1 � y3 2 1x3 � x1 2 �
1
2

 1y2 � y3 2 1x2 � x3 2 �
1
2

 1y1 � y2 2 1x2 � x1 2

 Area ABC � area SATC � area TCBU � area SABU

So 

Hence Det1AB 2 � Det1A 2 � Det1B 2

 � adps � adqr � bcps � bcqr

 Det1A 2 � Det1B 2 � 1ad � bc 2 1ps � qr 2
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11.3 Solving simultaneous equations in two
unknowns

The techniques of solving two simultaneous equations in two unknowns have been met
before, but it is worth looking at the different cases and then examining how we can use
matrices to solve these.

When we have two linear equations there are three possible scenarios, which are shown
in the diagrams below.

The lines intersect, giving a unique solution

0

Solution

y

x

In this case solving the pair of simultaneous equations using a method of elimination or
substitution will give the unique solution.

The lines are parallel, giving no solution

0

y

x

This occurs when we attempt to eliminate a variable and find we have a constant equal
to zero.

Example

Determine whether the following equations have a solution.

This is not possible, so there is no solution.

31i 2 � 1ii 2 1 0 � 23

 �3x � 15y � 16 equation 1ii 2

 x � 5y � 7 equation 1i 2

6 Using determinants, determine whether each set of points is collinear.

a (1, 2), (6, 7), (3, 4)

b

c

7 Verify that these matrices are the inverses of each other.

a and 

b and 

c and 

8 Find the value of k for which the matrix is singular.

9 If and verify that 

10 Find the values of c for which the matrix is singular.

11 Find the values of y such that 

12 M is the matrix and N is the matrix By 

evaluating the product MN, find the values of x and y for which M is the 

inverse of N.

13 If where A, B and X are matrices, find

a X in terms of A and B

b X given that where I is the identity matrix.

14 The matrix 

a Show that Det(M) is independent of x.

b Find M�1.

M � ¢x � 3 x � 1
x � 1 x � 3

≤.
B�1

˛A � 2I,

2 � 22A � 3BX � B,

£
�y 0 1
1 y �y
y2 0 0

≥.£
0 0 1
1 x 0
x2 0 x

≥

2y 2y
y 1

2 � 3
2 3 �1
4 2 0
1 5 1

3.

£
4 �2 6
1 c 9
0 3 c

≥

1AB 2�1 � B�1
˛A�1.B � ¢4 �2

1 �k
≤A � ¢1 3

k �1
≤

£
k2 � k � 2 k2 0

k � 4 2 k2

1 1 1
≥

¶

�7
16

3
8

�5
16

�5
16

1
8

1
16

13
16

�1
8

7
16

μ£
1 �2 1
3 1 2

�1 4 1
≥

¶

1
2

1
�1
4

�5
4

1
4

1
8

�1
4

�1
4

1
8

μ£
1 �1 3
2 0 4
6 �2 22

≥

¶

1
3

�2
3

0

1
3

1
3

0

�7
3

�1
3

1

μ£
1 2 0

�1 1 0
2 5 1

≥

12, 3 2 , 15, 18 2 , 1�3, �22 2

11, 3 2 , 15, �2 2 , 17, �3 2
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If we are asked to find when equations have no unique solution, then we would need to
show the matrix is singular. However, if we need to distinguish between the two cases
here, i.e. no solution or infinite solutions, then we need to use Gaussian elimination.

So x �
14
5

, y � �
11
5

 1 ¢x
y
≤ � §

14
5

�11
5

¥

Example

Show that the following system of equations does not have a unique solution.

This can be represented in matrix form as

If then 

Hence the matrix is singular and the system of equations does not have a
unique solution.

Det1A 2 � �18 � 18 � 0.A � ¢2 �3
6 �9

≤

¢2 �3
6 �9

≤ ¢x
y
≤ � ¢ 7

20
≤

 6x � 9y � 20
 2x � 3y � 7

This is called Gaussian
elimination or row 
reduction.

We are trying to make
the first element zero.

The lines are the same, giving infinite solutions

0

y

x

In this case, when we try to eliminate a variable we find but we can actually give
a solution.

0 � 0,

The lines are coincident.

Example

Find the solution to:

If we do 4(i) – (ii) we find 

Hence the solution can be written as y � 4x � 5.

0 � 0.

 16x � 4y � 20 equation 1ii 2
 4x � y � 5 equation 1i 2

Using matrices to solve simultaneous equations in
two unknowns
This is best demonstrated by example.

If we are asked to show that
simultaneous equations are
consistent, this means that
they either have a unique
solution or infinite solutions.
If they are inconsistent, they
have no solution.

Example

Find the solution to these simultaneous equations.

This can be represented in matrix form as

To solve this we pre-multiply both sides by the inverse matrix. This can be 
calculated either by hand or by using a calculator.

Hence 

 1 ¢1 0
0 1

≤ ¢x
y
≤ � §

1
5

2
5

1
5

�3
5

¥¢4
5
≤

 §
1
5

2
5

1
5

�3
5

¥¢3 2
1 �1

≤ ¢x
y
≤ � §

1
5

2
5

1
5

�3
5

¥¢4
5
≤

¢3 2
1 �1

≤ ¢x
y
≤ � ¢4

5
≤

 x � y � 5
 3x � 2y � 4 Example

The augmented matrix looks like this.

We now conduct row operations on the augmented matrix to find a solution.

Changing Row 1 to 

This is the same as

So the first row gives:

 1 y � �
11
5

 5y � �11

¢0 5
1 �1

≤ ¢x
y
≤ � ¢�11

5
≤

1 ¢0 5 �11
1 �1 5

≤
Row 1 � 3 1Row 2 2

¢3 2 4
1 �1 5

≤

We can also write the simultaneous equations as what is called an augmented matrix
and solve from here. This is effectively a neat way of representing elimination, but becomes
very helpful when we deal with three equations in three unknowns. We will demonstrate
this in the same example.
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4 By evaluating the determinant, state whether the simultaneous equations
have a unique solution.

a b

c d

5 Determine the value of c for which the simultaneous equations have no
solution. What can you say about the lines in each case?

a b

6 State with a reason which of these pairs of equations are consistent.

a b c

7 Find the value of p for which the lines are coincident.

8 Find the value of for which the equations are consistent and in this case
find the corresponding values of y and x.

 4x � 6y � �2
 3x � y � 4

 4x � ly � 10

l

 x � 2y � p � 0
 px � 6y � 9 � 0

 2x � 4y � 2p � 0

y � 2x � 3 � 0

x � �
y

2
�

6
4

2y � 3x � �7

y �
3
2

 x �
14
4

y � 3x � 7
y

2
� 5x � 9

cx � 12c � 4 2y � 15
1c � 1 2x � 2cy � 9

cy � 13c � 1 2x � 7
cy � �2x � 3c

13k � 1 2y � x � 5
4y � 1k � 1 2x � 11

y � 2x � 5
2y � 4x � �10

8x � 7y � 15
3x � 8y � 13

3x � 2y � �7
6x � 4y � 14

11.4 Solving simultaneous equations in
three unknowns

We will see in Chapter 13 that an equation of the form is the
equation of a plane. Because there are three unknowns, to solve these simultaneously
we need three equations. It is important at this stage to consider various scenarios,
which, like lines, lead to a unique solution, infinite solutions or no solution.

Unique solution

The three planes intersect in a point.

ax � by � cz � d

In this case solving the three equations simultaneously using any method will give the
unique solution.

1 Use the inverse matrix to solve these equations.
a b

c d

2 Using a method of row reduction, solve these pairs of simultaneous equations.
a b

c d

3 Use the method of inverse matrices or row reduction to uniquely solve the
following pairs of simultaneous equations. In each case state any restrictions
there may be on the value of k.
a b

c d y � kx � 4
1k � 1 2y � �3x � 10

y � 12k � 1 2x � 1 � 0
5y � kx � 7 � 0

x � ky � 3
kx � 3y � 3

12k � 1 2x � y � 1
1k � 1 2x � 2y � 3

2x � 3y � 8 � 0
x � 2y � 7 � 0

a � 3b � 8
2a � 5b � 7

x � 5y � 7
3x � 5y � 10

y � 3x � 4
3y � 7x � 2

3y � 1 � 2x � 0
4x � 3y � 4 � 0

3p � 5q � 7
p � 2q � 7

3x � y � 4
x � 2y � 7

We now substitute in the second row:

 1 x �
14
5

 1 x �
11
5

� 5

 x � y � 5

Example

Determine whether the following set of equations has no solution or infinite 
solutions.

The augmented matrix for these equations is

Changing Row 1 to 3 

Hence we have a case of which is inconsistent, so the equation has no
solution.

0 � 36,

1 ¢ 0 0 36
�3 9 15

≤
1Row 1 2 � Row 2

¢ 1 �3 7
�3 9 15

≤

 �3x � 9y � 15
 x � 3y � 7

Had the equation had
infinite solutions we
would have had a whole
line of zeros.

Exercise 3

11  Matrices

y �
3
2

 x � 9

y � 4x � 1



11  Matrices

293

11  Matrices

292

If there are four zeros in a row of the augmented matrix there are infinite solutions. It

does not matter which row it is. Therefore the augmented matrix 

would produce infinite solutions.

If there are three zeros in a row of the augmented matrix there are no solutions. Again it

does not matter which row it is, but the three zeros have to be the first three entries in the 

row. Therefore the augmented matrix would produce no solution.

All other augmented matrices will produce a unique solution. For example 

has a unique solution even though there is one row with three

zeros in it. This highlights the fact that the position of the three zeros is important.

Elimination
To do this we eliminate one variable using two pairs of equations, leaving us with a pair
of simultaneous equations in two unknowns.

£
3 2 �1 � 4
4 2 6 � 1
0 4 0 � 0

≥

£
3 2 �1 � 4
4 2 6 � 1
0 0 0 � 4

≥

£
3 2 �1 � 4
4 2 6 � 1
0 0 0 � 0

≥

Solving simultaneous equations in three unknowns

We are often told which method to use, but if not:
1 If a unique solution is indicated, any method can be used to find it.
2 If we want to distinguish between unique and non-unique solutions, then checking

whether the matrix is singular is the easiest method.
3 If we want to establish that there is no solution or find the infinite solutions, then

row operations are usually the easiest.

Example

Solve these equations.

Substitute in equation (iv):

Substituting x and y in equation (iii):

 1 z � 2
 1 � 3 � 4z � 6

 1 y � �3
 11 � 3y � 20

 1 x � 1
 131iv 2 � 31v 2 1 122x � 122

 21ii 2 � 1iii 2 1 7x � 13y � 46 equation 1v 2
 21i 2 � 1ii 2 1 11x � 3y � 20 equation 1iv 2

 x � y � 4z� 6 equation 1iii 2
 3x � 7y � 2z � 20 equation 1ii 2

 4x � 2y � z � 0 equation 1i 2

Substitution
To do this we make one variable the subject of one equation, substitute this in the other
two equations and then solve the resulting pair in the usual way.

No solution

The three planes are parallel.

line of 
intersection

line of solutions

Two planes are coincident and the third plane is parallel.

Two planes meet in a line and the third plane is parallel to the line of intersection

Two planes are parallel and the third plane cuts the other two.

Infinite solutions

Three planes are coincident. In this case the solution is a plane of solutions.

Two planes are coincident and the third plane cuts the other two in a line. In this case
the solution is a line of solutions.

All three meet in a common line. In this case the solution is a line of solutions.

line of solutions

How do we know which case we have? This works in exactly the same way as a pair of
simultaneous equations in two unknowns when we consider the augmented matrix.
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As with lines, if the matrix is singular, then the system of equations has no solution or
infinite solutions. Further work using one of the other methods is necessary to distinguish
between the two cases.

Example

Does the following system of equations have a unique solution?

Writing these equations in matrix form:

If we let then (using a calculator) and

hence the system of equations has a unique solution.

Det1A 2 � �140A � £
1 3 �4
2 �1 5
3 �5 14

≥

£
1 3 �4
2 �1 5
3 �5 14

≥ £
x
y
z
≥ � £

2
1
7
≥

 3x � 5y � 14z � 7
 2x � y � 5z � 1
 x � 3y � 4z � 2

Using row operations
The aim is to produce as many zeros in a row as possible.

Example

Find the unique solution to this system of equations using row operations.

The augmented matrix is:

1 £
1 �3 2 � �3
0 10 �7 � 17
0 0 28 � �28

≥

1 £
1 �3 2 � �3
0 10 �7 � 17
0 �2 7 � �9

≥

1 £
1 �3 2 � �3
2 4 �3 � 11
0 �2 7 � �9

≥

£
1 �3 2 � �3
2 4 �3 � 11
1 1 2 � 1

≥

 x � y � 2z � 1
 2x � 4y � 3z � 11
 x � 3y � 2z � �3

We always begin by producing
a pair of zeros above each
other in order that when we
carry out more row operations
on those two lines, we do not
go around in circles creating
zeros by eliminating ones we
already have. Hence the final
row operation must use Rows
2 and 3.

Change Row 3 to 
2 1Row 3 2 � Row 2.

Change Row 2 to
Row 2 � 2 1Row 1 2 .

Change Row 3 to 
5 1Row 3 2 � Row 2.

Using inverse matrices
In this case we write the equations in matrix form and then multiply each side of the

equation by the inverse matrix. In other words, if then X � A�1
˛B.AX � B

Example

Solve these equations.

Rearranging equation (i) gives 

Substituting in equation (ii):

Substituting in equation (iii):

Rearranging equation (iv) gives equation (vi)

Substituting in equation (v):

Substituting in equation (vi):

Substituting in equation (iii):

 1 z � 4
 2 � 3 � z � 1

x �
3 � 13

8
� 2 1

 1 y � �1
 1 �6 � 26y � 56y � 24

 �2¢3 � 13y

8
≤ � 7y � 3

x �
3 � 13y

8

 1 �2x � 7y � 3 equation 1v 2
 x � 3y � 3x � 4y � 2 � 1

 1 8x � 13y � 3 equation 1iv 2
 2x � 5y � 6x � 8y � 4 � 7

z � 3x � 4y � 2.

 x � 3y � z � 1 equation 1iii 2
 2x � 5y �2z � 7 equation 1ii 2
 3x � 4y � z � �2 equation 1i 2

Remember that we must

pre-multiply by A�1.

Example

Solve these equations using the inverse matrix.

Writing these equations in matrix form:

 1 £
x
y
z
≥ � £

4.5 �1 �3.5
�6.5 2 5.5
0.5 0 �0.5

≥ £
�6
19

�14
≥ � £

3
0
4
≥

 £
2 1 �3
1 1 4
2 1 �5

≥ £
x
y
z
≥ � £

�6
19

�14
≥

 2x � y � 5z � �14
 x � y � 4z � 19

 2x � y � 3z � �6
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The augmented matrix is: 

Hence the system has infinite solutions. We now eliminate one of the other
variables.

This can be read as 

Hence if we let then 

If we now substitute these into the equation we will find x.

Hence the general solution to the equation is x � 11 � 2l, y � l, z � 7 � l.

 1 x � 11 � 2l
 1 6x � 3l � 63 � 9l � 3

 6x � 3l � 917 � l 2 � 3

6x � 3y � 9z � 3

l � z � 7 1 z � 7 � l.y � l,

£
0 0 0
0 1 1
6 3 �9

≥ £
x
y
z
≥ � £

0
7
3
≥.

1 £
0 0 0 � 0
0 1 1 � 7
6 3 �9 � 3

≥

1 £
0 0 0 � 0
2 2 �4 � 5
6 3 �9 � 3

≥

£
2 1 �3 � 1
2 2 �4 � 5
6 3 �9 � 3

≥

Change Row 2 to 
2 1Row 2 2 � Row 3.

By letting it is clear
that we can get the solutions
for x and z in terms of l.

y � l

This is the parametric equation
of a line, and we will learn in
Chapter 13 how to write this
in other forms.

This is a line of solutions. By
looking at the original equations
we can see that the third
equation is three times the first
equation, and hence this is a
case of two planes being 
coincident and the third plane
cutting these two in a line.

Change Row 1 to 
3 1Row 1 2 � Row 3.

Example

Show that the following system of equations has infinite solutions and find the
general form of these solutions.

The augmented matrix is: 

Hence it is clear that the system has infinite solutions. In this case we cannot
eliminate another variable, because any more row operations will eliminate all
the variables.

1 £
0 0 0 0
2 2 �6 4
4 4 �12 8

≥

£
1 1 �3 2
2 2 �6 4
4 4 �12 8

≥

 4x � 4y �12z � 8
 2x � 2y � 6z � 4
    x � y � 3z � 2

Change Row 1 to
2 1Row 1 2 � Row 2.

However, the strength of row operations is in working with infinite solutions and no
solution.

In the case of no solution, row operations will produce a line of three zeros.

We cannot produce any more zeros, so the equation will have a unique solution
and we now solve using the rows.

From Row 3

From Row 2

From Row 1

 1 x � 2
 x � 3 � 2 � �3

 x � 3y � 2z � �3

 1 y � 1
 10y � 7z � 17

 1 z � �1
 28z � �28

Example

Verify that this system of equations has no solution.

The augmented matrix is:

Since there is a line of three zeros, the system of equations is inconsistent and
has no solution.

 1 £
1 �3 4 � 5
2 �1 3 � 7
0 0 0 � �1

≥

 £
1 �3 4 � 5
2 �1 3 � 7
3 �9 12 � 14

≥

 3x � 9y � 12z � 15
 2x � y � 3z � 7
 x � 3y � 4z � 5

Change Row 3 to
Row 3 � 3 1Row 1 2 .

In the case of infinite solutions we will get a line of four zeros, but as we saw previously
there are two possibilities for the solution. In Chapter 13 the format of these solutions
will become clearer, but for the moment, if a line of solutions is given, the answer will be
dependent on one parameter. A plane of solutions can occur only if the three planes are
coincident – that is, the three equations are actually the same – and in this case the
equation of the plane is actually the solution.

Example

Show that this system of equations has infinite solutions and find the general
form of these solutions.

 6x � 3y � 9z � 3
 2x � 2y � 4z � 5
 2x � y � 3z � 1
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If we put in a system of equations that has no solution then the line of three zeros will
occur. The line of four zeros will occur if the system has infinite solutions. The calculator
will not find the line or plane of solutions, but it will certainly make it easier.Exercise
11.4

Example

Use a calculator to find the solution to this system of equations.

The augmented matrix for this system is 

The calculator display is shown below:

This can be read as 

Hence and z � 3.x � 2, y � �1,

£
1 0 0
0 1 0
0 0 1

≥ £
x
y
z
≥ � £

2
�1
3
≥

£
1 2 1 � 3
3 1 �1 � 2
1 4 2 � 4

≥

 x � 4y �2z � 4
  3x � y � z � 2
 x � 2y � z � 3

Example

Find the general solution to this system of equations.

The augmented matrix for this system is 

The calculator display is shown below:

£
1 3 1 � 4
2 �1 2 � 3
1 �4 1 � �1

≥

 x � 4y � z � �1
 2x � y � 2z � 3
 x � 3y � z � 4

Row operations on a calculator

A calculator is capable of doing this, but there are a number of points that need to be
made. Obviously, if the question appears on a non-calculator paper then this is not an
option. However, if a calculator is allowed then it is useful. To find a unique solution we
put the augmented matrix into the calculator as usual.3 � 4

This can be read as 

If we look back at the original equations, we can see that they are in fact the
same equation, and hence we have the case of three coincident planes, which
leads to a plane of solutions. The plane itself is the solution to the equations, i.e.
x � y � 3z � 2.

£
0 0 0
2 2 �6
4 4 �12

≥ £
x
y
z
≥ � £

0
4
8
≥.

Example

Determine what type of solutions the following system of equations has, and
explain the arrangement of the three planes represented by these equations.

The augmented matrix for this system is 

In this case if we perform row operations we get conflicting results.

Changing Row 1 to gives which

implies the system has infinite solutions.

However, changing Row 1 to gives 

which implies the system has no solution.

If we now look back at the equations we can see that the first and second equa-
tions are multiples of each other. In the third equation the coefficients of x, y
and z are multiples of those coefficients in the first and second equations. This
means we have two coincident planes and a parallel plane.

Hence the system actually has no solution. This is also obvious from the initial
equations since we clearly do not have three coincident planes.

£
0 0 0 � �1
4 6 �4 � 2
6 9 �6 � 4

≥,3 1Row 1 2 � Row 3

£
0 0 0 � 0
4 6 �4 � 2
6 9 �6 � 4

≥,2 1Row 1 2 � Row 2

£
2 3 �2 � 1
4 6 �4 � 2
6 9 �6 � 4

≥.
 6x � 9y � 6z � 4
 4x � 6y � 4z � 2
 2x � 3y � 2z � 1

The reasoning behind this will
be explained in Chapter 13.
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5 Using row operations, solve these systems of equations.
a b

c d

6 Using a calculator, solve these systems of equations.
a b

c d

7 Without using a calculator, solve the following equations where possible. 
a b

c d

e f

g h

8 Using a calculator, state whether the following equations have a unique solu-
tion, no solution or infinite solutions. If the solution is unique, state it, and if
the solution is infinite, give it in terms of one parameter.
a b

c d

e f

9 a Find the inverse of 

b Hence solve this system of equations.

 3x � 9y � 9z � 4

 2x � y � 3z � 1

 x � 3y � 3z � 2

£
1 �3 �3
2 �1 3
3 �9 9

≥.

 x � y � 5z � 18 3y � 11z � 0

 2x � y � z � 7 2x � y � z � 8

 x � y � z � 6 x � y � 5z � 4

 x � 3y � 6z � 10 3x � y � 2z � 7

 x � y � z � 4 �x � 7y � 10

 3x � y � 2z � 4 x � 4y � z � 4

 3x � 3y � 2z � �2 x � 8y � 4z � 17

 x � 7y � 4z � 1 x � 3y � 2z � 7

 3x � 5y � 2z � 2 2x � y � 2z � 4

 x � 4y � 4z � 12 x � 3y � 6z � 10

 2x � y � z � 10 x � y � z � 4

 3x � y � 2z � 4 3x � y � 2z � 4

 y � z � 3 5x � 5y � 5z � 9

 2x � y � z � 8 2x � y � 3z � 4

 �x � y � z � 4 x � 2y � z � 1

 6x � 3y � 9z � 12 x � 5y � 10z � �7

 4x � 2y � 6z � 8 x � 2y � 3z � 4

 2x � y � 3z � 4 3x � y � 4z � 1

 x � 3y � 4z � 6 x � 7y � 10z � �5

 �x � 2y � z � 2 x � y � 2z � 4

 2x � y � 3z � 4 x � 3y � 2z � 1

 11x � y � 2z � 8 x � y � 3z � 0

 6x � y � 3z � 7 6x � 8y � z � 8

 3x � 2y � z � 1 3x � 3y � 6z � 2

 3x � 4y � z � 1 3x � 2y � 5z � 9

 2x � y � 2z � 5 2x � y � 2z � 7

 3x � 3y � z � 8 x � 2y � 3z � 5

 10x � 3y � 2z � 0 3x � 3y � 2z � �1

 6x � y � z � 3 2x � y � 2z � 8

 2x � y � 3z � 6 x � 3y � 2z � 13

 x � y � 2z � 0 x � 2y � 5z � 2

 3x � 4y � 2z � 9 2x � y � 4z � 3

 2x � y � 3z � 1 3x � 4y � 7z � 0

1 Using elimination, solve these systems of equations.
a b

c d

2 Using substitution, solve these systems of equations.
a b  

c  d

3 Using a method of inverse matrices, solve these systems of equations.
a b

c d

4 By evaluating the determinant, state whether each system of equations has
a unique solution or not.
a b

c d

 x � y � z � 2 3x � 3y � 2z � 8

 4x � 2y � 4z � 8 2x � 2y � 3z � 4

 2x � y � 2z � 4 x � y � z � 4

 3x � y � z � 7 3x � y � 2z � 12

 x � y � 7z � 15 2x � 3y � 7z � �1

 2x � y � 3z � 12 x � 2y � 5z � 15

 x � 2y � 5z � 6 6x � 2y � 3z � 7

 2x � 3y � 5z � 3 4x � y � 3z � 9

 3x � y � z � 1 2x � y � 2z � 4

 2x � y � 5z � 10 3x � 3y � 12z � 5

 4x � y � 6z � 12 2x � 6y � 9z � 4

 x � 3y � 2z � 1 x � 3y � 6z � 1

 x � 2y � 8z � �2 x � 2y � 6z � 13

 4x � y � 6z � 9 2x � y � 2z � �7

 2x � 3y � 4z � 1 3x � y � 4z � 6

 3x � 2y � z � �4 2x � 5y � 2z � 12

 x � 3y � 8z � 27 3x � 7y � 2z � 13

 2x � y � 2z � �11 2x � 2y � z � �6

 4x � y � 4z � 15 2x � y � z � 5

 3x � 5y � z � 3 3x � y � z � 7

 4x � 8y � 3z � 6 x � 2y � 10

 5x � 13y � 5z � 0 2x � 3y � 2z � �1

 2x � 5y � 2z � �2 3x � 5y � 3z � 3

 4x � 7y � 3z � 2 6x � 8y � 5z � 1

The line of four zeros at the bottom indicates the infinite solutions. If we rewrite
this in the form

we can see that but that x and z cannot be solved uniquely.
Hence if we let then 

Hence the general solution to the equations is and
This is a case of three planes meeting in a line.z � �t � 1.85714.

x � t, y � 0.714285

 1 z � �t � 1.85714
 t � z � 1.85714x � t,

y � 0.714285,

£
1 0 1
0 1 0
0 0 0

≥ £
x
y
z
≥ � £

1.85714 p

0.714285
0

≥

Exercise 4



11  Matrices

303

11  Matrices

302

4 If and find the values of x and y, given that

[IB Nov 01 P1 Q6]

5 Consider this system of equations.

a Write the system in matrix form where 

b Find the value of k for which the determinant of A is zero.
c Find the value of z in terms of k.
d Describe the solutions to the system of equations.

6 Given the following two matrices, and 

find the values of a and b.

[IB Nov 98 P1 Q14]

7 a Find the relationship between p, q and r such that the following system of
equations has a solution.

b If and find the solution to the system of equations. Is this
solution unique?

8 Let and where h and k are integers. Given

that and that 

a show that h satisfies the equation 
b hence find the value of k. [IB May 06 P1 Q17]

9 If and find the values of p

and q.

10 a Find the values of c for which is singular.

b Find A where 

c Explain why A is singular.

A � £
8 3 8
2 2 2
1 3 1

≥ £
1 2 3
4 5 6
2 1 1

≥.

M � £
c3 3 8
c 2 2
1 3 1

≥

M2 � pM � qI,M � ¢2 �1
3 1

≤, I � ¢1 0
0 1

≤

49h2 � 130h � 81 � 0

Det AB � 256h,Det A � Det B

B � ¢ h 3
�3 7

≤,A � ¢2 6
k �1

≤

q � �1,p � 3

 �3x � 6y � 21z � r

 3x � y � 4z � q

 2x � y � 3z � p

M�1 �
1
2

 £
b �5 4

�1 1 0
1 �3 2

≥,

M � £
1 �1 �2
1 1 �2
1 2 a

≥

X � £
x
y
z
≥.AX � B

 x � y � kz � 2k � 1
 x � 3y � 1k � 1 2z � k � 2
 x � 1k � 3 2y � 5z � 0

AB � BA.

B � ¢2 y
8 4

≤,A � ¢x 4
4 2

≤
10 a Find the determinant of the matrix 

b Find the value of c for which this system of equations can be solved.

c Using this value of c, give the general solution to the system of equations.
11 Without finding the solution, show that this system of equations has a

unique solution.

12 If the following system of equations does not have a unique solution, state
the relationship between a and b.

13 a Let Find Det M.

b Find the value of k for which this system of equations does not have a
unique solution.

14 Find the value of a for which this system of equations is consistent.

 16x � 2z � a
 x � 5y � 2z � 1

 x � 3y � z � 3

 3x � y � kz � 3

 2x � 4y � 5z � 2

 x � ky � 3z � 1

M � £
1 k �3
2 4 �5
3 �1 k

≥.
 2x � by � 4z � �1
 2x � 5y � z � 9

 ax � 3y � 2z � 4

 4x � 4y � 3z � 1
 x � y � 3z � �4

 2x � 5y � z � 4

£
1 4 5
1 3 2
1 1 1

≥ £
x
y
z
≥ � £

3
c
2
≥

£
1 9 5
1 3 2
1 1 1

≥.

Review exercise

1 If P is an matrix and Q is an matrix find the orders of the 
matrices R and S such that 

2 Given that and find the values of for

which is a singular matrix. [IB May 03 P1 Q5]

3 a Find the inverse of the matrix where 

b Hence or otherwise, solve the simultaneous equations

[IB Nov 97 P1 Q12] x � ky � 1 � k2

 kx � y � 2k

k H �.A � ¢k �1
1 k

≤,
1A � lI 2

lI � ¢1 0
0 1

≤,A � ¢ 3 �2
�3 4

≤
3P˛1�4Q � 2R 2 � 5S.

n � pm � n
1

4

7

C

M

0
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8
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9

%
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÷

ON✗
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8

CE
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9

%
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X

–

÷

ON✗
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7

C

M

0
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%
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÷
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11 The system of equations represented by the following matrix equation has
an infinite number of solutions.

Find the value of k. [IB May 00 P1 Q6]
12 The variables x, y and z satisfy the simultaneous equations

where c is a constant.
a Show that these equations do not have a unique solution.
b Find the value of c that makes these equations consistent.
c For this value of c, find the general solution to these equations.

13 a Find the values of a and b given that the matrix is

the inverse of the matrix 

b For the values of a and b found in part a, solve the system of linear
equations

[IB Nov 99 P1 Q12]

14 Show that the following system of equations has a solution only when

15 Find the value of a for which the following system of equations does not
have a unique solution.

[IB May 99 P1 Q6]

16 Given that and 

find the values of a and b such that 

17 Given the two sets of equations,

use matrix methods to obtain three equations that express and 
directly in terms of and z3.z1, z2

y3y1, y2

 x3 � z1 � 6z2 � 9z3                         y3 � 2x1 � 2x2 � x3

 x2 � 4z1 � 5z2 � 9z3                      y2 � 3x1 � 5x2 � 7x3

 x1 � 3z1 � 2z2 � 5z3                      y1 � x1 � 4x2 � 3x3

PQ � R.R � £
�3 �1 �1
6 �9 5
0 �8 4

≥,

P � £
2 �1 3
a 2 b
4 0 0

≥, Q � £
0 �2 1
3 0 0
0 1 �1

≥

 x � 2y � az �
7
2

 2x � 3y � �6
 4x � y � 2z � 1

 �a � 7b � 9c � r
 2a � b � 4c � q
 3a � 5b � c � p

p � 2q � r � 0.

 �x � y � 3z � a � 1

 3x � by � z � 0

 x � 2y � 2z � 5

B � £
1 2 �2
3 b 1

�1 1 �3
≥.

A � £
a �4 �6

�8 5 7
�5 3 4

≥

 �x � 2y � z � c
 2x � 3y � 4z � 5

 x � 2y � z � 3

£
2 �1 �9
1 2 3
2 1 �3

≥ £
x
y
z
≥ � £

7
1
k
≥

1

4

7

C

M

0
=

+
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5

8

CE
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%
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Bernard Bolzano was born in 1781 in
Prague in what is now the Czech Republic.
During Bolzano’s early life there were two
major influences.The first was his father,
who was active in caring for others and
the second were the monks who taught
him, who were required to take a vow
which committed them to take special care
of young people. In the year 1799–1800
Bolzano undertook mathematical research
with Frantisek Josef Gerstner and
contemplated his future.The result of this
was that in the autumn of 1800, he went
to Charles University to study theology.
During this time he also continued to
work on mathematics and prepared a
doctoral thesis on geometry which led to
him publishing a work on the foundations
of elementary geometry, Betrachtungen über
einige Gegenstände der Elementargoemetrie in 1804.
In this book Bolzano considers points, lines
and planes as undefined elements, and
defines operations on them.These are key ideas in the concept of linear space, which
then led to the concept of vectors.

Following this, Bolzano entered two competitions for chairs at the Charles University
in Prague. One was for the chair of mathematics and the other for the new chair in
the philosophy of religion. Bolzano was placed first in both competitions, but the
university gave him the chair in the philosophy of religion. In many ways this was the
wrong decision, given the way he was brought up with a belief in social justice and
pacifism and the fact he was a free thinker. His appointment was viewed with
suspicion by the Austrian rulers in Vienna. He criticised the discrimination of the
Czech-speaking Bohemians by the German-speaking Bohemians, against their Czech
follow citizens and the anti-Semitism displayed by both the German and Czech
Bohemians. It came as no surprise that Bolzano was suspended from his position in
December 1819 after pressure from the Austrian government. He was also suspended
from his professorship, put under house arrest, had his mail censored, and was not
allowed to publish. He was then tried by the Church, and was required to recant his
supposed heresies. He refused to do so and resigned his chair at the university. From
1823 he continued to study, until in the winter of 1848 he contracted a cold which,
given the poor condition of his lungs, led to his death.
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Here the unit vectors i, j and k are vectors of magnitude 1 in the directions x, y and z
respectively. These are shown in the diagram below.

12  Vector  Techniques

307

12.1 Introduction to vectors
Physical quantities can be classified into two different kinds:

(i) scalar quantities, often called scalars, which have magnitude, but no associated
direction

(ii) vector quantities, often called vectors, which have a magnitude and an associated
direction.

So travelling 20 m is a scalar quantity and is called distance whereas travelling 20 m due
north is a vector quantity and is called displacement.

Vector notation
Vectors can be represented in either two or three dimensions, and are described through
components. Hence if we want to move from the point (1, 2) on the Cartesian plane to
the point (3, 5) we do this by stating we move 2 in the positive x-direction and 3 in the
positive y-direction. There are two possible notations for this, column vector notation
and unit vector notation.
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Column vector notation

In two dimensions a vector can be represented as and in three dimensions as £
x
y
z
≥.¢x

y
≤

Unit vector notation

The column vector can be represented as using unit vectors.2i � 3j � 2k£
2
3

�2
 ≥

The conventions for x and y in terms of positive and negative are the same as in the
standard two-dimensional Cartesian plane. In three dimensions this is also true, but
we need to define what a standard three-dimensional plane looks like. There are
three different versions, which are all rotations of each other. In all cases they obey
what can be called the “right-hand screw rule”. This means that if a screw were
placed at the origin and turned with a screwdriver in the right hand from the positive
x-axis to the positive y-axis, then it would move in the direction of the positive z-axis.
This is shown below.

x

z

y The axes are always drawn
like this in this book.
Different orientations may
be used on IB examination
papers.

x

z

y

i

j
k

So the vector means 2 along the x-axis, 3 along the y-axis and along
the z-axis.

Hence a vector represents a change in position.

Position vectors, free vectors and tied vectors
A vector can be written as a position vector, a free vector or a tied vector.

A position vector is one that specifies a particular position in space relative to the

origin. For example, in the diagram, the position vector of A is OA
¡

� ¢2
1
≤.

�22i � 3j � 2k There is no advantage to
one notation over the
other. Both are used in IB
examinations and it is
probably best to work in
the notation given in the
question.

means A is 2

units to the right of O and

1 unit above it.

OA
¡

� ¢2
1
≤

This is true for the position
vector of any point.

A

O (0, 0)

(2, 1)

2

1

2
1

Now if we talk about a vector then this can be anywhere in space and is

therefore a free vector.

a � ¢2
1
≤

Point A with coordinates (2, 1) has position vector OA
¡

� ¢2
1
≤.

2

1a

A vector is a tied vector since it is specified as the vector that goes from A to B.AB
¡

� ¢2
1
≤
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It is obviously possible that and that but it must be

understood that and a and are slightly different concepts.

Whenever vectors are printed in books or in examination papers, free vectors are always
written in bold, for example a, but in any written work they are written with a bar
underneath, a. Position vectors and tied vectors are always written as the start and end
points of the line representing the vector with an arrow above them, for example

Forming a tied vector

We now know the vector means the vector that takes us from A to B. If we
consider A to be the point and B to be the point (3, 1, 6), then to get from
A to B we need to move 2 along the x-axis, along the y-axis and 13 along the z-axis.
This is shown in the diagram below.

�1
11, 2, �7 2
AB
¡

OA
¡

, AB
¡

.

AB
¡

OA
¡

AB
¡

� a � ¢2
1
≤,OA

¡

� a � ¢2
1
≤
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B

A 2

1

13

B (3, 1, 6)

2

1

O

z

x

y

A (1, 2, −7)

So AB
¡

� £
2

�1
13
≥.

To find we
subtract the coordinates of
B from those of A.

BA
¡

Example

If A has coordinates and B has coordinates find:

a) 

b) BA
¡

AB
¡

13, �4, 1 212, �3, 1 2
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a) To get from to we go 1 in the x-direction, in the 

y-direction and 0 in the z-direction. Alternatively, 

b) Similarly with we go in the x-direction, 1 in the y-direction and 0 in

the z-direction. Alternatively, BA
¡

� £
2 � 3

�3 � 1�4 2
1 � 1

≥ � £
�1
1
0
≥.

�1BA
¡

,

AB
¡

� £
3 � 2

�4 � 1�3 2
1 � 1

≥ � £
1

�1
0
≥.

�113, �4, 1 212, �3, 1 2

AB
¡

� �BA
¡

This is always true.

The magnitude of a vector

The magnitude (sometimes called the modulus) of a vector is the length of the line
representing the vector. To calculate this we use Pythagoras’ theorem.

Example

Find the magnitude of the vector 

Consider the vector in the diagram below.a � ¢ 5
12
≤

a � ¢ 5
12
≤.

5

12
5
12

The magnitude is given by the length of the hypotenuse. �a� � 252 � 122 � 13

means the magnitude
of a.
�a�

In three dimensions this becomes a little more complicated.

More commonly, we think of as being the coordinates of A subtracted from the
coordinates of B.

AB
¡



Equal vectors

Vectors are equal if they have the same direction and magnitude.
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Multiplying a vector by a scalar

When we multiply a vector by a scalar we just multiply each component by the scalar.

Hence the vector c hanges in magnitude, but not in direction. For example 

has the same direction as but has twice the magnitude. This is shown in the

diagram below.

¢3
4
≤

2¢3
4
≤ � ¢6

8
≤
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Example

Find the magnitude of the vector 

The vector is shown in the diagram below. OA is the magnitude of the

vector.

£
3
4
7
≥

£
3
4
7
≥.

O B

C

A

7

4

3

3
4
7

We know by Pythagoras’ theorem that 

Applying Pythagoras’ theorem again, 
Hence

 1 OA � 274

 1 OA � 232 � 42 � 72

 OA � 2OB2 � BC2 � AC2

OC2 � OB2 � BC2.

OA � 2OC2 � AC2.

3
4

3
4

In general, c ¢3
4
≤ � ¢3c

4c
≤.

There is no symbol for 
multiplication in this case.
This is important as the
symbols and 
have specific meanings in
vectors.

��

Example

If A has coordinates and B has coordinates find these
vectors.

a) 

b) 

c) 

(a)  

(b) 

(c) pAB
¡

� p £
5
3
0
≥ � £

5p
3p
0
≥

 2 BA
¡

� 2£
�5
�3
0
≥ � £

�10
�6
0
≥

 BA
¡

� £
2 � 7
3 � 6

�1 � 1�1 2
≥ � £

�5
�3
0
≥

AB
¡

� £
7 � 2
6 � 3

�1 � 1�1 2
≥ � £

5
3
0
≥

pAB
¡

2   BA
¡

AB
¡

17, 6, �1 2 ,12, 3, �1 2

Example

Find the values of a, b and c for which the vectors 

are equal.

If they are equal then

3c � 5c � 2 1 c � 1

 1 6b � 9 � b � 1 1 b � �
8
5

 312b � 3 2 � b � 1
 1 3a � 3 � 2a � 2 1 a � 1

 31a � 1 2 � 2a � 2

3 £
a � 1

2b � 3
c
≥ and £

2a � 2
b � 1
5c � 2

≥

Negative vectors

A negative vector has the same magnitude as the positive vector but the opposite

direction. Hence if then �a � ¢�2
3
≤.a � ¢ 2

�3
≤



Perpendicular vectors

In the two-dimensional case we use the property that with perpendicular lines the
product of the gradients is �1.

313

Zero vectors

A zero or null vector is a vector with zero magnitude and no directional property. It is

denoted by or in two dimensions. Adding a vector and its negative vector

gives the zero vector, i.e. a � 1�a 2 � zero vector.

0i � 0j¢0
0
≤
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Example

If and find b.

b � �2a � �14i � 8j � 14k 2 � �4i � 8j � 14k
2a � 4i � 8j � 14k

2a � b � 0i � 0j � 0k,a � 2i � 4j � 7k

Example

Find a unit vector parallel to 

The magnitude of is 

Hence the required vector is m̂ �
1

238
 13i � 5j � 2k 2 .

232 � 52 � 1�2 22 � 238.3i � 5j � 2k

m � 3i � 5j � 2k.

Example

Find the value of k for which the vectors and are parallel.

Hence these vectors are parallel when 
k
6

� 4 1 k � 24.

£
4

�2
8
≥ � 2£

2
�1
4
≥ and £

12
�6
k
≥ � 6 §

2
�1
k
6

¥

£
12
�6
k
≥£

4
�2
8
≥

In the case of an equation
like this the zero vector

could just
be written as 0.
0i � 0j � 0k

If then
b � �2a

2a � b � 0

Unit vectors

A unit vector is a vector of magnitude one. To find this we divide by the magnitude of

the vector. If n is the vector then the notation for the unit vector is n̂.

Parallel vectors

Since parallel vectors must have the same direction, the vectors must be scalar multiples
of each other.

So in two dimensions is parallel to since 

In three dimensions is parallel to since
�12i � 6j � 15k � �314i � 2j � 5k 2 .

�12i � 6j � 15k4i � 2j � 5k

¢ 15
�10
≤ � 5 ¢ 3

�2
≤.¢ 15

�10
≤¢ 3

�2
≤
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Example

Find a vector perpendicular to 

From the diagram below we can see that the line representing this vector has

a gradient of �
1
3

.

¢ 3
�1
≤.

3

−1

Hence the line representing the perpendicular vector will have a gradient of 3.

Therefore a perpendicular vector is ¢1
3
≤.

There are an infinite
number of perpendicular
vectors.

In three dimensions this is more complicated and will be dealt with later in the chapter.

Exercise  1

1 Find the values of a, b and c.

a b c

2 If the position vector of P is and the position vector of Q is 
find:

a b

3 If the position vector of A is and the position vector of B is find:

a b

4 Write down a vector that is parallel to the line 
5 Find the magnitude of these vectors.

a b c

d e f

6 State which of the following vectors are parallel to 

a b c d 0.5p˛12i � 6j � 8k 2£
�5

�15
�20
≥1

3
 i � j �

4
3

 k£
4

�12
16
≥

£
1

�3
�4
≥.

OA
¡

� 2i � 7j � 2k£
x
y
z
≥ � £

4
�1
2
≥a � 2i � 4j � 3k

¢x
y
≤ � ¢�3

�9
≤OP

¡

� ¢ 2
�7
≤m � 3i � 5j

y � 3x � 5.

�AB
¡ �AB

¡

¢�1
5
≤,¢2

3
≤

�PQ
¡ �PQ

¡

2i � 3j,i � j

3£
a

b � 1
4
≥ � 4£

2 � a
2b � 3

3
≥£

1
b

�2
≥ � £

3a
2b2

c � 6
≥£

2
3
4
≥ � 2£

a
b � 1
c � 2

≥



12.2 A geometric approach to vectors
To add two vectors we just add the x-components, the y-components and the z-
components. To subtract two vectors we subtract the x-components, the y-components
and the z-components.
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7 Find the values of c for which the vectors are parallel.

a and b and 

c and 

8 A two-dimensional vector has a modulus of 13. It makes an angle of 60
with the x-axis and an angle of 30 with the y-axis. Find an exact value for
this vector.

9 Find a unit vector in the direction of 

10 A, B, C and D have position vectors given by
and Determine

which of the following pairs of lines are parallel.
a AB and CD b BC and CD c BC and AD

11 A triangle has its vertices at the points P (1, 2), Q (3, 5) and Find

the vectors and and the modulus of each of these vectors.
12 A parallelogram has coordinates P(0, 1, 4), R(x, y, z) and

a Find the coordinates of R.

b Find the vectors and 

c Find the magnitude of each of the vectors in part b.

d Hence write down the unit vectors in the directions of and 

13 If PQRST is a pentagon, show that 
14 Consider the hexagon shown.

PQ
¡

� QR
¡

� RS
¡

� PT
¡

� TS
¡

.

RP
¡

.PQ
¡

, QR
¡

, SR
¡

RP
¡

.PQ
¡

, QR
¡

, SR
¡

S˛1�1, 5, 6 2 .
Q˛14, �1, 3 2 ,

PR
¡

,PQ
¡

, QR
¡

R˛1�1, �1 2 .

3i � 5j � 4k.i � 3j � 2k, 2i � j � 4k, 3i � 2j � 7k

£
�5
�6
1
≥.

°
°

£
ct

�12t
15t
≥£

4t
�8t
10t
≥

£
18

�45
�9
≥£

14
�35

c
≥3i � cj � 9ki � 2j � 3k
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U R

T S

P Qa

b

Find the vector represented by 

15 The vector is parallel to the x-axis and the vector is parallel

to Find the values of a and b.

16 The vector is parallel 
to and the vector is 
parallel to the z-axis. Find the values of p, q and r.

17 If 

and where vectors p and q are non-parallel vectors, find the

values of x and y.

2OP
¡

� 3OQ
¡

,

OP
¡

� 13x � 2y 2p � 1x � y � 3 2q, OQ
¡

� 1x � y � 2 2p � 12x � y � 1 2q

1p � 2r 2 i � 1p � q � 2r 2 j � 1p � 2q � 2r 2ki � j
1p � 2q � r 2 i � 12p � q � r 2 j � 13p � 2q � r 2k

¢2
1
≤.

¢ a � b
2a � b

≤¢a � b
b
≤

SU
¡

.

Example

If and find 

 � i � 12j � 19k
 a � b � 12 � 1 2 i � 1�6 � 6 2 j � 112 � 7 2k

a � b.b � �i � 6j � 7ka � 2i � 6j � 12k

Example

If and find 

OA
¡

� OB
¡

� £
�3
4
2
≥ � £

2
�4
�7
≥ � £

�3 � 2
4 � 1�4 2
2 � 1�7 2

≥ � £
�5
0
9
≥

OA
¡

� OB
¡

.OB
¡

� £
2

�4
�7
≥OA

¡

� £
�3
4
2
≥

We can also look at adding and subtracting vectors geometrically.

Vector addition
Let the vectors p and q be represented by the lines and respectively as shown

in the diagram.

BC
¡

AB
¡

A B

C

p

q

p + q

Then the vector represented by the line is defined as the sum of p and q and is

written as This is sometimes called the triangle law of vector addition.

Alternatively it can also be represented by a parallelogram. In this case let p and q be

represented by and AD
¡

.AB
¡

p � q.

AC
¡

A B

CD p

p

p + q
q

q
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It should be noted that since is the same in magnitude and direction as the

line can also represent the vector p. Similarly can represent the vector q.

Comparing this with the triangle, it is clear that the diagonal can represent the sum

This is known as the parallelogram law of vector addition.

This also shows that vector addition is commutative.

Put very simply, vector addition can be thought of as getting
from the start point to the end point by any route. Hence in
the case of the triangle the route along two sides is the
same as the route along the third side because they start
and finish at the same point.

Hence 

This concept can be extended to more than two vectors. To

get from A to F we can either go directly from A to F or we

can go via B, C, D, and E. Hence

AF
¡

� AB
¡

� BC
¡

� CD
¡

� DE
¡

� EF
¡

.

q � p � AD
¡

� DC
¡

� AC
¡

� AB
¡

� BC
¡

� p � q

AB
¡

� BC
¡

.

AC
¡

BC
¡

DC
¡

AB
¡

,DC
¡
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A B

C

A B

C

D

E
F

AB
¡

� BC
¡

� AC
¡

Example

A quadrilateral has coordinates B (3, 2, 5), C(1, 2, 0),
Show that:

a) 

b) 

a)

b) 

AB
¡

� BC
¡

� CD
¡

� £
2
3
1
≥ � £

�2
0

�5
≥ � £

�2
0

�1
≥ � £

�2
3

�5
≥ � AD

¡

CD
¡

� £
�2
0

�1
≥, AD

¡

� £
�2
3

�5
≥

AB
¡

� BC
¡

� £
2
3
1
≥ � £

�2
0

�5
≥ � £

0
3

�4
≥ � AC

¡

AB
¡

� £
2
3
1
≥, BC

¡

� £
�2
0

�5
≥, AC

¡

� £
0
3

�4
≥

AB
¡

� BC
¡

� CD
¡

� AD
¡

AB
¡

� BC
¡

� AC
¡

D˛1�1, 2, �1 2 .
A˛11, �1, 4 2 ,

Example

If A has coordinates and B has coordinates find:
a) the position vector of the point C, the midpoint of AB
b) the position vector of the point D which divides the line AB in the ratio of 
1 : 2.

a)

The diagram shows that OC
¡

� OA
¡

� AC
¡

� £
0

�1
2
≥ � §

1
�1
3
2

¥ � §
1

�2
7
2

¥.

 
AC
¡

�
1
2

 AB
¡

�
1
2

 £
2

�2
3
≥ � §

1
�1
3
2

¥

 AB
¡

� £
2 � 0

�3 � 1�1 2
5 � 2

≥ � £
2

�2
3
≥

12, �3, 5 2 ,10, �1, 2 2

O A

C

B

b) Since the line AB is divided in the ratio of 1 : 2 the point D is the way

along the line.

1
3

O A

D

B

2

1

OD
¡

� OA
¡

� AD
¡

� £
0

�1
2
≥ � •

2
3

�2
3
1

∂
�

•
2
3

�5
3
3

∂
.

AD
¡

�
1
3

 AB
¡

�
1
3

 £
2

�2
3
≥ � ¶

2
3

�2
3
3
3

∑ � •
2
3

�2
3
1

∂

Therefore the position vector of D is



1 If and find:
a b c d

e f g

2 If and find:
a b

c the angle that makes with the x-axis.

3 Vectors a, b, c and d are given by and

If is parallel to find the value of q. Also find the

ratio of their moduli.

4 In the triangle shown, and and C is the midpoint of AB.OB
¡

� bOA
¡

� a

c � d,b � ad � £
7
5
q
≥.

a � £
1
1
1
≥, b � £

2
4
0
≥, c � £

5
�1
3
≥

a � b � c

�a � 2b � 3c�a � 2b � 3c
c � 4i � 7j,a � i � j, b � 2i � 3j

ma � 20mb � 3mc�2a � 3b � 7c3a � 3b � 2c

2a � b � 4cb � ca � b � ca � b
c � 3i � 6j � 8k,a � 2i � j � 5k, b � i � 5j � 6k
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Vector subtraction

We can now use this principle to look at the subtraction of two vectors. We can first
consider to be the same as a � 1�b 2 .a � b
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A B

CD a

a

a � (�b)b
b

is the same as and hence the diagonal can represent

Thus in terms of the parallelogram one diagonal represents the addition of

two vectors and the other the subtraction of two vectors. This explains geometrically

why to find we subtract the coordinates of A from the coordinates of B.

Alternatively if we consider the triangle below we can see that Hence

AB
¡

� �OA
¡

� OB
¡

� �a � b � b � a.

AB
¡

� AO
¡

� OB
¡

.

AB
¡

a � 1�b 2

DB
¡

DC
¡

� CB
¡

a � 1�b 2

A

O

B

a
b

b � a

Example

The diagram shows quadrilateral ABCD, where and

a) What type of quadrilateral is ABCD?
b) Find these in terms of p and q.

i) 

ii) 

iii) 

a) Since AB and DC are parallel and AD is not parallel to BC, the shape is a
trapezium.

b) (i)

(ii)

(iii)
 � q � p

 AC
¡

� AD
¡

� DC
¡

 � p � 3�1q � p 2 4 � 2p � q
 BD

¡

� DC
¡

� CB
¡

 � �2p � q � p � q � p
 BC

¡

� BA
¡

� AD
¡

� DC
¡

AC
¡

DB
¡

BC
¡

AD
¡

� q.

AB
¡

� 2p, DC
¡

� p

A B

D C
p

q

2p

Example

PQRS is a quadrilateral where X and Y are the midpoints of PQ and RS respectively.

Show that 

Since

Similarly 

Now and 

Hence

 1 2 XY
¡

� PS
¡

� QR
¡

 2 XY
¡

� XP
¡

� PS
¡

� SY
¡

� XQ
¡

� QR
¡

� RY
¡

XY
¡

� XQ
¡

� QR
¡

� RY
¡

XY
¡

� XP
¡

� PS
¡

� SY
¡

YR
¡

� YS
¡

� 0 1 RY
¡

� SY
¡

� 0

 1 XQ
¡

� XP
¡

� 0

 PX
¡

� XQ
¡

, XQ
¡

� PX
¡

� 0

PS
¡

� SR
¡

� 2XY
¡

.

P Q

R

S

X

Y

Exercise  2

O
Aa

b C

B

Find:

a b c

d Hence, using two different methods, find OC
¡

.

CB
¡

AC
¡

AB
¡



10 The cuboid ABCDEFGH shown has and Find in

terms of a, b and c:

a b

c d

e

11 If PQR is a triangle and S is the midpoint of PQ, show that

12 ABCDEFGH is a regular octagon in which and 

and Find in terms of a, b, c and d:

a b c

13 T, U and V are the midpoints of the sides PQ, QR and PS of a triangle. Show

that where O is the origin.

14 OABC is a rhombus, where O is the origin, and 

a Find and in terms of a and c.

b What is the relationship between and c � a?c � a

OB
¡

AB
¡

, BC
¡

, AC
¡

OC
¡

� c.OA
¡

� a

OP
¡

� OQ
¡

� OR
¡

� OT
¡

� OU
¡

� OV,
¡

FA
¡

AH
¡

DG
¡

DE
¡

� d.

CD
¡

� cAB
¡

� a, BC
¡

� b

QR
¡

� PR
¡

� 2 PS
¡

.

BH
¡

AG
¡

AH
¡

FH
¡

BC
¡

AE
¡

� c.AB
¡

� a, AD
¡

� b
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5 If the position vector of A is and the position vector of B is 

find:

a b

c the position vector of the midpoint of AB
d the position vector of the point dividing AB in the ratio 2 : 3.

6 If the position vector of P is and the position vector of Q is 

find:

a b

c the position vector of the midpoint of 

d the position vector of the point dividing in the ratio 1 : 7.

7 In the triangle shown, and The point C lies on AB such

that where k is a constant.
Find:

a b c d

8 ABCD is the parallelogram shown, where and and

intersect at 90º and 

a Find:

i) ii) iii) iv) v) 

b If and find in

terms of k and c.

c Hence find, in terms of k and c, a vector

parallel to 

9 The trapezium shown has and E and F are

points on BC such that BE : EF : 
Find:

a b

c d

e ED
¡

AF
¡

CF
¡

EF
¡

BE
¡

FC � m : n : 3.

AD
¡

� 3b.AB
¡

� a, BC
¡

� b

BX
¡

.

AC
¡

b � ¢4k
c
≤,a � ¢2k

3c
≤

XD
¡

AX
¡

BD
¡

CA
¡

CD
¡

AX
¡

�
1
3

 AD
¡

.BX
¡

BC
¡

� b. AC
¡

AB
¡

� a

OC
¡

BA
¡

BC
¡

AC
¡

AC : CB � 1 : k

OB
¡

� b.OA
¡

� a

PQ
¡

PQ
¡

�PQ
¡ �PQ

¡

¢�1
�3
≤,¢ �7

�13
≤

�AB
¡

�AB
¡

¢�1
4
≤,¢ 4

�16
≤
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O
A

C

B

k

1

a

b

A

D

B

C

a

b

x

D

A

B

C

3b b

a

H

E G

CA

B

D

F

a

b
c

12.3  Multiplication of vectors
When we multiply two vectors there are two possible answers. One answer is a scalar
and the other is a vector. Hence one is called the scalar product and one is called the
vector product. We use a “dot” to signify the scalar product and a “cross” to signify
the vector product. It is quite common therefore to refer to the “dot product” and
“cross product”.

The reason why there need to be two cases is best seen through physics. Consider the
concept of force multiplied by displacement. In one context this gives the work done,
which is a scalar quantity. In another context it gives the moment of a force (the turning
effect), which is a vector quantity. Hence in the physical world there are two possibilities,
and both need to be accounted for in the mathematical world.

Scalar product

The scalar product or dot product of two vectors a and b inclined at an angle of is

written as and equals �a��b� cos u.a # b

u

Ba

A

b

�

“Inclined at an angle of ”
means the angle between
the two vectors is u.

u



and 

So proving the scalar product is distributive over addition.

This result can be extended to any number of vectors.

Scalar product of vectors in component form
Let and 

Then

We need to look at what happens with various combinations of i, j and k:

Hence

 i # j � j # i � i # k � k # i � j # k � k # j � 11 2 11 2  cos 

p

2
� 0

 i # i � j # j � k # k � 11 2 11 2  cos0 � 1

�b1c2˛j # k � c1a2˛k # i � b1a2˛j # i � c1b2˛k # j � a1c2˛i # k 2� 1a1b2˛i # j

 � 1a1a2˛i # i � b1b2˛j # j � c1c2˛k # k 2

 p # q � 1a1˛i � b1˛j � c1˛k 2 # 1a2˛i � b2˛j � c2˛k 2

q � a2˛i � b2˛j � c2˛kp � a1˛i � b1˛j � c1˛k

a # 1b � R 2 � a # b � b # R,

a # 1b � R 2 � �OA
¡ ��OC

¡ � cos a � �OA
¡ �� OF

¡ �
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The following results are important.

Parallel vectors
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Perpendicular vectors

If two vectors are parallel, then

So  a # b � �a��b�

 a # b � �a��b� cos 0 or �a��b� cos p

If two vectors are perpendicular, then

So  a # b � 0

 a # b � �a��b� cos 

p

2

The scalar product is commutative.

The scalar product is distributive across addition.

Commutativity

We know that and 

Since then a # b � b # a.�a��b� cos u � �b��a� cos u

b # a � �b��a� cos u.a # b � �a��b� cos u

Distributivity

This means 

Proof

Consider the diagram below, where and 

and the angle makes with which is parallel to is b.OA,
¡

BD,
¡

BC
¡

BC
¡

� R. AÔB � u, AÔC � a,OA
¡

� a, OB
¡

� b

a # 1b � R 2 � a # b � a # R.

O

B

E F
A

D

C

a

b

�

��

	

Clearly 

Now 

 � �OA
¡ �� OF

¡ �

 � �OA
¡ � a �OE

¡ � � � EF
¡

� b

 a # b � a # R � �OA
¡ ��OB

¡ � cos u � �OA
¡ ��BC

¡ � cos b

OC
¡

� b � R

p # q � a1a2 � b1b2 � c1c2

So there are two ways of calculating the scalar product. We normally use this form as we
rarely know the angle between two vectors.

Example

If and find 

 � �1
 � 6 � 1 � 6

 a # b � 13 2 12 2 � 11 2 1�1 2 � 1�1 2 16 2

a # b.b � 2i � j � 6k,a � 3i � j � k

Example

Given that show that x is perpendicular to 

Since the scalar product is zero, x and are perpendicular.p � q
 x # 1p � q 2 � 0

 x # p � x # q � 0
 1 x # p � q # x � 0

 x # p � q # x

p � q.x # p � q # x

Since the scalar product
is commutative

Using the distributive law



Angle between two vectors
If we draw two intersecting vectors, there are two possible angles where one is the
supplement of the other.

Is the angle between the vectors or b?a
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Example

Show that the triangle ABC with vertices A(1, 2, 3), and is
not right-angled.

We first write down the vectors representing each side.

Now

Since none of the scalar products equals zero, none of the sides are at right angles to
each other, and hence the triangle is not right-angled.

 AB
¡

# AC
¡

� £
1

�3
1
≥ # £

2
�5
�2
≥ � 11 2 12 2 � 1�3 2 1�5 2 � 11 2 1�2 2 � 2 � 15 � 2 � 15

 BC
¡

# AC
¡

� £
1

�2
�2
≥ # £

2
�5
�1
≥ � 11 2 12 2 � 1�2 2 1�5 2 � 1�2 2 1�1 2 � 2 � 10 � 2 � 14

AB
¡

# BC
¡

� £
1

�3
1
≥ # £

1
�2
�2
≥ � 11 2 11 2 � 1�3 2 1�2 2 � 11 2 1�2 2 � 1 � 6 � 2 � 5

 AC
¡

� £
2

�5
�1
≥

 BC
¡

� £
1

�2
�2
≥

 AB
¡

� £
1

�3
1
≥

C 13, �3, 2 2B 12, �1, 4 2

Example

In the triangle ABC shown, prove that c # c � 1a � b 2 # 1a � b 2 .

A

B C

c
a

b

Using the scalar product

This is Pythagoras’ theorem and hence the relationship is proven.
 1 AC2 � AB2 � BC2

 1 �c�2 � �a�2 � 0 � 0 � �b�2
 �c�2 � a # a � a # b � b # a � b # b

Since AB and BC are at
right angles to each other

Remember that supplement
means “subtract from
180º” or “subtract from ”
depending on whether we
are working in radians or
degrees.

p

�
�

There is a convention for this. The angle between two vectors is the angle between their
directions when those directions both converge or both diverge from a point. Hence in
this case we require 

Now we know which angle to find, we can find it using the two formulae for scalar
product.

a.

Example

Find the angle between and 

We know that 

So 

Now 

And 

Hence 

1 u � 54.5°

cos u �
26

229269

�b� � 222 � 42 � 72 � 24 � 16 � 49 � 269

�a� � 232 � 1�2 22 � 42 � 29 � 4 � 16 � 229

�a��b� cos u � 26

a # b � 13 2 12 2 � 1�2 2 14 2 � 14 2 17 2 � 6 � 8 � 28 � 26

b � 2i � 4j � 7k.a � 3i � 2j � 4ku

Example

If the angle between the vectors and is 60º, find the

values of x.

We know that 
So 

Now 

And 

Hence 7 � x � 21125 � x2 cos 60° �
21125 � x2

2

�b� � 222 � 1�1 22 � x2 � 24 � 1 � x2 � 25 � x2

�a� � 232 � 1�1 22 � 1�1 22 � 29 � 1 � 1 � 211

7 � x � �a��b� cos 60°

a # b � 13 2 12 2 � 1�1 2 1�1 2 � 1�1 2 1x 2 � 6 � 1 � x � 7 � x

b � £
2

�1
x
≥a � £

3
�1
�1
≥



b

c

d

7 Show that the triangle ABC is not right-angled, given that A has coordinates
and 

8 Find a unit vector that is perpendicular to and to where

and 

9 If the angle between the vectors and is 80º, find the
possible values of x.

10 Taking O as the origin on a cube OABCDEG of
side 2 cm as shown, find the angle between
the diagonals OF and AG.

11 A quadrilateral ABCD has coordinates A (0, 0, 1), B (1, 1, 3), C (3, 0, 6) and
Show that the quadrilateral is a parallelogram.

12 A quadrilateral ABCD has coordinates B (2, 3, 0), C (3, 5, 3)
and Show that the diagonals of the quadrilateral are 
perpendicular. Hence state, giving a reason, whether or not the quadrilateral
is a rhombus.

13 Using the scalar product, prove that the diagonals
of this rhombus are perpendicular to one another.

D 1�2, 3, 2 2 .
A 11, 2, �1 2 ,

D 12, �1, 4 2 .

q � £
�3
x
4
≥p � £

2
1

�1
≥

QR
¡

� �i � 2j � k.PQ
¡

� i � j � 2k

PR
¡

,PQ
¡

C 1�2, 1, �4 2 .B 13, 3, �1 212, �1, 2 2 ,

a � £
l

1
3
≥, b � £

l

l

�2
≥

a � li � 3k, b � 2i � j � 5k

a � 2i � 5j � 2k, b � i � 4j � lk
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1 Given that and find:

a b c d

e f g h

2 Given that and 
find:
a b c d

e f g h
3 Calculate the angle between each pair of vectors.

a

b

c

d

e

f

4 Find and the cosine of the angle between p and q if
and 

5 Find which of the following vectors are perpendicular to each other.

6 Find the value of if the following vectors are perpendicular.

a a � £
2
1
l

≥, b � £
�1
�1
�2
≥

l

 f � 4i � 3j � 6k e � i � 2j, d � �36i � 27j � 54k,
 c � 3i � 2j � k, b � 2i � j � 4k,a � 3i � 2j � k,

q � i � j � 6k.p � �i � 3j � 2k
up # q

a � £
2t
t

�3t
≥, b � ¶

�1
t
2
t

�
3
t

∂

a � £
3

�1
4
≥, b � £

4
0
0
≥

a � i � 2k , b � j � k

a � £
3

�3
4
≥, b � £

1
�4
3
≥

a � ¢2
5
≤, b � ¢ 3

�1
≤

a � 2i � 4j � 5k, b � i � 3j � 8k

b # a � b # cc # 1a � 2b 2b # 1a � 2b 21a � b 2 # i

a # 1c � b 2b # bc # ba # b

c � �2i � 2j � k,a � 2i � 3j � 4k, b � i � 5j � 2k

b # 12a � 3c 2a # 12b � c 23a # ca # 1c � b 2

b # ia # 1b � c 2b # ca # b

c � ¢ 7
�3
≤,a � ¢3

1
≤, b � ¢2

5
≤
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This equation cannot be solved by any direct means so we need to use a
calculator.

The answer is or �10.0.x � 2.01

Exercise  3

O

C

D

A

B

E

G F

2 cm

2 cm

2 cm

p

q

s
R

r
S

QP

p

q

14 In the quadrilateral PQRS shown,
prove that

PR
¡

# QS
¡

� PQ
¡

# RS
¡

� QR
¡

# PS
¡

.

15 If show that a is perpendicular to 

16 If A, B, C, D are four points such that prove that ABCD is a

parallelogram. If state with a reason whether the 

parallelogram is a rhombus, a rectangle or a square.
17 Given that a and b are non-zero vectors show that if then 

and are perpendicular.a � b
a � b�a� � �b�

AB
¡

# BC
¡

� 0,

BC
¡

� DA
¡

� 0,

b � c.a # b � a # c,



Distributivity
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18 If a and b are perpendicular vectors, show that:

19 Triangle ABC is right-angled at B. Show that 

20 Given that a, b and c are non-zero vectors, and
show that c # 1a � b 2 � 0.a # 1b � c 2 � b # 1a � c 2 ,

a 
 b 
 c

AB
¡

# AC
¡

� �AB
¡

�2.

1a � b 2 # 1a � b 2 � 1a � b 2 # 1a � b 2
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Vector product

The vector product or cross product of two vectors a and b inclined at an angle is

written as and equals which is a vector quantity.�a��b� sin un̂,,a � b
u

Remember that is a

unit vector.

n̂

If you are unsure, try
this with a screwdriver
and a screw!

Remember that for parallel
vectors, a # b � �a��b�

Remember that for 
perpendicular vectors,
a # b � 0

The fact that the vector
product of a and b is 
perpendicular to both a
and b is very important
when it comes to the
work that we will do with
planes in Chapter 13.

Hence it is a vector of magnitude in the direction of n where n is
perpendicular to the plane containing a and b.

Now obviously can have one of two directions. This is decided again by using a

“right-hand screw rule” in the sense that the direction of n is the direction of a screw

turned from a to b with the right hand. This is shown in the diagram below.

n̂

�a��b� sin u

� a

n

b

In other words where is a unit vector perpendicular to both a
and b.

The following results are important.

Parallel vectors

n̂a � b � �a��b� sin un̂

If two vectors are parallel, then or 

So a � b � 0

�a��b� sin pn̂a � b � �a��b� sin 0n̂

If two vectors are perpendicular, then 
So a � b � �a��b�n̂

a � b � �a��b� sin 

p

2
 n̂

Perpendicular vectors

Commutativity

We know and that

By thinking of the right-hand screw rule we can see that

and must be in opposite directions.

Hence a � b � �b � a.

n̂2n̂1

b � a � �b��a� sin un̂2.

a � b � �a��b� sin un̂1

a

b

�

n1ˆ

n2ˆ

The vector product is not commutative.

The vector product is distributive across addition.

Proof

Consider two vectors p and q with the third vector r which is perpendicular to both p
and q. Hence the plane containing p and q also contains and r is perpendicular
to that plane.

p � q,

r � 1p � q 2 � r � p � r � q.

q

p

p � q

r

and must also lie in this plane as all three are vectors that
are perpendicular to r.

r � 1p � q 2r � p, r � q

B

C D

G

r

r � q

q

r � (p � q)
p �

 q

p

r �
 p

A

E

F

Now 

Similarly 

And 

Hence the sides of the quadrilateral AEFG are times the lengths of the sides in
quadrilateral ABCD. Since the angles in both figures are the same ( is a 90 rotation
of p, is a 90 rotation of q, and is a 90 rotation of ), ABCD
and AEFG are both parallelograms.

Now we know that 

Hence and we have proved the distributive law when r
is perpendicular to p and q.

Now let us consider the case where r is not perpendicular to p and q. In this case we
need to form the plane perpendicular to r with vectors p and q inclined at different
angles to and are the projections of p, q and on this
plane. is the angle between r and p.u

1p � q 21p1 � q1 2r. p1, q1

r � 1p � q 2 � r � p � r � q,

AF
¡

� AE
¡

� EF
¡

p � q°r � 1p � q 2°r � q

°r � p
�r�

r � 1p � q 2 � AF
¡

� �r��1p � q 2 � sin 90° � �r��1p � q 2 �

r � p � AG
¡

� �r��p� sin 90° � �r��p�

r � q � AE
¡

� �r��q� sin 90° � �r��q�



So there are two ways of calculating the vector product. We normally use this
determinant form as we rarely know the angle between two vectors.

We can use the vector product to calculate the angle between two vectors, but unless
there is a good reason, we would normally use the scalar product. One possible reason
would be if we were asked to find the sine of the angle between the vectors.
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Now and where is a vector perpendicular

to r, p and 

Also and hence 

Using an identical method, and 

Since r is perpendicular to and we can use the distributive law that we
proved earlier, that is, 

Hence and we have proved that the distributive law also
holds when r is not perpendicular to p and q.

Vector product of vectors in component form
Let and 

Then

We need to look at what happens with various combinations of i, j and k:

For the others the answer will always be

From the definition of the unit vectors the perpendicular vector to i and j is k, to j and k
is i, and to i and k is j. The only issue is whether it is positive or negative, and this can be
determined by the “right-hand screw rule”. A list of results is shown below.

Hence

This can be written as a determinant:

 � 1b1c2 � c1b2 2 i � 1a1c2 � c1a2 2 j � 1a1b2 � b1a2 2k

 � 1b1c2 � c1b2 2 i � 1c1a2 � a1c2 2 j � 1a1b2 � b1a2 2k

 p � q � a1b2˛k � b1c2˛i � c1a2˛j � b1a2˛k � c1b2˛i � a1c2˛j

 k � i � j                 i � k � �j

 j � k � i                 k � j � �i

 i � j � k                 j � i � �k

1 � 1 �  sin 
p

2
� perpendicular vector � perpendicular vector

i � i � j � j � k � k � 1 � 1 �  sin 0° � perpendicular vector � 0

� c1a2˛k � i � b1a2˛j � i � c1b2˛k � j � a1c2˛i � k 2
� k � 1a1a2˛i � i � b1b2˛j � j � c1c2˛k � k 2 � 1a1b2˛i � j � b1c2˛j

 p � q � 1a1˛i � b1˛j � c1˛k 2 � 1a2˛i � b2˛j � c2˛k 2

q � a2˛i � b2˛j � c2˛kp � a1˛i � b1˛j � c1˛k

r � 1p � q 2 � r � p � r � q

r � 1p1 � q1 2 � r � p1 � r � q1.
p1 � q1p1, q1

r � 1p1 � q1 2 � r � 1p � q 2 .r � q1 � r � q

r � p1 � �r��p� sin un̂ � r � p.�p1� � �p� sin u

p1.

n̂r � p1 � �r��p1� sin 90°n̂,r � p � �r��p� sin un̂
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p

r

q1

p1

q

p 1 �
 q 1

p 
�

 q

�

�

The angle between r
and is 90º because
this is how we set up the
plane in the beginning.

p1

p � q � 3
i j k

a1 b1 c1

a2 b2 c2

3

Example

If and find
a) the unit vector perpendicular to both a and b
b) the sine of the angle between a and b.

a) 

Hence the unit vector is

b) We know that 

 1 sin u �
2230

214221
�
B

230
294

�
B

115
147

 1 1 � 214221 �  sin u �
1

2230

�  sin u �
1

2230
 111i � 3j � 10k 2

 1 11i � 3j � 10k � 212 � 32 � 22222 � 1�4 22 � 12

a � b � �a��b� sin un̂

1

2112 � 32 � 1�10 22
 111i � 3j � 10k 2 �

1

2230
 111i � 3j � 10k 2

 � 11i � 3j � 10k
 � i 33 � 1�8 2 4 � j 31 � 4 4 � k 3 1�4 2 � 6 4

 a � b � 3
i j k
1 3 2
2 �4 1

3

b � 2i � 4j � k,a � i � 3j � 2k

Example

A, B and C are the points (2, 5, 6), (3, 8, 9), and (1, 1, 0) respectively. Find the
unit vector that is perpendicular to the plane ABC.

The plane ABC must contain the vectors and Hence we need a
vector perpendicular to two other vectors. This is the definition of the cross
product.

Now and 

Therefore the required vector is

 AB
¡

� BC
¡

� 3
i j k
1 3 3

�2 �7 �9
3

BC
¡

� £
1 � 3
1 � 8
0 � 9

≥ � £
�2
�7
�9
≥AB

¡

� £
3 � 2
8 � 5
9 � 6

≥ � £
1
3
3
≥

BC
¡

.AB
¡
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Hence the unit vector is
1

21�6 22 � 32 � 1�1 22
 1�6i � 3j � k 2 �

1

246
 1�6i � 3j � k 2

 � �6i � 3j � k

 � i 3 1�27 2 � 1�21 2 4 � j 3 1�9 2 � 1�6 2 4 � k 3 1�7 2 � 1�6 2 4

Example

If and find 

In an example like this it is important to remember that we have to do the vector
product first, because if we calculated the scalar product first we would end up
trying to find the vector product of a scalar and a vector, which is not possible.

Therefore c # a � b � £
4
3

�1
≥ # £

3
�10
�24
≥ � 12 � 30 � 24 � 6

 � £
3

�10
�24
≥

 � i 36 � 3 4 � j 34 � 1�6 2 4 � k 3 1�6 2 � 18 4

 a � b � 3
i j k
2 3 �1
6 �3 2

3

c # a � b.c � £
4
3

�1
≥,a � £

2
3

�1
≥, b � £

6
�3
2
≥

Example

Find the area of the parallelogram ABCD where A has coordinates
and D (3, 0, 1).

We first need to find the vectors representing a pair of adjacent sides.

Now the area of the parallelogram ABCD is 

� 21�10 22 � 1�2 22 � 22 � 2108 units2�AD
¡

� AB
¡ �

 � �10i � 2j � 2k

 � i 3 1�10 2 � 0 4 � j 32 � 0 4 � k 3 1�3 2 � 1�5 2 4

 Now AB
¡

� AD
¡

� 3
i j k
1 �5 0
1 �3 2

3

AB
¡

� £
3

�2
�1
≥ � £

2
3

�1
≥ � £

1
�5
0
≥ and AD

¡

� £
3
0
1
≥ � £

2
3

�1
≥ � £

1
�3
2
≥

12, 3, �1 2 , B˛ 13, �2, �1 2 , C˛ 1�1, 0, �4 2

Example

Show that 

Consider the left-hand side.

Now 
Hence 
Now we know and are the same in magnitude but in opposite
directions.
Therefore 1a � b 2 � 1a � b 2 � 2b � a

b � aa � b
1a � b 2 � 1a � b 2 � 1b � a 2 � 1a � b 2

a � a � b � b � 0
1a � b 2 � 1a � b 2 � 1a � a 2 � 1b � a 2 � 1a � b 2 � 1b � b 2

1a � b 2 � 1a � b 2 � 2b � a.

Application of vector product
We will see that a very important use of vector products is in the representation of planes,
which will be dealt with in Chapter 13. However, there are two other applications that are
useful to know.

�
DA

B C

h

 � �AD
¡

� AB
¡

�

 � 1AD 2 1AB sin u 2

 � AD � h

 The area of a parallelogram � base � height

The area of a parallelogram is the magnitude of the vector product of two
adjacent sides.

Area of a triangle

A

h

C
�

B

 � 1�2�AC
¡

� AB
¡

�

 � 1�2 1AC 2 1AB sin u 2

 � 1�2 1AC 2 1h 2

 The area of triangle ABC � 1�2 base � height

The area of a triangle is half the magnitude of the vector product of two sides.



9 P, Q and R are the points (0, 0, 3), (3, 4, 6) and respectively. Find
the unit vector that is perpendicular to the plane PQR.

10 Two sides of a triangle are represented by the vectors and
Find the area of the triangle.

11 Relative to the origin the points A, B and C have position vectors

and respectively. Find the area of the triangle ABC.

12 The triangle ABC has its vertices at the points A (0, 1, 2), B (0, 0, 1) and 
C (2, 6, 3). Find the area of the triangle ABC.

13 Given that and 

find the area of triangle APQ.
14 A parallelogram OABC has one vertex O at the origin and the vertices A

and B at the points (3, 4, 0) and (0, 5, 5) respectively. Find the area of the
parallelogram OABC.

15 A parallelogram PQRS has vertices at and
Find the area of the parallelogram PQRS.

16 A parallelogram PQRS is such that and

where and Y is the midpoint of 

Find the vectors representing the sides and and hence calculate
the area of the parallelogram.

17 If and determine whether or not

18 If show that the vector is parallel to a.c � ba � b � a � c,

a � 1b � c 2 � 1a � b 2 � c.

c � £
3
4

�1
≥,a � £

1
6
0
≥, b � £

4
7

�1
≥

PS
¡

PQ
¡

PS
¡

.PQ
¡

� 5 PX
¡

PY
¡

� �3i � 7j � k,

PX
¡

� 5i � j � 2k

R˛1�1, 0, �4 2 .
P˛10, 2, �1 2 , Q˛12, �3, �7 2

AQ
¡

� 4 AC
¡

,AB
¡

� i � 4j, AC
¡

� 3i � j � 2k, AP
¡

� 2 AB
¡

£
4

�1
�3
≥£

0
1

�2
≥, £

2
�2
1
≥

15i � 2j � 2k 2 .
1i � j � k 2

10, �1, 0 2
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This is consistent with the idea that the area of a triangle is half the area of a parallelogram.
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Example

Find the area of the triangle ABC with coordinates 
and 

We begin by finding and 

Now the area of triangle ABC is

�
1
2

 242 � 1�15 22 � 62 �
2277

2
 units21

2
 �AB

¡

� BC
¡

�

 � 4i � 15j � 6k
 � i 3 1�2 2 � 1�6 2 4 � j 3 1�3 2 � 1�18 2 4 � k 3 1�6 2 � 1�12 2 4

 Hence AB
¡

� BC
¡

� 3
i j k

�3 �2 �3
6 2 1

3

Now AB
¡

� £
�2 � 1
1 � 3

�4 � 1�1 2
≥ � £

�3
�2
�3
≥ and BC

¡

� £
4 � 1�2 2

3 � 1
�3 � 1�4 2

≥ � £
6
2
1
≥

BC
¡

.AB
¡

C ˛14, 3, �3 2 .
A˛ 11, 3, �1 2 , B˛ 1�2, 1, �4 2

1 If and find:
a b  c

d e f

g

2 Find the value of for the given modulus of a, modulus of b and angle
between the vectors a and b.
a b

c

3 If OPQ is a triangle with a right angle at P, show that

4 If show that where k is a scalar.
5 Given that show that is parallel to c.
6 If a and b are perpendicular, show that irrespective of the 

values of a and b.

7 If and find

a the unit vector perpendicular to both a and b

b the sine of the angle between a and b.

8 If and find

a the unit vector perpendicular to both a and b

b the sine of the angle between a and b.u

n̂
b � i � 2k,a � i � 3j � k

u

n̂

b � £
4
2
3
≥,a � £

3
�4
3
≥

a # a � b � 0
a � bb � c � c � a

a � kba � b � 0,

�OP
¡

� OQ
¡

� � OP
¡

# PQ
¡

.

�a� � 218, �b� � 2, u � 135°

�a� � 9, �b� � 213, u � 120°�a� � 3, �b� � 7, u � 60°

�a � b�

a # 1a � b 2

1a � 2b 2 � 12a � b 212a � b 2 � aa � 13a � 2b 2

b � 1a � b 2a � 1a � b 2a � b
b � 2i � 4j � k,a � i � 2j � 3k

Exercise  4

Review exercise

1 The points P, Q, R, S have position vectors p, q, r, s given by

respectively. The point X lies on PQ produced and is such that 
and the point Y is the midpoint of PR.
a Show that XY is perpendicular to PY.
b Find the area of the triangle PXY.
c Find a vector perpendicular to the plane PQR.
d Find the cosine of the acute angle between PS and RS.

2 Let and 

a Find 

b Find the value of p, given that is parallel to c. [IB May 06 P1 Q11]a � b

a � b

c � £
2

�4
3
≥a � £

2
1
0
≥, b � £

�1
p
6
≥

PX � 5PQ,
 s � j � 7k
 r � �5i � 6j � 8k
 q � �1.2j � 1.4k
 p � i � 2k

1

4

7

C

M

0
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3 The point A is given by the vector and the point B by 

relative to O. Show that there is no value of m for which and are

perpendicular.

4  If a and b are unit vectors and is the angle between them, express in

terms of [IB May 93 P1 Q12]

5 A circle has a radius of 5 units with a centre at (3, 2). A point P on the circle

has coordinates (x, y). The angle that this radius makes with the horizontal is

Give a vector expression for 

6 Given two non-zero vectors a and b such that find the
value of [IB Nov 02 P1 Q18]

7 Show that the points A(0, 1, 3), B (5, 3, 2) and C(15, 7, 0) are collinear (that
is, they lie on the same line).

8 Find the angle between the vectors and 
Give your answer in radians. [IB May 02 P1 Q5]

9 The circle shown has centre D, and the points
A, B and C lie on the circumference of the 
circle. The radius of the circle is 1 unit.

Given that and show that

10 Let be the angle between a and b, where

and Express

in terms of [IB Nov 00 P1 Q11]

11 The points X and Y have coordinates (1, 2, 3) and respectively.

and OABC is a parallelogram.
a Find the coordinates of A, B and C.
b Find the area of the parallelogram OABC.

c Find the position vector of the point of intersection of and 

d The point E has position vector k. Find the angle between and 
e Find the area of the triangle ABE.

12 Given and and that the vector

has magnitude find the value of m. [IB Nov 93 P1 Q8]2265,12u � 3v 2

v � i � 4j � mk,u � 3i � 2j � 5k

BE
¡

.AE
¡

AC
¡

.OB
¡

OB
¡

� 3 OY
¡

.OA
¡

� 2 OX
¡

12, �1, 0 2

u.a

0 6 u 6

p

4
.a � 1cos u 2 i � 1sin u 2 j, b � 1sin u 2 i � 1cos u 2 j

a

AĈB � 90°.

DC
¡

� b,DB
¡

� a

w � 2i � 3j � k.v � i � j � 2k

a # b.
�a � b� � �a � b�,

OP
¡

.u.

u.

�a � b�u

OB
¡

OA
¡

£
1 � 2m
2 � 2m
3 � 2m

≥,£
1 � m
2 � m
3 � m

≥

12  Vector Techniques

336

A B
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b
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Stefan Banach was born in Kraków,
Poland (at the time part of the Austro-
Hungarian Empire) on 30 March
1892. During his early life Banach was
brought up by Franciszka Plowa, who
lived in Kraków with her daughter
Maria. Maria’s guardian was a French
intellectual Juliusz Mien, who quickly
recognised Banach’s talents. Mien gave
Banach a general education, including
teaching him to speak French, and in
general gave him an appreciation for
education. On leaving school Banach
chose to study engineering and went
to Lvov, which is now in the Ukraine,
where he enrolled in the Faculty of
Engineering at Lvov Technical
University.

By chance, Banach met another Polish
mathematician, Steinhaus, in 1916.
Steinhaus told Banach of a mathematical problem that he was working on without
making much headway and after a few days Banach had the main idea for the
required counter-example, which led to Steinhaus and Banach writing a joint paper.
This was Banach’s first paper and it was finally published in 1918. From then on he
continued to publish and in 1920 he went to work at Lvov Technical University. He
initially worked as an assistant lecturing in mathematics and gaining his doctorate, but
was promoted to a full professorship in 1924. Banach worked in an unconventional
manner and was often found doing mathematics with his colleagues in the cafés of
Lvov. Banach was the founder of modern functional analysis, made major
contributions to the theory of topological vector spaces and defined axiomatically
what today is called a Banach space, which is a real or complex normed vector space.

At the beginning of the second world war Soviet troops occupied Lvov, but Banach
was allowed to continue at the university, and he became the Dean of the Faculty of
Science. However, the Nazi occupation of Lvov in June 1941 ended his career in
university and by the end of 1941 Banach was working in the German institute
dealing with infectious diseases, feeding lice.This was to be his life during the
remainder of the Nazi occupation of Lvov in July 1944. Once the Soviet troops retook
Lvov, Banach renewed his contacts, but by this time was seriously ill. Banach had
planned to take up the chair of mathematics at the Jagiellonian University in Kraków,
but he died of lung cancer in Lvov in 1945.

13 Vectors, Lines and Planes

Stefan Banach



Consider the diagram.

One fixed point on the line is C, which has position vector and the second

fixed point on the line is D, which has position vector Again any point P(x, y, z)

on the line has position vector 

Hence has direction and variable magnitude: that is, 

Therefore 

This is the vector equation of a line passing though two fixed points.

r � c � l1d � c 2 .

CP
¡

� l1d � c 2 .d � cCP
¡

OP
¡

� r.

OD
¡

� d.

OC
¡

� c,
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13.1 Equation of a straight line 

Vector equation of a straight line
In both two and three dimensions a line is described as passing through a fixed point
and having a specific direction, or as passing through two fixed points.

Vector equation of a line passing through a fixed point parallel to
a given vector

Consider the diagram.

The fixed point A on the line has position vector 

The line is parallel to vector b.

Any point P(x, y, z) on the line has position vector 

Hence has direction b and a variable magnitude: that is, where is a

variable constant.

Using vector addition, so 

This is the vector equation of a line, and b is known as the direction vector of the line.

Alternatively, if then we could write the vector equation of a

line as: 

If we put in values for we then get the position vectors of points that lie on the line.

Vector equation of a line passing through two fixed points

l

£
x
y
z
≥ � £

a1

a2

a3

≥ � l£
b1

b2

b3

≥.

a � £
a1

a2

a3

≥ and b � £
b1

b2

b3

≥

r � a � lb.OP
¡

� OA
¡

� AP
¡

lAP
¡

� lb,AP
¡

OP
¡

� r.

OA
¡

� a.
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O

z

y
A

P

a b

r

x

O

z

y
D

C

P

d
c

r

x

We rarely use the vector
equation in this form. It is
usually easier to find the
direction vector then use the
form r � a � lb.

It is essential not to forget
the “r” in the equation.

Find the vector equation of the line passing through the point A (1, 3, 4)
parallel to the vector 

The position vector of A is 

Hence the vector equation of the line is r � i � 3j � 4k � l1i � j � k 2 .

OA
¡

� i � 3j � 4k.

i � j � k.

Example 

Find the vector equation of the line passing through A (3, 2) parallel to the

vector 

Even though this is in two dimensions it works in exactly the same way, since we
are assuming that the z-component of the vector is zero.

The position vector of A is 

Hence the vector equation of the line is r � ¢3
2
≤ � l¢ 4

�1
≤.

OA
¡

� ¢3
2
≤.

¢ 4
�1
≤.

Example 

Example 

Find the vector equation of the line passing though and 

There are a number of ways of tackling this question.

Method 1

If we let A have position vector a and let B have position vector b, then we can
say that 

Now and b � £
4

�2
2
≥a � £

2
3

�1
≥

r � a � l1b � a 2 .

B14, �2, 2 2 .A12, 3, �1 2
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Parametric equations of a straight line
The parametric equations of a straight line are when the vector equation is expressed in
terms of the parameter This form is often used when we are doing calculations using
the vector equation of a line.

The way to find the parametric equations is shown in the following example.Example 

l.
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Hence 

Method 2

We could use b as a position vector instead of a, giving 

Method 3

We could begin by forming the direction vector.

The direction vector is 

Hence the vector equation of the line is 

or r � £
4

�2
2
≥ � l£

2
�5
3
≥.

r � £
2
3

�1
≥ � l£

2
�5
3
≥

b � a � £
4

�2
2
≥ � £

2
3

�1
≥ � £

2
�5
3
≥.

r � £
4

�2
2
≥ � l £

2
�5
3
≥.

 1 r � £
2
3

�1
≥ � l£

2
�5
3
≥

 r � £
2
3

�1
≥ � l£

4 � 2
�2 � 3

2 � 1�1 2
≥

We could also use as
the direction vector.

a � b

These two equations are
equivalent.

is not always used as the
parameter. Other common
letters are s, t, m, n and m.

l

Example

Give the vector equation in parametric
form.

can be rewritten as

Equating components gives the parametric equations:

Example
 z � �4 � 3l
 y � 2 � 7l
 x � 1 � 6l

 � 11 � 6l 2 i � 12 � 7l 2 j � 1�4 � 3l 2k

 x i � y j � zk � i � 2j � 4k � l16i � 7j � 3k 2

r � i � 2j � 4k � l16i � 7j � 3k 2

r � i � 2j � 4k � l16i � 7j � 3k 2

Find the parametric equations of the line passing through the points 
and 

We begin by forming the vector equation.

The direction vector of this equation is 

Hence the vector equation is 

Equating components gives the parametric equations:

 z � 4 � m

 y � �1 � 2m
 x � 1 � 3m

 1 £
x
y
z
≥ � £

1
�1
4
≥ � m £

3
2
1
≥ � £

1 � 3m
�1 � 2m

4 � m

≥

 r � £
1

�1
4
≥ � m£

3
2
1
≥

 BA
¡

� £
1 � 1�2 2
�1 � 1
4 � 3

≥ � £
3
2
1
≥.

B11, �1, 4 2 .
A1�2, 1, 3 2

Example 

Example 

Show that the point fits on the line but (2, 3, 0)

does not.

To do this it is easiest to use the parametric forms of the equation.

Therefore 

The parametric equations of this line are:

Using we can see that if then 

We now check this is consistent with the values of y and z.

When and 

Hence lies on the line.

Now if 

Since 

However, and hence (2, 3, 0) does not lie on the line.
Example

z � �1

y � 3l, y � 3.

x � 2, l � 1.

13, 6, �1 2

z � �1.l � 2, y � 6

l � 2.x � 3x � 1 � l

 z � �1
 y � 3l
 x � 1 � l

£
x
y
z
≥ � r � £

1
0

�1
≥ � l£

1
3
0
≥ � £

1 � l

3l
�1
≥

r � £
1
0

�1
≥ � l £

1
3
0
≥13, 6, �1 2

z is not dependent on it
is always �1.

l;
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Cartesian equations of a straight line
Consider these parametric equations of a straight line:

If we now isolate we find:

These are known as the Cartesian equations of a line and are in fact a three-dimensional

version of In a general form this is written as 

where are the coordinates of a point on the line and is the direction

vector of the line.

£
l

m
n
≥1x0, y0, z0 2

x � x0

l
�

y � y0

m
�

z � z0

n
y � mx � c.

x � 1
3

�
y � 1

2
�

z � 4
1

 1� m 2

m

 z � 4 � m

 y � 2m � 1

 x � 3m � 1
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Find the coordinates of the point where the line passing through A
parallel to crosses the xy-plane.

The easiest way to solve a problem like this is to put the equation in parametric
form.

The vector equation of the line is 

Hence

Therefore the parametric equations of the line are:

This line will cross the xy-plane when 

Hence giving and 

Thus the coordinates of the point of intersection are 1�2, �9, 0 2 .

y � �9.x � �2l � 4,

z � 0.

 z � �4 � l

 y � 3 � 3l
 x � 2 � l

 � 12 � l 2 i � 13 � 3l 2 j � 1�4 � l 2k

 xi � yj � zk � 2i � 3j � 4k � l1�i � 3j � k 2

r � 2i � 3j � 4k � l1�i � 3j � k 2 .

�i � 3j � k
12, 3, �4 2

Example 

Example 

A line is parallel to the vector and passes through the point
Find the vector equation of the line, the parametric equations of

the line, and the Cartesian equations of the line.

The vector equation of the line is given by r � 2i � 3j � 5k � s12i � j � 2k 2 .

12, �3, 5 2 .
2i � j � 2k

To form the parametric equations we write

Equating the coefficients of x, y and z gives the parametric equations:

Eliminating s gives the Cartesian equations:

x � 2
2

�
y � 3

�1
�

z � 5
2

 1� s 2

 z � 5 � 2s

 y � �3 � s

 x � 2 � 2s

 � 12 � 2s 2 i � 1�3 � s 2 j � 15 � 2s 2k

 xi � yj � zk � 2i � 3j � 5k � s12i � j � 2k 2

Sometimes we need to undo the process, as shown in the next example.

Example 

Convert the Cartesian equations to parametric

and vector form.

We begin by writing where t is a parameter.

Hence 

These are the parametric equations of the line.

Now

Hence is the vector equation of the line.r � £
2.5
3

2.5
≥ � t £

1
�3

�2.5
≥

 
1 £

x
y
z
≥ � •

5
2
3
5
2

μ � t §
1

�3

�
5
2

¥

£
x
y
z
≥ � •

2t � 5
2

3 � 3t
5t � 5

�2

μ

 z �
5t � 5

�2

 y � 3 � 3t

 x �
2t � 5

2

2x � 5
2

�
3 � y

3
�

�2z � 5
5

� t,

2x � 5
2

�
3 � y

3
�

�2z � 5
5

Separating the parameter t
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c d

6 Convert these Cartesian equations to vector form.

a b

c d

e f

7 Determine whether the given point lies on the line.
a

b

c

d

e

f

8 The Cartesian equation of a line is given by 

Find the vector equation of the parallel line passing through the point with

coordinates and find the position vector of the point on this

line where 

9 Find the coordinates of the points where the line 

intersects the xy-, the yz- and the xz-planes.

10 Write down a vector equation of the line passing through A and B if

a is and is 
b A and B have coordinates (2, 6, 7) and (4, 4, 5).

In each case, find the coordinates of the points where the line crosses the
xy-plane, the yz-plane and the xz-plane.

11 Find where the line intersects the xy-, the 

yz- and the xz-planes.

3x � 9
4

�
2 � y

�1
�

4 � 3z
5

8i � 3j � 7kOB
¡

2i � j � 5kOA
¡

r � £
�3
5

�3
≥ � s£

2
4

�1
≥

z � 0.

13, 7, �1 2

3x � 5
6

�
2 � y

3
�

3z � 1
2

.

¢�1
2

, �
5
2

, �3≤               
2x � 5

2
�

3 � 2y

4
; z � �3

¢8, 10, 
7
3
≤                      

2x � 4
3

�
3y � 5

7
�

3z � 1
2

111, 33, 12 2                      
x � 4

3
�

y � 2

7
�

2z � 1
5

14, 3, 9 2                            x � 5 � m, y � 2m � 1, z � 3 � 5m

17, �16, 15 2                     x � 2m � 3, y � 4 � 4m, z � 3m

1�11, 4, �11 2                  r � i � j � 2k � l14i � 2j � 3k 2

x � 5
7

�
3 � 7y

4
; z � 25 � 3x �

2 � 3y

�2
�

3z � 1
�3

6x � 1
4

�
4 � 3y

�2
�

4 � z
6

2 � 5x
�4

�
3y � 5

�6
�

2z � 7
3

2x � 5
4

�
3y � 3

�4
�

z � 1
2

x � 3
4

�
y � 5

3
�

z � 1
�3

 z � 5 � 2n z � 4m � 3

 y � 2n � 1 y � 3m

 x � �4 x � 5m � 4
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1 Find the vector equation of the line that is parallel to the given vector and
passes through the given point.

a Vector point 

b Vector point 

c Vector point (4, 4, 3)

d Vector point (5, 2, 1)

e Vector point 

f Vector point 

2 Find the vector equation of the line passing through each pair of points.
a (2, 1, 2) and b and 

c and d and 

e and 
3 Write down equations, in vector form, in parametric form and in Cartesian form,

for the line passing through point A with position vector a and direction vector b.
a

b

c

d

4 Convert these vector equations to parametric and Cartesian form.

a

b

c

d

e

f
5 Convert these parametric equations to vector form.

a b

 z � 5m � 1 z � 2l � 4

 y � 3m � 5 y � l � 6

 x � �m � 4x � 3l � 7

r � i � 6j � t12i � 5j 2

r � ¢4
6
≤ � s¢ 3

�5
≤

r � i � j � 7k � n12i � 3j � k 2

r � £
2
8

�1
≥ � m£

4
�7
6
≥

r � 2i � 5j � k � m13i � j � 4k 2

r � £
1

�1
2
≥ � l£

�2
3

�2
≥

a � £
4
1
0
≥  b � £

�1
2
2
≥

a � j � k  b � i � 3k

a � £
�3
�2
3
≥  b � £

4
�7
3
≥

a � i � 2j � 4k  b � 3i � j � 5k

11, �3 214, �3 2

12, �5, �1 213, 4, �2 210, 7, �3 212, �2, 3 2

14, �1, 2 21�3, 1, 0 21�2, 4, 3 2

1�5, 1 2¢ 4
�7
≤,

1�3, �1 22i � j,

3i � 6j � k,

£
0

�5
12
≥,

11, �2, 0 2i � 4j � 2k,

10, 2, �3 2£
1

�2
�1
≥,

Exercise  1



This method can also be used to find whether two lines are coincident, that is, they are
actually one line.

To show two lines are coincident

To do this we need to show that the lines are parallel and that they have a point in common.
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13.2 Parallel, intersecting and skew lines
When we have two lines there are three possible scenarios. These are shown below.
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z

x

y

z

y

x

z

y

x

Parallel lines Intersecting lines Skew lines

It is important to consider these three different cases.

Parallel lines
This is the simplest case, and here the direction vector of one line will be the same as or a
multiple of the other. It is only the direction vectors of the line that we need to consider here.

Example

State whether the lines and
are parallel or not, giving a reason.

Since the lines are clearly parallel.4i � 12j � 8k � �41�i � 3j � 2k 2

r � 3i � 6j � 6k � t14i � 12j � 8k 2
r � 2i � 5j � 6k � s1�i � 3j � 2k 2

Example

Show that the following lines are parallel.

In parametric form, all we need to consider are the coefficients of the 
parameter as these are the direction vectors of the lines.

Hence the direction vector of Line 1 is and the direction vector of Line 2

is 

Since the lines are parallel.£
3
8
6
≥ � 2£

1.5
4
3
≥

£
1.5
4
3
≥.

£
3
8
6
≥

 y � 4t � 7

For the denominators to be the direction vectors of the line they must be in a
form with positive unitary coefficients of x, y and z.

Hence Line 1 is and Line 2 is 

By comparing the denominators, which are now the direction vectors of the

line, we see they are the same, as and hence the lines are parallel.
6
4

�
3
2

,

x �
1
2

2
�

y � 3

�4
�

z �
5
4

6
4

.
x � 3

2
�

y � 1

�4
�

z �
1
2

3
2

Example

Show that the lines and are

coincident.

Since the lines are parallel.

We know the point lies on the first line. We now test whether it lies
on the second line.

The parametric equations for the second line are:

Letting

Substituting into the equations for y and z gives 

and 

Hence the point lies on both lines and the lines are coincident.11, 2, �3 2

z � �11 � 20¢�2
5
≤ � �3.

y � 4 � 5¢�2
5
≤ � 2t � �

2
5

 1 t � �
2
5

 3 � 5t � 1

z � �11 � 20t
y � 4 � 5t
x � 3 � 5t

11, 2, �3 2

�5£
�1
�1
4
≥ � £

5
5

�20
≥

r � £
3
4

�11
≥ � t£

5
5

�20
≥r � £

1
2

�3
≥ � s£

�1
�1
4
≥

Skew lines can only 
exist in three (or more)
dimensions.

•

Example

Show that the lines and 

are parallel.

It is tempting to just look at the denominators and see if they are multiples of
one another, but in this case it will give the wrong result.

2x � 1
4

�
y � 3

�4
�

4z � 5
6

x � 3
2

�
1 � y

4
�

2z � 1
3

Intersecting and skew lines
These two cases are treated as a pair. In neither case can the lines be parallel, so we first
need to check that the direction vectors are not the same or multiples of each other.
Provided the lines are not parallel, then they either have a common point, in which case
they intersect, or they do not, in which case they are skew.

•Line 1   Line 2
 z � 3t � 4 z � 6s � 1

 y � 8s � 3
 x � 1.5t � 4 x � 3s � 1
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Method

1. Check the vectors are not parallel and put each line in parametric form. Make
sure the parameters for each line are different.

2. Assume that they intersect, and equate the x-values, the y-values and the z-values.
3. Solve a pair of equations to calculate the values of the parameter.
4. Now substitute into the third equation. If the parameters fit, the lines intersect, and

if they do not, the lines are skew. To find the coordinates of intersection, substitute
either of the calculated parameters into the parametric equations.

Example

Do the lines and intersect
or are they skew? If they intersect, find the point of intersection.
Step 1
The direction vectors are not equal or multiples of each other, and hence the
lines are not parallel. The parametric equations are:

Step 2
Equating values of x: equation (i)
Equating values of y: equation (ii)
Equating values of z: equation (iii)
Step 3
Solve equations (i) and (ii).
Substituting from equation (i) into equation (ii) gives 

Step 4
Substitute and into equation (iii).

Hence the lines intersect. Substituting either the value of or the value of 
into the equations will give the coordinates of the point of intersection.
Using and 

Hence the coordinates of the point of intersection are 12, �2, �5 2 .

z � 51�1 2 � �5.m � �1 1 x � 2, y � 1 � 31�1 2 � �2

ml

 1 �5 � �5
 1 � 312 2 � 51�1 2

m � �1l � 2

1 m � �1.
�2 � 1 � 3ml � 2

1 � 3l � 5m
�l � 1 � 3m
l � 2

 z � 1 � 3l              z � 5m
 y � �l                    y � 1 � 3m
 x � l                       x � 2

r � 2i � j � m13j � 5k 2r � k � l1i � j � 3k 2

Example

Do the lines and
intersect or are they skew? If they 

intersect find the point of intersection.
Step 1
The lines are not parallel. The parametric equations are:

Step 2
Equating values of x: equation (i)
Equating values of y: equation (ii)
Equating values of z: equation (iii)2 � l � �5 � 2m

�3 � l � 2 � m

2l � 1 � m

 z � �2 � l         z � �5 � 2m
 y � �3 � l         y � 2 � m

 x � 2l                 x � 1 � m

r � i � 2j � 5k � m1i � j � 2k 2
r � �3j � 2k � l12i � j � k 2
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Step 3
Solve equations (i) and (ii).

equation (i)
equation (ii)

Adding equations (i) and (ii) 
Substitute into equation (i) 
Step 4
Substitute and into equation (iii).

which is not possible.
Hence the values of and do not fit equation (iii), and the lines are skew.ml

2 � 2 �  �5 � 213 2 1 4 � 1,
m � 3l � 2

1 212 2 � 1 � m1 m � 3
1 3l � 6 1 l � 2

l � m � 5
2l � m � 1

Example

a) Given that the lines and intersect

at point P, find the coordinates of P. 
(b) Show that the point A and the point B(0, 3, 3) lie on and 
respectively. 
(c) Hence find the area of triangle APB.

a) Step 1
The direction vectors are not equal or multiples of each other and hence the
lines are not parallel. The parametric equations are:

Step 2
Equating values of x: equation (i)
Equating values of y: equation (ii)
Equating values of z: equation (iii)

Step 3
Solve equations (i) and (ii).

equation (i)
equation (ii)

Equation (i) – Equation (ii) 
Substitute into equation (i) 

Step 4
In this case we do not need to prove that the lines intersect because we are
told in the question. Substituting either the value of n or the value of m into
the equations will give the coordinates of the point of intersection.
Using and

Hence the coordinates of P are 

b) If the point lies on then there should be a consistent value
for m in the parametric equations of 

If and Hence A lies on 
If the point (0, 3, 3) lies on then there should be a consistent value for n in
the parametric equations of r2.

r2

r1.z � 3 � 2 � 5.m � 2, y � �1 � 2 �  �3
3 � 1 � m 1 m � 2

r1.
r113, �3, 5 2

1�2, 2, 0 2 .
z � 6 � 31�2 2 � 0.

n � �2 1 x � 2 � 21�2 2 � �2, y � 4 � 1�2 2 � 2

1 m � 21�2 2 � 1 1 m � �3
1 3n � �6 1 n � �2

m � n � �5
m � 2n � 1

3 � m � 6 � 3n
�1 � m � 4 � n
1 � m � 2 � 2n

x � 1 � m  x � 2 � 2n
y � �1 � m  y � 4 � n
z � 3 � m  z � 6 � 3n

r2r113, �3, 5 2

r2 � £
2
4
6
≥ � n£

2
1
3
≥r1 � £

1
�1
3
≥ � m£

1
�1
1
≥



Finding the angle between two lines
Here we are interested in the direction of the two vectors, and it is the angle between
these two vectors that we require.

351350
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If and Hence B lies on 

c) 

 �
1
2
21�20 22 � 1�5 22 � 152 �

2650
2

�
5226

2
 units2

 Area of triangle ABP �
1
2

 � AP
¡

� BP
¡

�

 � �20i � 5j � 15k
 � i 3 1�15 2 � 5 4 � j 315 � 10 4 � k 35 � 1�10 2 4

 1 AP
¡

� BP
¡

� 3
i j k

�5 5 �5
�2 �1 �3

3

 AP
¡

� £
�2
2
0
≥ � £

3
�3
5
≥ � £

�5
5

�5
≥ and BP

¡

� £
�2
2
0
≥ � £

0
3
3
≥ � £

�2
�1
�3
≥

r1.z � 6 � 3 � 3.n � �1, y � 4 � 1 � 3
0 � 2 � 2n 1 n � �1

Example

Find the position vector of the point of intersection of the line
and the perpendicular that passes

through the point Hence find the shortest distance from
to the line.

Any point on the line r is given by the parametric equations

This could be point X as shown in the diagram.

Hence the direction vector is

If is perpendicular to r then the scalar product of and the direction

vector of r must be zero.

 1 l � 3
 1 6l � 18

 1 �4 � 4l � 12 � 9l � 10 � l � 0
 1 3 1�2 � 2l 2 i � 1�4 � 3l 2 j � 110 � l 2k 4 # 32i � 3j � k 4 � 0

PX
¡

PX
¡

� 1�2 � 2l 2 i � 1�4 � 3l 2 j � 110 � l 2k.

1�1 � 2l � 1 2 i � 1�2 � 3l � 2 2 j � 15 � l � 1�5 2 2k

PX
¡

 z � 5 � l

 y � �2 � 3l
 x � �1 � 2l

11, 2, �5 2
P 11, 2, �5 2 .

r � �i � 2j � 5k � l12i � 3j � k 2

z

y

x

p (1, 2, �5)

X (�1 � 2�, �2 � 3�, 5 � �)

13  Vectors, Lines and Planes

Substituting into the parametric equations will give the point of 
intersection.
Hence: 

Therefore the position vector of the point is 
The shortest distance is the distance between (5, 7, 2) and 
Using Pythagoras’ theorem, distance

� 215 � 1 22 � 17 � 2 22 � 12 � 1�5 2 22

� 242 � 52 � 72 � 290 � 3210

11, 2, �5 2 .
5i � 7j � 2k.

 z � 5 � 3 � 2
 y � �2 � 9 � 7
 x � �1 � 6 � 5

l � 3

Method

1 Find the direction vector of each line.
2 Apply the scalar product rule and hence find the angle.

Example

Find the angle between the lines

Step 1

The required direction vectors are and 

Step 2

 1 u � 70.9°

 1  cos u �
3

26214

 1 12 2 13 2 � 11 2 1�2 2 � 1�1 2 11 2 � 26214 cos u

 £
2
1

�1
≥ # £

3
�2
1
≥ � 222 � 12 � 1�1 22 232 � 1�2 22 � 12 cos u

£
3

�2
1
≥.£

2
1

�1
≥

r � £
1

�1
4
≥ � l£

2
1

�1
≥ and r � £

2
3

�2
≥ � l£

3
�2
1
≥.

u

Exercise  2

1 Determine whether the following pairs of lines are parallel, coincident, skew or
intersecting. If they intersect, give the position vector of the point of intersection.

a r � £
1
1
0
≥ � l£

2
3

�3
≥ and r � £

�3
7

�6
≥ � m£

2
4

�3
≥



5 Two lines have equations and 

Find the value of a for which the lines intersect and the position vector of the
point of intersection.

6 a Show that the points whose position vectors are and lie on

the line with equation 

b Obtain, in parametric form, an equation of the line that passes through the

point with position vector and is perpendicular to the given line.

7 The position vectors of the points A and B are given by 

and where O is the origin.
a Find a vector equation of the straight line passing through A and B.

b Given that this line is perpendicular to the vector find the
value of p.

pi � 2j � 6k,

OB
¡

� 3i � 5j � 2k,

OA
¡

� 2i � 3j � k

¢�3
8
≤

r � ¢ 1
�2
≤ � s¢2

3
≤.

¢�3
�8
≤¢ 9

10
≤

r � £
�1
1
1
≥ � m£

1
2
a
≥.r � £

3
2

�1
≥ � l£

2
�3
2
≥
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b and 

c and

d and 

e

and

f and 

g and 

2 Determine whether the given points lie on the given lines. If not, find the
shortest distance from the point to the line.
a (0, 0, 1)               

b

c

d

e

f (3, 2, 1)                

3 The points B(3, 5, 5) and are three vertices of a
parallelogram ABCD. Find vector and Cartesian equations for the sides AB and
AD and find the coordinates of C.

4 Find the acute angle between each of these pairs of lines.

a and 

b  and

c and 

d

e and �
2x � 1

3
�

3y � 1

5
�

z � 1
3

x � 3
4

�
y � 2

3
�

z � 2
�3

 z � �2 � 3l       z � 3 � 5m

 y � 2 � 5l  and   y � 2 � 3m

x � 1 � mx � �1 � l

x � 1 � t, y � 2 � 5t, z � 1 � tr � £
2

�1
�1
≥ � s£

2
�3
�4
≥

r � 5i � 3j � 3k � n1�i � 3j � 2k 2
r � 2i � 2j � k � m1i � 3j � k 2

r � £
3

�1
�1
≥ � t£

2
�4
�3
≥r � £

�2
1

�1
≥ � s£

2
6

�1
≥

D11, 3, �3 2A10, 1, �2 2 ,

x � 2 � m, y � 3m � 1, z � 1 � 2m

¢4, 0, �
7
2
≤           

x � 2
3

�
2 � y

1
�

2z � 3
�2

1�1, �2, 0 2         r � £
3
1
1
≥ � s£

1
2

�1
≥

11, �1, 3 2             r � i � 2j � 3k � t1i � k 2

11, 2, �1 2            r � £
1
0
3
≥ � m£

2
1
2
≥

r � i � j � k � l12i � j � k 2

3 � x
2

�
2y � 3

2
�

3z � 5
�2

r � i � 2j � 5k � m1i � j � 3k 2

�
x
2

�
y � 1

�4
�

z � 5
6

x � 2 �
y � 3

2
�

z � 1
�3

z � 6 � 16m z � �2 � 8l

y � 2 � 2m y � 1 � l

x � 4 � 2mx � 2 � 3l

x � 1 � 2t, y � 3 � 3t, z � 2tr � £
1
5

�1
≥ � s£

4
�1
2
≥

r � 3i � 2j � 2k � n1�8i � 4j � 12k 2
r � i � 2j � 3k � m12i � j � 3k 2

r � £
0
0
5
≥ � m£

2
1
1
≥r � £

1
3
3
≥ � l£

1
�2
3
≥
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13.3 Equation of a plane 
Definition of a plane
In simple terms a plane can be described as an infinite flat surface such that an infinite
straight line joining any two points on it will lie entirely in it. This surface can be vertical,
horizontal or sloping. The position of a plane can be described by giving

1. three non-collinear points
2. a point and two non-parallel lines
3. a vector perpendicular to the plane at a given distance from the origin
4. a vector perpendicular to the plane and a point that lies in the plane.

The vector equation of a plane is described as being a specific distance away from the
origin and perpendicular to a given vector. The reason behind this is that it makes the
vector equation of a plane very straightforward. We will first look at this form and then
see how we can derive the other forms from this.

Scalar product form of the vector equation of a
plane
Consider the plane below, distance d from the origin, which is perpendicular to the

unit vector where is directed away from O. X is the point of intersection of the

perpendicular with the plane, P is any point (x, y, z), and OP
¡

� r.

n̂n̂,

X

P
(x, y, z)

r
O

n̂



It is not common to be told the distance of the plane from the origin; it is much more
likely that a point on the plane will be given. In this case we can still use the scalar product
form of the vector equation, as shown in the next example.
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We also know that and are perpendicular and thus 

Now 

Hence 

1 r # n̂ � d

 1 d1r # n̂ 2 � d2

 1 d2n̂ # n̂ � dn #ˆ r � 0

dn̂ # 1dn̂ � r 2 � 0

PX
¡

� dn̂ � r

OX
¡

# PX
¡

� 0.PX
¡

OX
¡

OX
¡

� dn̂
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is the standard equation of a plane, where r is the position vector of any

point on the plane, is the unit vector perpendicular to the plane, and d is the 

distance of the plane from the origin.

n̂
r # n̂ � d

Example

Write down the vector equation of the plane in scalar product form.

A plane is perpendicular to the vector and 6 units away from
the origin.

Since the perpendicular vector is a unit vector the vector equation of the plane is

 or r # 13i � 4j � 5k 2 � 3022

 r #
1

522
 13i � 4j � 5k 2 � 6

1

522
 13i � 4j � 5k 2

Example

Find the distance of the plane from the origin, and the unit vector

perpendicular to the plane.

The magnitude of the direction vector is 

1 r # ¶

3

229
2

229
�4

229

∂ �
8

229

232 � 22 � 1�4 22 � 229

r # £
3
2

�4
≥ � 8

Hence the distance from the origin is , and the unit vector perpendicular

to the plane is ¶

3

229
2

229
�4

229

∂.

8

229

Example

A plane is perpendicular to the line and passes through the point
Find the vector equation of the plane in scalar product form.

The equation of the plane must be of the form 

Also, the position vector of the point must fit the equation.

Therefore the vector equation of the plane is 

If we are required to find the distance of the plane from the origin or the unit
vector perpendicular to the plane, we just divide by the magnitude of the direction
normal.

In this case and d �
�13

26
.n̂ �

1

26
 1i � j � 2k 2

r # 1i � j � 2k 2 � �13.

 1 D � �1 � 2 � 10 �  �13

 1 1�i � 2j � 5k 2 # 1i � j � 2k 2 � D

r # 1i � j � 2k 2 � D.

1�1, 2, 5 2 .
i � j � 2k

Cartesian equation of a plane
The Cartesian equation is of the form and is found by putting

If we have the equation then 

Therefore the Cartesian equation of the plane is 2x � 4y � z � 6.

1xi � yj � zk 2 # 12i � 4j � k 2 � 6.r # 12i � 4j � k 2 � 6,

r � £
x
y
z
≥.

ax � by � cz � d

Since and
scalar product is
commutative

n̂ # n̂ � 1

We can see that any equation of the form represents a plane perpendicular to n,

known as the direction normal. If we want the plane in the form we divide by

the magnitude of n.

r # n̂ � d,

r # n � D
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Parametric form of the equation of a plane
The parametric form is used to describe a plane passing through a point and containing
two lines. Consider the diagram.

The vectors m and n are not parallel and lie on the plane.
The point A, whose position vector is a, also lies in the
plane.

Let P be any point on the plane with position vector r.

Hence where and are parameters.

Thus r � a � AP
¡

� a � lm � mn.

mlAP
¡

� lm � mn,
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Example

Convert into scalar product form.

Thus r # £
1
3

�2
≥ � 9

£
x
y
z
≥ # £

1
3

�2
≥ � 9

x � 3y � 2z � 9

P
A

m
a

r

n

n

O

where a is the position vector of a point and m and n are 
direction vectors of lines, is the parametric form of the equation of a plane.
r � a � lm � mn,

It is not easy to work in this form, so we need to be able to convert this to scalar product
form.

In any plane, the direction normal is perpendicular to any lines in the plane. Hence to
find the direction normal, we need a vector that is perpendicular to two lines in the
plane. From Chapter 12, we remember that this is the definition of the vector product.

Method for converting the parametric form to scalar product form

1. Using the direction vectors of the lines, find the perpendicular vector using the
vector product. This gives the plane in the form 

2. To find D, substitute in the coordinates of the point.
r # n � D.

Example

Convert the parametric form of the vector equation 

to scalar product form.

In this equation the direction vectors of the lines are and £
�2
3
0
≥.£

�2
0
1
≥

r � £
�1
�1
2
≥ � l£

�2
0
1
≥ � m£

�2
3
0
≥

Hence the direction normal of the plane is

Therefore the scalar product form of the vector equation of the plane is 

Therefore the vector equation of the plane in scalar product form is 

This could also be written in the form 

r # ¶

�3
7

�2
7

�6
7

∂ � �1

r # n̂ � d:

r # £
�3
�2
�6
≥ � �7.

 1 D � 3 � 2 � 12 � �7

 £
�1
�1
2
≥ fits this 1 £

�1
�1
2
≥ # £

�3
�2
�6
≥ � D

r # £
�3
�2
�6
≥ � D.

 � £
�3
�2
�6
≥

3
i j k

�2 0 1
�2 3 0

3 � i10 � 3 2 � j10 � 2 2 � k 1�6 � 0 2

Example

Find the equation of the plane that contains the lines

and passes through the point (2, 1, 3). Give the answer in scalar product form
and in Cartesian form.

The direction vectors of the lines are and 

Hence the direction normal of the plane is

Therefore the vector equation of the plane is of the form r # 1�6i � j � 5k 2 � D.

 � �6i � j � 5k

3
i j k
3 �2 4
1 1 1

3 � i1�2 � 4 2 � j13 � 4 2 � k 13 � 2 2

i � j � k.3i � 2j � 4k

 r2 � �j � k � m1i � j � k 2

 r1 � 2i � j � 3k � l13i � 2j � 4k 2
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The vector fits this. Hence 

Therefore the vector equation of the plane is 

This could also be written in the form as

To find the Cartesian equation we use and replace r
with 

 1 �6x � y � 5z � 4

 Hence 1xi � yj � zk 2 # 1�6i � j � 5k 2 � 4

xi � yj � zk.
r # 1�6i � j � 5k 2 � 4

r # ¢� 6

262
 i �

1

262
 j �

5

262
 k≤ �

4

262

r # n̂ � d

r # 1�6i � j � 5k 2 � 4.

 1 D � �12 � 1 � 15 � 4

 12i � j � 3k 2 # 1�6i � j � 5k 2 � D2i � j � 3k

Example

Find the scalar product form of the vector equation of the plane passing
through the points and 

We can use the same method to do this, since we can form the direction vectors
of two lines in the plane.

Hence the direction normal of the plane is

Therefore the vector equation of the plane is of the form 

fits this

Therefore the vector equation of the plane is or, in the form
r # n̂ � d, r # j � �1.

r # 1�21j 2 � 21

 1 D � 21

 1 1i � j � 3k 2 # 1�21j 2 � DOA
¡

� i � j � 3k

r # 1�21j 2 � D.

3
i j k
1 0 4

�5 0 1
3 � i10 � 0 2 � j11 � 20 2 � k10 � 0 2 � �21j

 BC
¡

� 1�3 � 2 2 i � 1�1 � 1 2 j � 12 � 1 2k � �5i � k

 AB
¡

� 12 � 1 2 i � 1�1 � 1 2 j � 11 � 3 2k � i � 4k

C1�3, �1, 2 2 .A11, �1, �3 2 , B12, �1, 1 2

Example

Find the equation of the plane that is parallel to the plane 
and passes through the point Hence

find the distance of this plane from the origin.

The direction vectors of two lines parallel to the plane are and i � j � 3k.i � 2j

A13, 2, �2 2 .m1i � 2j 2 � n1i � j � 3k 2
r � 2i � j � k �

Hence the direction normal of the plane is

Therefore the scalar product form of the vector equation of the plane is

fits this 

Therefore the scalar product form of the vector equation of the plane is

In the form this is   

Hence the distance of this plane from the origin is 2 �2

26
2 � 2

26
.

r # ¢� 2

26
 i �

1

26
 j �

1

26
 k≤ �

�2

26
.r # n̂ � d

r # 1�2i � j � k 2 � �2.

 1 D � �6 � 2 � 2 � �2

 1 13i � 2j � 2k 2  . 1�2i � j � k 2 � DOA
¡

� 3i � 2j � 2k

r # 1�2i � j � k 2 � D.

 � �6i � 3j � 3k � �2i � j � k

3
i j k
1 2 0
1 �1 �3

3 � i1�6 � 0 2 � j1�3 � 0 2 � k 1�1 � 2 2

The negative sign means that
this plane is on the opposite
side of the origin to the one
where d is positive.

Example

The plane has equation 

a) Find the distance of from the origin.
b) Find the equation of the plane which is parallel to and passes

through the point 

c) Find and the distance of from the origin.
d) Hence find the distance between and 

a) Putting in the form 

Hence the distance of from the origin is 

b) Since and are parallel, they have the same direction normals.

Hence the equation of is 

Therefore has equation r # £
2
0

�1
≥ � �7.p2

1 D � �2 � 5 � �7

OA
¡

� £
�1
2
5
≥ fits this 1 £

�1
2
5
≥ # £

2
0

�1
≥ � D

r # £
2
0

�1
≥ � D.p2

p2p1

7

25
.p1

r # n̂ � d 1 r # •
2

25
0

�1

25

μ �
7

25
p1

p2.p1

p2

A1�1, 2, 5 2 .
p1p2,

p1

r # £
2
0

�1
≥ � 7.p1
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Lines and planes
Sometimes problems are given that refer to lines and planes. These are often solved by
remembering that if a line and a plane are parallel then the direction vector of the line is
perpendicular to the direction normal of the plane.

360

c) We now put in the form 

Hence the distance of from the origin is 

d) Hence the distance between and is 
7

25
�

7

25
�

14

25
.p2p1

2 �7

25
2 � 7

25
.p2

r # n̂ � d 1 r # •
2

25
0

�1

25

μ �
�7

25
p2

We add the distances here
because the planes are on
opposite sides of the origin.
Had they been on the same
side of the origin, we would
have subtracted them.

We will deal with how to
find this point of intersection
later in the chapter.

Example

Find the equation of the line that is perpendicular to the plane
and passes through the point 

Since the line is perpendicular to the plane, the direction vector of the line is the
direction normal to the plane. This is shown in the diagram.

Hence the vector equation of the line is r � i � 3j � 3k � l1i � 2j � k 2 .

11, 3, �3 2 .r # 1i � 2j � k 2 � 4

i � 2j � k(1, 3, �3)

this point is not on the plane

Determine whether the line intersects with, is parallel to, or 

is contained in the plane 

We first test whether the direction vector of the line is perpendicular to the
direction normal of the plane. If it is, then the line is either parallel to or contained
in the plane. If not, it will intersect the plane.

Hence we find the scalar product of £
2
1
4
≥ # £ 5� 2

� 2
≥ � 10 � 2 � 8 � 0.

r # £
5

�2
�2
≥ � 17.

r � £
3

�1
0
≥ � m  £

2
1
4
≥

Example 

Exercise 3

1 Find the vector equation of each of these planes in the form 

a Perpendicular to the vector and 3 units away from the origin

b Perpendicular to the vector and containing the point 

c Perpendicular to the line and 6 units away from the origin

d Perpendicular to the line and 

containing the point 

e Perpendicular to the line and passing

through the point 

f Containing the lines and

g Passing through the points and

h Containing the lines and

i Passing through the points A, B and C with position vectors

and 

j Passing through the origin and perpendicular to 

k Passing through the point (5, 0, 5) and parallel to the plane 

l Passing through the origin and containing the line r � 3i � l14j � 7k 2

r # 13i � 2j 2 � 1

� 1m � 6 2kr � 12 � 3m 2 i � 1�3 � 4m 2 j

OC
¡

� £
3

�3
4
≥OA

¡

� £
4
1
0
≥, OB

¡

� £
1
0
6
≥

x � 3
4

�
1 � y

2
�

2z � 3
3

r � §
�1
�2
11
2

¥ � l£
3

�1
�1
≥

C1�4, �3, �1 2
A11, 3, �2 2 , B1�6, 1, 0 2

t 1�i � j � 6k 2r � 1i � 5j � 9k 2 �
r � 1i � 2j 2� s 1i � 2j � 3k 2

A13, 2, �2 2

r � �i � j � 2k � m 1i � 8j � 3k 2

12, 3, �1 2

r � 3i � 2j � 4k � t 1�i � 4j � k 2

r � £
1
3

�2
≥ � m £

2
0
1
≥

13, 2, �1 2
i � 3j � 5k

£
1
4

�1
≥

r . n̂ � d.
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Since the scalar product is zero, the line is either parallel to the plane or contained
in the plane. To find out which case this is, we find if they have a point in common.
Knowing that the point lies on the line, we now test whether it lies
in the plane.

Hence the line is contained in the plane.

£
3

�1
0
≥ # £ 5�2

�2
≥ � 15 � 2 � 0 � 17

13, �1, 0 2



11 A plane passes through the point with position vector and is parallel to

the lines and Find

the vector equation of the plane in scalar product form. Is either of the given

lines contained in the plane?

12 A plane passes through the three points whose position vectors are:

Find a vector equation of this plane in the form and hence write

down the distance of the plane from the origin.

13 A plane passes through A, B and C, where and

Find the vector equation of the plane in scalar product form.

Hence find the distance of the plane from the origin.

14 Find a vector equation of the line through the point (4, 3, 7) that is 
perpendicular to the plane 

15 a Show that the line L with equation is parallel to the plane

with equation 

b Find a vector equation of the plane in scalar product form that contains
the line L and is parallel to 

c Find the distances of and from the origin and hence find the
distance between them.

16 Determine whether the given lines are parallel to, contained in, or intersect
the plane 

a

b

c

d x � 2 � 3t, y � �t, z � 3t � 4

x � 1
2

�
2y � 3

4
�

6z � 1
�12

r � 12i � 3j 2 � s13i � 2k 2

r � 3i � 2j � 7k � l1�2i � 3j � 3k 2

r # 12i � j � 3k 2 � 5.

P2P1

P1.
P2

r # 1i � j � k 2 � 8.P1

x � 4 � y �
z � 5

2

r # 12i � 2j � 5k 2 � 9.

OC
¡

� £
4
1
9
≥.

OA
¡

� £
4
7
0
≥, OB

¡

� £
�2
1
3
≥

r # n̂ � d

 c � �4i � 2j � 3k

 b � i � j � 5k

 a � i � 3j � 5k

r2 � 5j � k � m1i � 3j � k 2 .r1 � 2i � 3j � l1i � k 2

i � j
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2 Convert these equations of planes into scalar product form.

a

b

c

d

3 Convert these equations to Cartesian form.

a

b

c

d

4 Find the scalar product form of the vector equation of the plane that is
perpendicular to the line and 
contains the line 

5 Find the unit vectors perpendicular to these planes.

a

b

c

d

6 Show that the planes and 
are perpendicular.

7 A plane passes through the points and (3, 2, 0), and is parallel
to the vectors and Find the vector equation of the
plane in scalar product form.

8 Two planes and have vector equations and
Explain why and are parallel and hence find 

the distance between them.

9 a Show that the line L whose vector equation is 
is parallel to the plane whose 

vector equation is 
b Find the equation of plane that contains the line L and is parallel to 

c Find the distance of and from the origin and hence determine the
distance between the planes.

10 Find the equation of plane that contains the point with position vector

and is parallel to the plane with equation

Find the distances of and from the origin

and hence determine the perpendicular distance between and P2.P1

P2P1r # 12i � 5j � 6k 2 � 14.

P22i � 3j � 5k

P1

p2p1

p1.p2

r # 1i � 5j � k 2 � 8.
p1l1i � j � 4k 2r � 3i � 2j � 8k �

p2p1r # 13i � j � 3k 2 � 15.
r # 13i � j � 3k 2 � 7p2p1

2i � j � 2k.i � 2j � k
11, 1, �2 2

r # 13i � 9j � k 2 � 9r # 1i � 2j � 15k 2 � 19

5x � 2y � 4z � 15

r � 1i � 3j 2 � m12i � j 2 � n14i � j � 3k 2

4x � y � 5z � 8

r # 1i � 2j � 5k 2 � 13

r2 � 1�3i � k 2 � s 12i � 3j � k 2 .
r1 � 1i � 2j � 4k 2 � s 1i � 3j � 7k 2

r � 11 � 3s � 2t 2 i � 13 � 4s 2 j � 12 � 3s � t 2k

r � 1i � j � 5k 2 � l13i � j � 4k 2 � m1i � 3j � 3k 2

r # £
4

�1
0
≥ � �6

r # 1i � 2j � 7k 2 � 9

r � 11 � 2m � n 2 i � 13 � m � 4n 2 j � 12 � m � 5n 2k

r � £
1
4
0
≥ � l £

2
�1
3
≥ � m £

3
4
3
≥

r � 11 � 2s � 3t 2 i � 12 � 5s 2 j � 13 � 2s � t 2k

r � 2i � k � l12i 2 � m13i � 2j � 5k 2
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13.4 Intersecting lines and planes
The intersection of a line and a plane
In this situation there are three possible cases.

1. If the line is parallel to the plane there is no intersection.

2. If the line is contained in the plane, there are an infinite number of solutions, 
i.e. a line of solutions, which are given by the parametric equations of the line.

3. If the line intersects the plane, there is one solution. 
These are shown in the diagrams.



The intersection of two and three planes
This is directly related to the work done in Chapter 11, where the different cases were
considered. Many of these questions are best solved using a method of inverse matrices
or row reduction, but we will consider the situation of two planes intersecting in a line
from a vector point of view.

Since the line of intersection of two planes is contained in both planes, it is
perpendicular to both direction normals. This is shown in the diagram.
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No solution

n
n

Infinite solutions

n

One solution

It is this third case we are interested in.

Method

1. Find an expression for any point on the line, which must fit the equation of the plane.

2. Find the value of the parameter, say 

3. Hence find the coordinates of the point of intersection.

l.

Example

Find the point of intersection between the line 
and the plane 

Any point on the line is given by the parametric equations of the line:

Substituting these into the equation of the plane:

Hence at the point of intersection:

The point of intersection is ¢�3
2

, 
17
2

, 
�15

2
≤.

 z � �5 �
5
2

� �
15
2

 y � 6 �
5
2

�
17
2

 x � 1 �
5
2

� �
3
2

 1 l � �
5
2

 1 2l � �5

 1 3 � 3l � 12 � 2l � 5 � l � 5

 1 311 � l 2 � 216 � l 2 � 11�5 � l 2 � 5

 3 11 � l 2 i � 16 � l 2 j � 1�5 � l 2k 4 # 33i � 2j � k 4 � 5

 z � �5 � l

 y � 6 � l

 x � 1 � l

r # 13i � 2j � k 2 � 5.
r � 1i � 6j � 5k 2 � l1i � j � k 2

n1
n2

�

�

�

Method

1. Find the vector product of the direction normals. This gives the direction vector of
the line.

2. Write the equations of the planes in Cartesian form.

3. We now assume that since the line has to intersect this plane.

4. Solving simultaneously gives a point on the line.

5. Write down a vector equation of the line.

z � 0

Example

Find a vector equation of the line of intersection of the planes
and 

The direction normal of the plane is given by

The Cartesian equations of the plane are and

Assuming gives and 

equation (i)

equation (ii)

Equation 

Substituting in equation (i) 

Thus a point on the line is (3, 2, 0).

Therefore an equation of the line of intersection is
r � 3i � 2j � l1�i � 13j � 5k 2 .

1 y � 2

1 x � 31i 2 � equation 1ii 2

3x � y � 7

2x � y � 8

3x � y � 7.2x � y � 8z � 0

3x � y � 2z � 7.
2x � y � 3z � 8

3
i j k
2 1 �3
3 �1 2

3 � i12 � 3 2 � j14 � 9 2 � k1�2 � 3 2 � �i � 13j � 5k

r # 13i � j � 2k 2 � 7.
r # 12i � j � 3k 2� 8



1 Find the point of intersection between the line and plane.

a and 

b

c and 

d and 

e  and 

f and 

2 Find the acute angle between the two planes.

a and 

b and 

c and 

d and 

e  and 

f The plane perpendicular to the line and

passing though the point and the plane 

3 Find the acute angle between the line and plane.

a and 

b and 

c and 

d and 

e and 

f and

4 Find the vector equation of the line of intersection of the following pairs of
planes.

a and r # 1i � 3j � 5k 2 � 7r # 13i � 4j � 2k 2 � 8

m12i � j � k 2r � 2i � j � 4k � l1i � 2j � 6k 2 �

r � i � 2j � k � m13i � 2j � 3k 2

r # £
4

�5
1
≥ � 13

x � 4
7

� 2y � 1, z � �2

r # 14i � 5k 2 � �6x � l � 1, y �
1
2

 l � 3, z � 2 � 3l

2x � 4y � 9z � 0
x � 2

5
�

2y � 7

5
�

3 � 2z
4

x � 3y � 4z � 5r � £
1
2

�3
≥ � t £

3
1

�4
≥

r # 12i � 3j � 2k 2 � 7r � i � 2j � l13i � 5j � 9k 2

r # 1j � 5k 2 � 1414, �1, �5 2 ,

r � 4i � j � 5k � s1i � 2j � k 2

r � 11 � m � n 2 i � 12 � m � 3n 2 j � 14 � 5m 2k

r # 1i � j � 5k 2 � 2

y � 3x � z � 5x � y � 9z � 6

2x � y � 5z � 6r # £
1
0

�3
≥ � 1

x � y � 4z � 172x � 3y � 4z � 15

r # 13i � 6j � 2k 2 � 15r # 13i � 4j � 9k 2 � 10

x � y � 2z � 20x � 4 � 3n, y � n � 6, z � 1 � 2n

r � 2k � m1i � 4k 2 � n13i � j � 6k 2

r � 4i � j � l16i � j � 3k 2

r # £
2
3

�1
≥ � 14x � 1 � 2m, y � m � 3, z � 1

3x � 4y � z � 8r � i � 5k � m1i � j � 2k 2

r � £
3
1

�2
≥ � s £

2
�1
0
≥ and r # £

2
2
1
≥ � 7

3x � 2y � 6z � 32x � 3 � 2y � 5 � 4 � 3z
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Finding the angle between two planes
The angle between two planes is the same as the
angle between the direction normals of the planes.
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n1
n2

�

�

�

Method

Apply the scalar product to the direction normals
of the planes and find the angle.

Method

1. Use the scalar product to find the angle between the direction normal of the
plane and the direction vector of the line.

2. Subtract the angle in Step 1 from 90
o
to find the required angle.

Find the angle between the planes and

 1 u � 54.7°

 1  cos u �
1

23

 1 2 � 2 � 1 � 323 cos u

 1i � j � k 2 # 12i � 2j � k 2 � 2329 cos u

r # 12i � 2j � k 2 � 1.
r # 1i � j � k 2 � 3u

Example 

Finding the angle between a line and a plane
The angle between a line and a plane is the complement
of the angle between the line and the direction normal. b

�

�90� �
n̂

Find the angle between the line and the plane

Therefore the required angle is 90° � 73.8° � 16.2°.

 1 u � 73.8°

 1  cos u �
13

266233

 1 14 � 5 � 8 � 266233 cos u

 17i � j � 4k 2 # 12i � 5j � 2k 2 � 266233 cos u

r # 12i � 5j � 2k 2 � 8.
r � 3k � l17i � j � 4k 2

Exercise 4

Example 



respectively. The point P lies on AB produced and is such that and

the point Q is the midpoint of AC.

a Show that is perpendicular to 
b Find the area of the triangle APQ.
c Find a unit vector perpendicular to the plane ABC.
d Find the equations of the lines AD and BD in Cartesian form.
e Find the acute angle between the lines AD and BD.

3 a The plane has equation 

The plane has equation 

i For points that lie in and show that 

ii Hence, or otherwise, find a vector equation of the line of intersection of 
and 

b The plane contains the line and is perpendicular

to Find the Cartesian equation of 

c Find the intersection of and [IB May 05 P2 Q3]

4 The line L has equation

a Show that L lies in the plane whose equation is 

b Find the position vector of P, the foot of the perpendicular from the origin O to L.

c Find an equation of the plane containing the origin and L.

d Find the position vector of the point where L meets the plane whose

equation is

5 The line L has equation and the plane has equation 

a Find the coordinates of the point of intersection, P, of L and 

b The point Q has coordinates (6, 1, 2), and R is the foot of the perpendicular
from Q to Find the coordinates of R.p.

p.

r # £
0

�1
1
≥ � 5.

pr � £
1

�1
2
≥ � t £

0
4

�1
≥

r # £
3

�4
1
≥ � 7.

p

r # £
�1
2
4
≥ � �2.

r � £
20
1
4
≥ � l £

2
1
0
≥  where l H �

p3.p1, p2

p3.3i � 2j � k.

2 � x
3

�
y

�4
� z � 1p3

p2.
p1

l � m.p2,p1

r � £
2
0
1
≥ � s £

1
2
1
≥ � t £

1
1
1
≥.p2

r � £
2
1
1
≥ � l £

�2
1
8
≥ � m £

1
�3
�9
≥.p1

AQ
¡

.PQ
¡

AP
¡

� 2 AB
¡

,
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b and 

c and 

d and 

e and

f and

5 Prove that the line is parallel to the 

intersection of the planes and 

6 Find the acute angle between the plane defined by the points 

(2, 1, 0) and and the plane defined by the points 

and 

7 a Find the equation of the straight line which passes through the point
and is perpendicular to the plane 

b Calculate the coordinates of the point Q, which is the point of intersection
of the line and the plane.

8 The vector equation of a plane is given by 

a Given that the point A(a, 3a, 2a) lies on the plane, find the value of a.

b If B has coordinates find the acute angle between the direction

normal of the plane and 
c Hence find the perpendicular distance of B from the direction normal.

AB
¡

.

11, 4, �1 2 ,

r # 1i � 5j � 6k 2 � 6.

3x � y � 3z � �5.P 11, 2, �3 2

1�2, �3, 0 2 .11, �1, 1 2

10, �1, 2 2 ,13, �2, 0 2 ,

10, 1, �1 2 ,

r # 1i � 2j � 2k 2 � 17.r # 13i � 3j � k 2 � 2

r � 3i � 5j � l14i � 5j � 3k 2

r � 12 � 3s 2 i � 11 � 4t 2 j � 1s � 2t 2k

r � 11 �2l� 3m 2 i � 12l�m 2 j � 16�5m 2k

r � 11 � 2m � n 2 i � 13 � 4m � n 2 j � 13m � 2n 2k

r # 13i � j � 5k 2 � 10

2x � y � 4z � 8r # 1i � j � k 2 � 7

2x � y � 4z � 11r # 1i � 3j � 2k 2 � �2

3x � y � 5z � 4x � y � 2z � 4
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Review exercise

1 The points A, B, C, D have position vectors given by

respectively. Find

a a unit vector perpendicular to the plane ABC

b a vector equation, in the form of the plane parallel to ABC and
passing through D

c the acute angle between the line BD and the perpendicular to the plane ABC.

2 The points A, B, C, D have position vectors given by

 d � 2i � 2j � 3k

 c � 5i � 3j � k

 b �
3
2

 i �
5
2

 j �
1
2

 k

 a � i � j � k

r # n̂ � d,

 d � 3i � j � 2k

 c � �i � j � 2k

 b � 2i � j � 5k

 a � 3i � 2k
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ii Hence, or otherwise, find the acute angle between the planes correct to
the nearest tenth of a degree.

c Show that is normal to 
d i Find the coordinates of the point of intersection of and 

ii Hence, or otherwise, show that the two lines and the two planes all
have a point in common. [IB Nov 98 P2 Q1]

11 A plane has equation 

a Find, in vector form, an equation for the line passing through the point A
with position vector and normal to the plane 

b Find the position vector of the foot B of the perpendicular from A to the
plane 

c Find the sine of the angle between OB and the plane 

The plane has equation 
d Find the position vector of the point P where both the planes 

intersect with the plane parallel to the x-axis which passes through the
origin.

e Find the position vector of the point Q where both the planes 
intersect with the plane parallel to the y-axis which passes through the
origin.

f Find the vector equation of the line PQ.

12 The equations of the planes and are given by

where is the position vector for a point on the plane.

a Let L be the line of intersection of the two planes and 

i Show that L is parallel to 

ii Show that the point lies on the line L. Hence, or
otherwise, find the equation of L.

The equation of a third plane is given by

b Determine the value of c for which the three planes, and 
intersect, and deduce whether this value of c gives a point of intersection
or a line of intersection.

c For 

i show that the plane is parallel to the line L

ii find the distance between the line L and the plane 

[IB May 98 P2 Q3]

13 Using row reduction show that the following planes intersect in a line, and
find the vector equation of the line of intersection.

14 a The line is parallel to the vector and passes through
the point (2, 3, 7). Find a vector equation of the line.

v � 3i � j � 3kL1

 3x � 4y � 5z � 1

 2x � y � 3z � 2

 x � 2y � z � 3

P3.

P3

c � 5,

P3,P1, P2

P3: r # 1�4i � j � k 2 � c.

P3

A 10, �1, �1 2

3i � 11j � k.

P2.P1

r � xi � yj � zk

P2: r # 1�2i � j � 5k 2 � 4

P1: r # 13i � j � 2k 2 � �1

P2P1

p1, p2

p1, p2

r # 1i � j � k 2 � 5.p2

p1.
p1.

p1.2i � j � 4k

r # 13i � j 2 � �13.p1

P1.L2

P1.L2
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c Find a vector equation for the line PR.

d Find the angle PQR.

6 The point is on the line L, which is perpendicular to the plane
with equation 

a Find the Cartesian equation of the line L.
b Find the point of intersection of the line L and the plane.
c The point A is reflected in the plane. Find the coordinates of the image of the

point A.
d Calculate the distance from the point B(2, 0, 6) to the line L. [IB Nov 03 P2 Q1]

7 Show that the planes and

intersect in a line and find the vector equation of the

line.

8 Consider the points A(1, 2, 1), C(1, 0, 2) and 

a Find the vectors and 

b Calculate 
c Hence, or otherwise, find the area of triangle ABC.
d Find the equation of the plane P containing the points A, B and C.
e Find a set of parametric equations for the line through the point D and

perpendicular to the plane P.
f Find the distance from the point D to the plane P.
g Find a unit vector which is perpendicular to the plane P.
h The point E is a reflection of D in the plane P. Find the coordinates of E.

[IB Nov 99 P2 Q2]

9 In a particular situation and The plane

is given by the equation 

a Determine whether or not A and B lie in the plane 
b Find the Cartesian equation of the line AB.
c Find the angle between AB and the normal to the plane at A.
d Hence find the perpendicular distance from B to this normal.
e Find the equation of the plane that contains AB and is perpendicular to 

10 The equations of two lines and are

where t is a scalar;

The equations of two planes and are

a Find the vector cross product 
b i Write down vectors that are normal to the planes 

respectively.
P1, P2n1, n2

1i � j 2 � 1i � 2k 2 .

P2: r � 22i � l1i � j 2 � m1i � 2k 2 .

P1: 6x � 3y � 2z � 12;

P2P1

L2: 
x � 30

2
�

y � 39

1
�

2 � 3z
2

.

L1: r � i � 20j � 13k � t 17i � k 2 ,

L2L1

p.

p

p.

x � 3y � z � 1.p

OB
¡

� j � 9k.OA
¡

� 2i � 3j � 8k

AB
¡

� BC
¡

.

BC
¡

.AB
¡

D 12, �1, �6 2 .B10, �1, 2 2 ,

r3
# 1i � 4j � 3k 2 � 10

r1
# 1i � 2j � k 2 � 4, r2

# 1i � 3j � 2k 2 � 7

x � y � z � 1 � 0.
A 12, 5, �1 2
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b The equation of a plane, E, is given by Find the

point of intersection of the line and the plane E.
c Find an equation of a plane which passes through the point (1, 2, 3) and

is parallel to the plane E.

d The parametric equations of another line are and

Show that

i is not parallel to 

ii does not intersect 
e Let O be the origin and P be the point.

i Find a vector w that is parallel to the line 

ii Find the vector 

iii Find the shortest distance d between the lines and by using the

formula    
[IB May 97 P2 Q3]

15 a Show that the line L whose vector equation is

is parallel to the plane P whose vector equation is 

b What is the distance from the origin to the plane?

c Find, in the same form as the equation given above for P, the equation of
the plane which contains L and is parallel to the plane P.

d Deduce that the plane is on the opposite side of the origin to the
plane P. Hence, or otherwise, find the distance between the line L and
the plane P.

e     Show that the plane contains the line whose vector equation is

[IB May 93 P2 Q3]

16 a Show that the lines given by the parametric equations
and

intersect and find the coordinates of P, the point of intersection.

b Find the Cartesian equation of the plane that contains these two lines.

c Find the coordinates of Q, the point of intersection of the plane and the line

d Find the coordinates of the point R if and the plane of

the triangle PQR is normal to the plane p.

� PR
¡

� � �QR
¡

� � 4

r � £
2

�1
0
≥ � l£

3
1
1
≥.

p

x � 7 � 2n, y � 1 � n, z � 8 � n

x � 3 � 4m, y � 3 � 2m, z � 7�2m

r � �i � 2j � g12i � j � k 2 .

P1

P1

P1

r # 1i � 4j � 2k 2 � 4.

r � 3i � 4j � 2k � l12i � j � 3k 2

d � 2 PO
¡

# 1v � w 2

�v � w�
2.

L2L1

PO
¡

.

L2.

L2.L1

L2L1

z � �t, �q 6 t 6 q.
x � t,    y � tL2

L1

2x � 3y � 4z � 21 � 0.
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Jakob Bernoulli was a Swiss
mathematician born in Basel,
Switzerland, on 27 December 1654.
Along with his brother, Johann, he is
considered to be one of the most
important researchers of calculus after
Newton and Leibniz. Jakob studied
theology at university, but during this
time he was studying mathematics and
astronomy on the side, much against
the wishes of his parents. After
graduating in theology he travelled
around Europe and worked with a number of the great mathematicians of the time.
On return to Basel, it would have been natural for him to take an appointment in the
church, but he followed his first love of mathematics and theoretical physics and took
a job at the university. He was appointed professor of mathematics in 1687 and, along
with his brother, Johann, started studying Leibniz’s work on calculus. At this time
Leibniz’s theories were very new, and hence the work done by the two brothers was at
the cutting edge. Jakob worked on a variety of mathematical ideas, but in 1690 he
first used the term “integral” with the meaning it has today. Jakob held the chair of
mathematics at the university in Basel until his death in 1705. Jakob had always been
fascinated by the properties of the logarithmic spiral, and this was engraved on his
tombstone along with the words “Eadem Mutata Resurgo” which translates as “I shall
arise the same though changed.”

14.1 Undoing differentiation
In Chapters 8–10 we studied differential calculus and saw that by using the techniques
of differentiation the gradient of a function or the rate of change of a quantity can be
found. If the rate of change is known and the original function needs to be found, it is
necessary to “undo” differentiation. Integration is this “undoing”, the reverse process
to differentiation. Integration is also known as anti-differentiation, and this is often the
best way of looking at it.

If what is the original function y?

This is asking what we started with in order to finish with a derived function of 2x.

Remembering that we differentiate by multiplying by the power and then subtracting

one from the power, we must have started with 

Similarly, if then this must have started as 4x.
Exercise 1

dy

dx
� 4,

x2.

dy

dx
� 2x,

14 Integration 1

Jakob Bernoulli



This “c” is called the constant of integration. It must be included in the answer of any
integral, as we do not know what constant may have “disappeared” when the function
was differentiated.
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Find the original function.

1 2 3 4

5 6 7 8

9 10
dy

dx
� �4x�2dy

dx
� 9x2

dy

dx
� 5x4dy

dx
� 4x3dy

dx
� 3x2dy

dx
� 12x

dy

dx
� 4x

dy

dx
� �2

dy

dx
� 10

dy

dx
� 5
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Looking at the answers to Exercise 1, we can form a rule for anti-differentiation.

If we describe the process of “undoing” differentiation for this type of function, we
could say “add 1 to the power and divide by that new power”.

In mathematical notation this is

14.2 Constant of integration
Again consider the situation of Geometrically, this means that the gradient of

the original function, y, is constant and equal to 4.

So (c is the y-intercept of the line from the general equation of a line
).

Consider the lines and 

For each line (as the gradient is 4 each time). Remember that, when

differentiating, a constant “disappears” because the gradient of a horizontal line is zero

or alternatively the derivative of a constant is zero.

So 

Unless more information is given (a point on the line), then the value of c remains

unknown. So any of the lines below could be the original function with In fact

there are an infinite number of lines that could have been the original function.

dy

dx
� 4.

�4 dx � 4x � c.

dy

dx
� 4

y � 4x � 5.y � 4x � 3, y � 4x

y � mx � c
y � 4x � c

dy

dx
� 4.

�xn dx �
xn�1

n � 1

Exercise 1

1

1

�2

x

y

y � 4x � 2

y � 4x � 1
y � 4x

y � 4x � 2

2

This symbol means “the
integral of”.

This means “with
respect to x” – the
variable we are
concerned with.

Example

Find y if 

y � �8x dx � 4x2 � c

dy

dx
� 8x.

The coefficient of a term has no effect on the process of integration, and so a constant
can be “taken out” of the integral. This is demonstrated in the next example.

We established in 
Chapter 8 that a function
could be differentiated
“term by term”. In a
similar way, this can be
integrated term by term.

Example

Find 

So 

So Example�10x � 7 dx � 5x2 � 7x � c

�10x � 7 dx � �10x dx � ��7 dx

�10x � 7 dx.

Example 

Integrate 

�8x�2 � x
3
4 dx � �8x�1 �

4
7

 x
7
4 � c

8x�2 � x
3
4.

Example

Find the solution of 

So

 y �
1
3

 x
2
3 � c

 y �
2
9

#
3
2

 x
2
3 � c

 y �
2
9�x�1

3 dx

 y � �2
9

 x�1
3 dx

dy

dx
�

2
9

 x
�1

3. This is asking to find y
by integrating.

As with the expressions differentiated in Chapters 8–10, it is sometimes necessary to
simplify the function prior to integrating.

Example



21 22 23

24 25 26

Find y by integrating with respect to the relevant variable.

27 28 29

30 31
dy

dt
�
2t � 4t3

3t

dy

dt
�
1t � 3 22

t4

dy

dz
� z3 ¢z2 �

1
z2≤dy

dk
� 8k

5
4

dy

dp
�

12
p3

dy

dx
�

7x4 � 6x
3
4

2x
1
4

dy

dx
�

4x3 � 7x

2x

dy

dx
�

x2 � 5
x5

dy

dx
� 13x � 4 22

dy

dx
� 1x � 9 2 12x � 3 2

dy

dx
� 8x12x2 � 3 2
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Integrate these expressions.

1 2 3 4

5 6 7 8

9 10 11

Find these integrals.

12 13 14

15 16 17

Find the solution of these.

18 19 20
dy

dx
� 8 �

3

x
1
3

dy

dx
� 2x �

1

2x

dy

dx
�

2
x5

� 6
x3  dx�1 � 2x � 6x2 � x3 dx�4x3 � 4x � 9 dx

�5x
3
2 � 4x�3 dx�2x6 � 5x4 dx�x�1

2 dx

7 � 4x�3x�2
3x

1
2

x�25x2 � 48x3 � 4x � 36x2 � 5

x4x3x22x � 1
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The integral sign and the dx
remain until the integration is
performed.

The c can remain outside all
brackets as it is an arbitrary
constant and so, when 
multiplied by another constant,
it is still a constant.

Example

Find 

 �
2
15

 x
5
2 �

2
33

 x
11
2 � c

 �
1
3

 B2
5

 x
5
2 �

2
11

 x
11
2R � c

 �
1
3�x

3
2 � x

9
2 dx

 �
1
3�x�1

2 1x2 � x5 2  dx

�x2 � x5

32x
 dx

�x2 � x5

32x
 dx.

Example

Find 

 � �
4
p

� c

 � �4p�1 � c

 � �4p�2 dp

� 4
p2  dp

� 4
p2  dp.

Here p is the variable and so
the integral is with respect to p.

Exercise 2

14.3 Initial conditions
In all of the integrals met so far, it was necessary to include the constant of integration,
c. However, if more information is given (often known as initial conditions), then the
value of c can be found.

Consider again the example of If the line passes through the point (1, 3) then

c can be evaluated and the specific line found.

So 

Since we know that when these values can be substituted into the
equation of the line.

So

The equation of the line is 

When the value of c is unknown, this is called the general solution.

If the value of c can be found, this is known as the particular solution.

y � 4x � 1.

 1 c � �1

 3 � 4 � 1 � c

x � 1, y � 3

 1 y � 4x � c

 1 y � �4 dx

 
dy

dx
� 4

dy

dx
� 4.

Example

Given that the curve passes through (2, 3) and find the equation

of the curve.

Using (2, 3) 

So the equation of the curve is y � x2 � x � 3.

 1 c � 3

 1 3 � 12 � 1 � c

 1 y � x2 � x � c

 1 y � �2x � 1 dx

dy

dx
� 2x � 1

dy

dx
� 2x � 1,



14.4 Basic results
Considering the basic results from differentiation, standard results for integration can
now be produced. For polynomials, the general rule is:

However, consider 

Using the above rule, we would obtain but this is not defined. However, it is known

that 

This provides the result that 

Remembering that ln x is defined only for positive values of x, we recognize that

taking the absolute value of x. As is defined for all 

and ln x is defined only for the absolute value sign is needed so that we can

integrate for all values of x for which it is defined.

Similarly so 

When differentiating sine and cosine functions the following diagram was used and is
now extended:

The integrals of other trigonometric functions can be found by reversing the basic rules
for differentiation, and will be discussed further in Chapter 15.

Standard results

Differentiate     

S
C

�S
�C

      Integrate  

�ex dx � ex � c
d
dx

 1ex 2 � ex

1
x

x 7 0,

x H �, x � 0
1
x�1

x
 dx � ln�x� � c,

�1
x

 dx � ln�x� � c

d
dx

 1ln x 2 �
1
x
.

x0

0
,

�1
x

 dx � �x�1 dx.

�xn dx �
xn�1

n � 1
� c
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Given the gradient of each curve, and a point on that curve, find the equation
of the curve.

1

2

3

4

5

6

7

Find the particular solution, using the information given.

8 when 

9 when p � 0
dQ
dp

�
p3 � 4p5

32p
, Q � 2

t � 1
dy

dt
� t21t 4 � 3t2 � 4 2 , y � 6

dy

dx
�

8

2x
, 19, 2 2

dy

dx
� 4x2 �

6
x2, 14, �1 2

dy

dx
� 4x3 � 6x2 � 7, 11, 9 2

dy

dx
� �2x � 5, 14, 4 2

dy

dx
� 8x � 3, 1�2, 4 2

dy

dx
� 4x, 11, 5 2

dy

dx
� 6, 12, 8 2
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Example

Find P given that and when 

Since when 

Hence P � 2t
1
2 � 23

 1 c � �13

 7 � 2#2100 � ct � 100,P � 7

 1 P � 2t
1
2 � c

 1 P � �t�1
2 dt

 1 P � � 1

2t
 dt

 
dP
dt

�
1

2t

t � 100P � 7
dP
dt

�
1

2t

Exercise 3

Function

f(x)

ln x

sin x
cos x sin x

�cos x
exex

1
x

xn�1

n � 1
xn1n � �1 2

�f1x 2  dx

Integral � c
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Integrate these functions.

1 2 3

4 5 6

7 8
ex

15
� 152x � cos x

ex

3
�

5
2x

� 7 sin x

5ex � 2 sin x �
3
x

�8 sin x � 7ex6 sin x � 6x4

5
x

� cos x4ex � sin xx3 �
2
x
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Example

Integrate 

� �cos x � ex � c

�sin x � ex dx

sin x � ex.

Example

Integrate 

� 3 ln�x� � 4 sin x � c

�3
x

� 4 cos x dx

3
x

� 4 cos x.

14.5 Anti-chain rule
When functions of the type and are differentiated, the

chain rule is applied. The chain rule states that we multiply the derivative of the outside
function by the derivative of the inside function. So to integrate functions of these types
we consider what we started with to obtain that derivative.

sin¢2x �
p

3
≤12x � 1 25, e8x

Exercise 4

Example

Find y.

So 

When integrating, 1 is added to the power, so y must be connected to
Since we multiply by the power and by the derivative of the inside

function when differentiating, we need to balance this when finding y.

So 

1 y �
1
8

 12x � 1 24 � c

y �
1
4

#
1
2

 12x � 1 24 � c

12x � 1 24.

y � �12x � 1 23 dx

dy

dx
� 12x � 1 23.

Example

Find 

Using this begins with sin 3x.

Balancing to obtain cos 3x when differentiating

1 � cos 3x dx �
1
3

 sin 3x � c

Diff      

S
C

  �S
  �C

        Int

� cos 3x dx.

Example

Find 

This started with as 

 �
3
2

 e4x � c

 � 6 # 
1
4

 e4x � c

So�6e4x dx � 6�e4x dx

d
dx

 1e4x 2 � 4e4x.e4x

�6e4x dx.

Example

Find y given that 

So 

As 

we recognize that this comes from as 

So 

For these simple cases of the “anti-chain rule”, we divide by the derivative of the
inside function each time. With more complicated integrals, which will be met in
the next chapter, this is not always the case, and at that point the results will be
formalized. This is why it is useful to consider these integrals as the reverse of
differentiation.

y �
1
3

 ln�3x � 4� �
1
4

 cos¢4x �
p

2
≤ � c

d
dx

 1ln�3x � 4� 2 �
3

3x � 4
.ln�3x � 4�

1
3x � 4

� 13x � 4 2�1

y � � 1
3x � 4

� sin¢4x �
p

2
≤ dx

dy

dx
�

1
3x � 4

� sin¢4x �
p

2
≤.
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Find these integrals.

1 2 3 4

5 6 7 8

9 10 11 12

13 14

Find y if:

15 16 17

18 19 20

21 22 23

24 25 26

27

Integrate these functions.

28 29 30

31 32

14.6 Definite integration
Definite integration is where the integration is performed between limits, and
this produces a numerical answer.

6x2 �
2

3x � 2
1

2x � 1
� 13x � 4 25

4e�8x � 4 cos 2x sin 3x � 4x6e4x

dy

dt
�

3
6 � t

dy

dp
�

8
4 � p

dy

dx
�

6
3x � 5

dy

dx
�

4
3x � 1

dy

dt
�

3
12t � 1 22

dy

dx
�

4
13x � 2 23

dy

dx
� 13 � 2x 24

dy

dx
� 14x � 3 2�3dy

dx
� 14x � 7 26

dy

dx
� 13x � 1 25

dy

dx
�

4
2x � 5

dy

dx
�

1
8x � 7

dy

dx
�

1
2x � 3

�4e�2x dx�8x � e2x dx

��5e6p dp�8e6t dt�4e4x dx�e5x dx

�e6x dx��5 cos 2x dx��6 sin 3x dx�8 cos 4x dx

� sin 

1
2

 x dx� sin 2x dx� cos 6x dx� sin 5x dx
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Exercise 5

Upper limit 

A definite integral is of the form 

Lower limit 1x � a 2

�
  b

a 

f1x 2  dx

1x � b 2

When a definite integral
is created, the lower
limit is always smaller
than the upper limit.

Example

 � c x2 � x d
2

3

�
  3

2 

2x � 1 dx

This notation means that the
integration has taken place.
The two values are now 
substituted into the function
and subtracted.

There is no constant of integration used here. This is because it cancels itself out
and so does not need to be included.

 � 4
 � 6 � c � 2 � c

 � 132 � 3 � c 2 � 122 � 2 � c 2

c x2 � x � c d
2

3

 � 4
 � 6 � 2

 � 132 � 3 2 � 122 � 2 2

Example

 �
76
3

 �
152
6

 �
125
6

�
27
6

 �
1
6

 18 � 3 23 � ¢1
6

 10 � 3 23≤

 � B1
6

 12x � 3 23R
0

4

�
  4

0 

12x � 3 22 dx

Example

 �
p � 2

4

 �
p

4
�

1
2

 � ¢�1
2

 cos 

p

2
�
p

4
≤ � ¢�1

2
 cos 0 � 0≤

 � B�1
2

 cos 2x � xR
0

p
4

�
  
p

4

0 

 sin 2x � 1 dx

To differentiate trigonometric
functions, we always use 
radians, and the same is true
in integration.



13 14 15

16 17 18

19 20 21

22 23

14.7 Geometric significance of integration
When we met differentiation, it was considered as a technique for finding the gradient
of a function at any point. We now consider the geometric significance of integration.

Consider 

This is the same as the area enclosed by the function, the x-axis and the vertical lines
and 

This suggests that the geometric interpretation of integration is the area between the
curve and the x-axis.

Consider y � 3x2.

x � 5.x � 1

 � 12

 � 15 � 3

 � c3x d
1

5

�
  5

1 

3 dx

�
  5

1 

3 dx.

�
  k

0 

4
2x � 1

 dx�
  p

�p 

 sin 4x � 6x dx

�
  2

1 

6p �
3

4p � 1
 dp�

  �1

�4 

5
t � 2

 dt�
  4

2 

4
3x � 4

 dx

�
  5

2 

1
2x � 1

 dx�
  �1

�2 

3
13x � 4 22

 dx�
  4

1 

2
12x � 1 23

 dx

�
  2

�1 

13 � 2x 24 dx�
  0

�2 

13x � 1 23 dx�
  3

0 

12x � 1 22 dx
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Find the value of these definite integrals

1 2 3

4 5 6

7 8 9

10 11 12 �
  
p

6

0
 

 
cos 3t � 6 dt�

  
p

2

0
 

 
cos 2u du�

  
p

3

0
 

 sin 3x dx

�
  1

�2 

 2e�4x dx�
  4

2 

4e3x dx�
  3

0 

e2x dx

�
  �1

�3 

6
x3  dx�

  3

2 

4
x2  dx�

  2

0 

8x � 4x3 dx

�
  4

0 

5 dx�
  3

2 

6x2 dx�
  2

1 

2x dx
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Example

 � �2.20

 � ln 

1
9

 � ln 

4
36

 � ln 4 � ln 36

 � 2 ln 2 � 2 ln 6

 � 2 ln��2��2 ln��6�

 � c2 ln�x � 4� d
�2

2

�
  2

�2 

2
x � 4

 dx

An answer could have
been approximated earlier,
but if an exact answer
were required, this form
would need to be given.

Example

 �
1
4

 1e4a � e8 2

 �
1
4

 e4a �
1
4

 e8

 � B1
4

 e4xR
2

a

�
  a

2 

e4x dx  where a 7 2

Although there is no value for
the upper limit, an answer
can still be found that is an
expression in a. 

Exercise 6

Remember the limits
are values of x.

3 y � 3

50 x

y

1

y � 3x2

30 x

y

1

In the previous example where it was easy to find the area enclosed by the
function, the x-axis and the limits. However, to find the area under a curve is less obvious.
This area could be approximated by splitting it into rectangles.

y � 3,
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 � 15 square units

 A � 1 � 3 � 1 � 12
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y � 3x2

320 x

y

1

3

12

27

Four rectangles would make this more accurate.

 A �
81
4

 A �
1
2

� 3 �
1
2

�
27
4

�
1
2

� 12 �
1
2

�
75
4

This is clearly not a very
accurate approximation,
so to make it more 
accurate thinner 
rectangles are used.

As the rectangles become thinner, the approximation becomes more accurate.

y � 3x2

320 x

y

1

1.5
2.5

3

12
27
4

75
4

27

This can be considered in a more formal way. Each strip has width with height y and
area 

As gets smaller, the approximation improves 

and so 

Integrating gives �y dx � �dA
dx

 dx � �dA � A � c

 1 y �
dA
dx

 Now y �
dA
dx

A � lim
dxS0

 a
x�b

x�a
ydx.

dx

 1 A � a y dx

 1 A � a dA

 So dA � y # dx

dA.
dx

3�x
x1

Limits are needed here to
specify the boundaries 
of the area.

c can now be ignored.

This is the basic formula
for finding the area
between the curve and
the x-axis.

With the boundary conditions,

A � �
  b

a 

y dx

Hence 

This now shows more formally that the geometric significance of integration is that it
finds the area between the curve and the x-axis.

If the two notations for summation are compared, we find that sigma notation is used
for a discrete variable and that integral notation is used for a continuous variable.

 � 26

 � 27 � 1

 � c x3 d
1

3

a
3

1
3x2    and    �

  3

1 

3x2 dx

lim
dxS0

 a
x�b

x�a
y # dx � �

  b

a 

y dx.

So the sign actually means 

“sum of” (it is an elongated S).

�

This is the sum of a
continuous variable.

This is a sum of a
discrete variable.

The area required is 
26 square units.

Example

Find the area given by 

 � 10 square units

 � 12 � 2

 � 116 � 4 2 � 14 � 2 2

 � c x2 � x d
2

4

�
  4

2 

2x � 1 dx

�
  4

2 

2x � 1 dx.

y � 2x � 1

2 40 x

y

�1
 
dA
dx

lim
dxS0

  1 y �



It should be noted that it is actually not possible to find the area given by as

there is a vertical asymptote at It is not possible to find the definite integral over

an asymptote of any curve, as technically the area would be infinite.

This example also provides another explanation for the need for the modulus signs in

Although logarithms are not defined for negative values of x, in order to

find the area under a hyperbola like which clearly exists, negative values need to

be substituted into a logarithm, and hence the absolute value is required. This was
shown in the above example.

y �
1
x
,

� 

1
x

 dx � ln�x�.

x � 0.

�
  1

�2 

 

1
x

 dx
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Some definite integration
questions require the use of
a calculator. Where an exact
value is required, one of the
limits is a variable or the
question is in a non-calculator
paper, algebraic methods
must be employed.

Example

Find the area enclosed by and the x axis, between and

The answer to this definite integral is negative. However, area is a scalar quantity

(it has no direction, only magnitude) and so the area required is square unit.

As the negative sign has no effect on the area, the area can be considered to be 

the absolute value of the integral. So Whether the calculation

is done using the absolute value sign or whether we do the calculation and then
ignore the negative sign at the end does not matter. As can be seen from the
graph, the significance of the negative sign is that the area is contained below
the x-axis.

A � 2 �
  b

a 

f1x 2  dx 2.

1
2

 � �
1
2

 � 0 �
1
2

 �
1
2

 sin p �
1
2

 sin  
p

2
 

 � B1
2

 sin 2xR
 p4

p

2

 A � �
  
p

2

p

4  

 cos 2x dx

x �
p

2
.

x �
p

4
y � cos 2x

Example

Find the area given by 

So the required area is 0.693 square units.

 � 0.693

 � ��ln 2�

 � �ln 1 �  ln 2�

 � �ln��1� � ln��2��

 � 2 c ln�x� d
�2

�12

 A � 2 �
  �1

�2 

 

1
x

 dx 2

�
  �1

�2 

 

1
x

 dx.

Example

Find the area enclosed by and the x-axis.

First the limits need to be found.

y � �12x � 1 22 � 4

This integration can be performed on a calculator. Although a calculator
cannot perform calculus algebraically, it can calculate definite integrals.
This is shown in the diagram below, and we find the area is still 10 square
units.
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Find the area given by these definite integrals.

1 2 3

4 5 6

7 8 9

10 11 12

Find the area enclosed by the curve and the x-axis.

13 and the lines and 

14 and the lines and 

15 and the lines and 

16 and the lines and 

17 and the lines and 

18 and the lines and 

19 and the lines and

20 and the line and the y-axisx � �
p

2
y � e2x �  sin 2x

x � 2x � 0y � x3 � 2x2

x �
1
2

x � �1y � �14x � 1 22 � 9

x � 1x � �1y � 1 � x2

x � �2x � �5y �
4

3x � 4

x � px � 0y �  sin x

x � 1x � �2y � e6x

x � 4x � 1y � x2 � 2

�
  
p

3

0 

 cos 3x � 4x dx�
  1

0 

e2x�1 � 4x dx�
  �2

�4 

 

4
2x � 1

 dx

�
  �2

�4 

3x � 2 dx�
  5

2 

 

2
2x � 3

 dx�
  4

1 

 

4
x

 dx

�
  2

0 

ex dx�
  p

0 

 sin x dx�
  2

0 

13x � 2 24 dx

�
  3

1 

6x2 � 1 dx�
  3

0 

2x � 3 dx�
  6

2 

8 dx
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These are the roots of the graph (they can be found algebraically or by using a
calculator)

So the area is given by

 �
16
3

 � B�1
6

 12x � 1 23 � 4xR
�1

2

�
  
3
2

�1
2 

� 12x � 1 22 � 4 dx

 1 x � �
1
2

  or  x �
3
2

 1 2x � 1 � ;2

 �12x � 1 22 � 4 � 0
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Exercise 7

1 p x

y

2
3x � 5y � 

0

0 p x

y
y � e�2x � x2

22 Find an expression in terms of p for this area.

23 Find given that 

24 Find a given that �
  a

�a 

 

25
19 � x 22

 dx �
5
8

.

�
  k

0 

3x 12 dx � 16.k ̨1k 7 0 2

14.8 Areas above and below the x-axis
In this case the formula needs to be applied carefully. Consider and the
area enclosed by this curve and the x-axis.

y � x3 � 3x2 � 2x

y � x˛1x � 1 2 1x � 2 2

3
2

21 Find an expression in terms of p for this area.

If the definite integral is calculated, we obtain an answer of 0 (remember

the calculator uses a numerical process to calculate an integral) and so this result is interpreted 

as zero.

�
  2

0 

x3 � 3x2 � 2x dx
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However, it is clear that the area is not zero.

We know that a definite integral for an area below the x-axis provides a negative answer.
This explains the zero answer – the two (identical) areas have cancelled each other out.
So although the answer to the definite integral is zero, the area is not zero.

To find an area that has parts above and below the x-axis, consider the parts separately.

So in the above example, 

This demonstrates an important point. The answer to finding an area and to finding the
value of the definite integral may actually be different.

The method used in the example below shows how to avoid such problems.

 �
1
2

  unit2

 � 2 �
1
4

area � 2 � �
  1

0 

x3 � 3x2 � 2x dx

Method

1 Sketch the curve to find the relevant roots of the graph.
2 Calculate the areas above and below the x-axis separately.
3 Add together the areas (ignoring the negative sign).

Example

Find the area enclosed by the x-axis and the y-axis.

1. Sketch the curve and shade the areas required.

The roots of the graph are given by 

1 x � 1 or x � 3

1 1x � 1 2 1x � 3 2 � 0

x2 � 4x � 3 � 0

y � x2 � 4x � 3,

0

A

B

x

y

These results can be
found using a
calculator.

392

2. Work out the areas separately.

3. These areas can be calculated on a calculator (separately) and then added.

So the total square units.area �
8
3

 � 2�4
3
2 � 4

3
 �

4
3

 � 2 19 � 18 � 9 2 � ¢4
3
≤ 2 � 2 ¢1

3
� 2 � 3≤ � 10 2 2

 � 2 B1
3

 x3 � 2x2 � 3xR
1

3 2 � 2 B1
3

 x3 � 2x2 � 3xR
0

1 2

 B � 2 �
  3

1 

x2 � 4x � 3 dx 2 A � 2 �
  1

0 

x2 � 4x � 3 dx 2
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Example

Find the area bounded by the y-axis and the line 

Graphing this on a calculator,

This area can be split into:

and

So the total area is square units.
7
2

 � 2
 � 1 � 1�1 2

 � 1�cos p 2 � 1�cos 0 2

 � c�cos x d
0

p

�
  p

0 

 sin x dx

x �
5p
3

.y �  sin x,

5�
3

5p
3

 � �
3
2

 � ¢�1
2
≤ � 11 2

 � ¢�cos 

5p
3
≤ � 1�cos p 2

 � c�cos x d
p

�
  
5p
3

p 

 sin x dx



Find the area bounded by the curve, the x-axis and the lines given.

9 and 

10 and 

11 and 

12 and 

13 and 

14 and x � 4y � x3 � ex, x � 0

x �
5p
4

y � 4 cos 2x, x �
p

2

x � py � cos¢2x �
p

6
≤, x � 0

x �
5p
6

y � 3 sin 2x, x � 0

x � 2y � 6x3, x � �4

x � 4y � x2 � x � 6, x � �2
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Exercise 8

Find the shaded area on the following diagrams.

1 y � x2 � 8x � 12

x

y

0

x

y

0

0

4

�4

� �2

x

y

�1
2

x

y

0

2 y � �x2 � 9x � 8

Find the area bounded by the curve and the x-axis in the following cases.

5
6

7

8 y � 6x3 � 5x2 � 12x � 4

y � x3 � x2 � 16x � 16

y � �1x � 4 2 12x � 1 2 1x � 3 2
y � x˛1x � 3 2 1x � 2 2

4 y � 5x3

3 y � 4 sin x

14.9 Area between two curves
The area contained between two curves can be found as follows.

The area under f(x) is given by and under g(x) is given by 

So the shaded area is 

Combining these gives 

This can be expressed as upper curve – lower curve dx.�
  b

a 

�
  b

a 

f1x 2 � g1x 2  dx.

�
  b

a 

f1x 2  dx � �
  b

a 

g1x 2  dx.

�
  b

a 

g1x 2  dx.�
  b

a 

f1x 2  dx

As long as we always
take upper – lower, the
answer is positive and
hence it is not necessary
to worry about above
and below the x-axis.

g(x)

f (x)

x

y

a b0

Example

Find the shaded area.

0 x

y � 4x

y � 2x2y

The functions intersect where 

 1 x � 0 or x � 2
 1 2x˛1x � 2 2 � 0
 1 2x2 � 4x � 0

2x2 � 4x.
These intersection
points can also be found
using a calculator.
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This function can be drawn using Y1-Y2 and then the area calculated.

 �
8
3

 � ¢8 �
16
3
≤ � 10 2

 � B2x2 �
2
3

 x3R
0

2

 So the area � �
  2

0 

4x � 2x2 dx
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The two limits are roots of
the resulting function.

Example

Find the area contained between and from to

Note that these graphs cross within the given interval. So, we need to find the
intersection and then treat each part separately (as the curve that is the upper
one changes within the interval).

x � p.
x � �py �  sin xy � �ex

��

�

So we need to find

The total area � 1.32 p � 24.4 p � 25.7 13 sf 2

�
  �0.589

�p 

�ex � sin x dx                      and  �
  p

�0.589 

 sin x � 1�ex 2  dx.

Area between a curve and the y-axis
Mostly we are concerned with the area bounded by a curve and the x-axis. However, for
some functions it is more relevant to consider the area between the curve and the y-axis.
This is particularly pertinent when volumes of revolution are considered in Chapter 16.

The area between a curve and the x-axis is 

To find the area between a curve and the y-axis we calculate

�
  b

a 

y dx

�
  b

a 

x dy

This formula is proved in an identical way to the area between the curve and the x-axis,
except that thin horizontal rectangles of length x and thickness are used.dy

This is where x is a function
of y.

Example

Consider y2 � 9 � x.

3

�3

0 x

y



10 and produce an infinite pattern as shown.y � 1y � 3 cos 2x
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Calculate the area enclosed by the two functions.

1

2

3

4

5

6

7

8

9 and the x-axis. In this case draw the

graphs and shade the area.

y � �
1
2

 x2 � 6x � 10, y � 4x �
1
3

 x2

y � ex, y � 4 � x2

y � 10 � x2, y � 19 � 2x2

y � x3 � 24, y � 3x2 � 10x

y � 8 � x2, y � 2 � x

y � x2, y � 2x

y � x3, y � x

y � 6x2, y � 3x

y � x2, y � x
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There is no choice here but to use horizontal strips as opposed to vertical strips,
as vertical strips would have the curve at both ends, and hence the length of the
rectangle would no longer be y and the formula would no longer work.

Area

Although the integration is performed with respect to y, a calculator can still be
used to find the area (although of course it is not the correct graph).

 � 36 square units
 � 18 � 18
 � 127 � 9 2 � 1�27 � 9 2

 � B9y �
1
3

 y3R
�3

3

 � �
  3

�3 

9 � y2 dy

 � �
  3

�3 

x dy

y � 9 � x2

Exercise 9

3

y � 1
1
0 x

y

0 x

y y � e2xy � 2 � x

0 4 x

y

y � 4 � x

 

y � 
2

4 � x

0

1

�1

x

y

y � sin x

y � sin 2x

2
� �

1

0 �

3

�3

�1

x

y

y � 3 cos 2x

y � cos x

Find the area of each shaded part.

11 Find the area between the x-axis and the y-axis as

shown.

y � e2x, y � 2 � x,

14 Find the shaded area.

13 Find the shaded area.

12 Find the area between the x-axis and the y-axis as

shown.

y �
2

4 � x
,  y � 4 � x,



21 Find the shaded area.
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15 Find the area of the “curved triangle” shown below, the sides of which lie

on the curves with equations and y �
4
x2.y � x˛1x � 3 2 , y � x �

1
4

 x2
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0

y

y � 
x2
4

x

y � x(x � 3)

x2y � x � 4
1

2

�2

x

x � 4 � y2

y

Find the area enclosed by the y-axis and the following curves.

16 x � 4 � y2

17

18
19 Evaluate the shaded area i with respect to x and ii with respect to y.

y � 25 � x

8y2 � 18 � 2x

y2 � 16 � x

x

y

0

y � 5 � x
5

5

0 x

y

y � 2 � 3e�x

y � 
2
1 ex

20 Find the shaded area.

0 x

y
y � e�2x � 3

y � ex � 2

6

0 � x

y

y � 6cos x

y � 4 sin x

22 Find the shaded area.

1 Integrate these functions.

a b c d

2 Solve these equations.

a b c

3 Given and the curve passes through (2, 8), find the

equation of the curve.

4 Find these integrals.

a b c

5 Find these integrals.

a b c

d e

6 Let Find 

7 Find these definite integrals.

a b c �
  k

�k 

3 cos 2u � 4u du�
  
p

4

0
 

 
sin 4u � 1 du�

  3

1 

4p �
3

12p � 1 23
 dp

�f˛1x 2  dx.

�7e3x �
4

13x � 4 25
 dx�13x � 2 26 dx

� 2
4x � 3

 dx�4e2x dx�6 cos 2x dx

�2e6x �
5
x

� 4 sin x dx�7 cos x �
4
x

 dx�4ex �  sin x dx

dy

dx
� �3x � 8

dy

dt
�

3t2 � 2t
4t

dy

dp
� p213 � p5 2

dy

dx
�

x3 � 6
x5

13 � 2x 22
8
x39x2 � 4x � 54x2 � 7
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8 Find the area given by these definite integrals.

a b c

9 Find an expression in terms of p for this shaded area.

10 Find the total area of the two regions enclosed by the curve

and the line [IB Nov 04 P1 Q14]

11 The figure below shows part of the curve 
The curve crosses the x-axis at the points A, B and C.

a Find the x-coordinate of A.
b Find the x-coordinate of B.
c Find the area of the shaded region. [IB May 02 P1 Q13]

12 Find the area bounded by the curve and the x-axis for:

a and 

b and 

13 Find the area enclosed by:

a and 

b and the x- and y-axes 

14 Find the area between and the y-axis. x � 8 � y2

y �
3

2 � x
, y � 2 � x

y � 6 � x2y � ex

x � 3y � x4 � 2ex, x � �1

u �
3p
4

y � 3 cos 2u, u � 0

y � x3 � 7x2 � 14x � 7.

y � x � 3.y � x3 � 3x2 � 9x � 27

�
  
p

6

0
 
2 cos 3u du�

  1

�3 

4x � 5 dx�
  5

2 

ex dx
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0 3 p x

y

5
2

y � 
3
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Johann Bernoulli, Jakob’s
brother, was born on 27 July
1667 and was the tenth child
of Nicolaus and Margaretha
Bernoulli. Johann’s father
wished him to enter the
family business, but this did
not suit Johann and in the
end he entered the
University of Basel to study
medicine. However, he spent
a lot of time studying
mathematics with his
brother, Jakob, as his teacher.
He worked on Leibniz’s
papers on calculus and
within two years he had
become the equal of his
brother in mathematical skill,
and he moved to Paris where
he worked with de l’Hôpital.
He then returned to Basel
and at this stage Johann and
Jakob worked together and
learned much from each
other. However this was not
to last and their friendly
rivalry descended into open
hostility over the coming
years. Among Johann’s many
mathematical achievements were work on the function , and investigating
series using the method of integration by parts. In this chapter we will use techniques
that treat integration as the reverse of differentiation and this is exactly how Johann
worked with it. His great success in mathematics was rewarded when in 1695 the he
accepted the offer of the chair of mathematics at the University of Groningen.This
gave him equal status to his brother Jakob who was becoming increasingly jealous of
Johann’s progress. During the ten years he spent at Groningen the battle between the
two brothers escalated. In 1705 he left Groningen to return to Basel unaware that his
brother had died two days previously. Ironically, soon after his return to Basel he was
offered his brother’s position at the University of Basel, which he accepted. He stayed
there until his death on 1 January 1748.

y � xx

15 Integration 2 – Further Techniques

Johann Bernoulli



15.1 Integration as a process of 
anti-differentiation – direct reverse

For more complex questions, the inspection method can still be used. We call this
method direct reverse.
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Function

f(x)

sin x
cos x sin x

sec x tan x

sec x tan x sec x
cosec x cot x

ax

ln�a�
ax

1
a

 tan�1
 

x
a

1
a2 � x2

tan�1 x
1

1 � x2

cos�1 
x
a

�1

2a2 � x2

cos�1 x
�1

21 � x2

sin�1
 

x
a

1

2a2 � x2

sin�1 x
1

21 � x2

�cosec x

�cot xcosec2 x

sec2 x

�cos x

ln�x�
1
x

exex

1
n � 1

 xn�1xn

�f1x 2  dx

Integral � c

Example

�  sin 2x dx � �
cos 2x

2
� c

Example

�  

1
2x � 1

 dx �
1
2

 ln�2x � 1� � c

Example

1. We begin with 

2.

3. So therefore �e2x dx �
1
2

 e2x � c2�e2x dx � e2x,

dy

dx
� 2e2x

y � e2x.

�e2x dx

Example

1. We begin with 

2.

3. So therefore �42x dx �
42x

2 ln 4
� c2 ln 4�42x dx � 42x,

dy

dx
� ln 4 � 42x � 2 � 2 ln 4 # 42x

y � 42x.

�42x dx

Example

1. We begin with 

2. 

3.

therefore �cos¢4u �
p

3
≤ du �

1
4

 sin¢4u �
p

3
≤ � c

4�cos¢4u �
p

3
≤ du � sin¢4u �

p

3
≤,

dy

du
� 4 cos¢4u �

p

3
≤

y � sin¢4u �
p

3
≤.

�cos¢4u �
p

3
≤ du

In this chapter we will look at the techniques of integrating more complicated functions
and a wider range of functions. Below is the complete list of basic results.

These are as a result of inspection and were dealt with in Chapter 14.

Method of direct reverse

1. Decide what was differentiated to get the function in the question and write it
down ignoring the constants.

2. Differentiate this.
3. Divide or multiply by constants to find the required form.



Now consider the example In this case and hence

Since then and hence this technique cannot bef1x 2 � ah¿ 1x 2f1x 2 � x2,h¿ 1x 2 � 2.

h1x 2 � 2x � 1�x212x � 1 24 dx.

15  Integration 2 – Further Techniques

407

The method of direct reverse can also prove all the basic results given at the start of the
chapter.
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This technique allows us to do much more complicated examples including some products
and quotients.

Integration of products and quotients using direct
reverse
Unlike differentiation this is not quite so simple. Considering differentiation, an answer
to a derivative may be a product or a quotient from more than one technique, e.g. chain
rule, product rule or quotient rule. This means there has to be more than one way to
integrate products and quotients. Here cases which can be done by direct reverse will be
considered.

Products

This occurs when one part of the product is a constant multiplied by the derivative of the
inside function. If we are integrating then where a is a
constant for the technique to work.

This may seem complicated but it is easy to apply and is a quick way of doing some quite
advanced integration.

f1x 2 � ah¿ 1x 2f1x 2 � gh1x 2 ,

Example

1. We begin with 

2.

3. therefore �ax dx �
ax

ln�a�
� cln�a� �ax dx � ax,

dy

dx
� ax ln�a�

y � ax.

�ax dx

Example

Direct reverse works in this case, since if then

1. This begins with 

2.

3.

therefore �x21x3 � 3 23 dx �
1

12
 1x3 � 3 24 � c

12�x21x3 � 3 23 dx � 1x3 � 3 24,

dy

dx
� 41x3 � 3 23 # 3x2 � 12x21x3 � 3 23

y � 1x3 � 3 24.

a �
1
3

.

h1x 2 � x3 � 3, h¿ 1x 2 � 3x2,

�x21x3 � 3 23 dx

The value of a is not
used in this method, but
it is necessary to check
that a constant exists for
the method to work.

This technique can
never be made to work
by letting a be a 
function of x.

Sometimes the examples can be somewhat disguised.

Example

The method works in this case, since if then

We begin by writing the integral in the form 

1. This begins with 

2.

3.

therefore 
2
3

 11 � cos x 2
3
2 � cdx � ��  sin x˛11 � cos x 2

1
2 

�3
2 �sin x˛11 � cos x 2

1
2 dx � 11 � cos x 2

3
2

dy

dx
�

3
2

 11 � cos x 2
1
2 1�sin x 2

y � 11 � cos x 2
3
2.

�sin x˛11 � cos x 2
1
2 dx.a � �1.

h1x 2 � 1 � cos x, h¿ 1x 2 � �sin x

�sin x21 � cos x dx

Example

It still works in this case, since if 

then 

1. This begins with 

2.

3.

therefore 2x � 5 26 dx �
1
14

 1x2 � 2x � 5 27 � c1x2 �� 1x � 1 2

14� 1x � 1 2 1x2 � 2x � 5 26 dx � 1x2 � 2x � 5 27,

dy

dx
� 71x2 � 2x � 5 2612x � 2 2 � 141x � 1 2 1x2 � 2x � 5 26

y � 1x2 � 2x � 5 27.

a �
1
2

.21x � 1 2 ,2 �h¿ 1x 2 � 2x �

h1x 2 � x2 � 2x � 5, 

� 1x � 1 2 1x2 � 2x � 5 26 dx

Example

The method works here since if 

then 

1. This begins with 

2.

3.

therefore 
1
2

 e2x2�2x � c� 12x � 1 2e2x2�2x dx �

2� 12x � 1 2e2x2�2x dx � e2x2�2x,

dy

dx
� 14x � 2 2e2x2�2x � 212x � 1 2e2x2�2x

y � e2x2�2x.

a �
1
2

.12x � 1 2 ,� 2h¿ 1x 2 � 4x � 2

h1x 2 � 2x2 � 2x, 

� 12x � 1 2e2x2�2x dx

used. Further techniques for integrating products and quotients which will deal with this
will be discussed later in the chapter.



There is a danger of assuming that all integrals of quotients become natural logarithms.
Many are, but not all, so care needs to be taken. The following examples demonstrate
this.
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Quotients

This occurs when the numerator of the quotient is in the form of a constant multiplied
by the derivative of the inside function.

If we are integrating then for the technique to work. The

quotients often come in the form which was met in Chapter 9 when 

differentiating logarithmic functions. This came from the form y � ln1f1x 2 2 .

f¿ 1x 2

f1x 2

f1x 2 � a h¿ 1x 2
f1x 2

gh1x 2
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Example

Direct reverse works in this case, since if then

1. This begins with 

2.

3. therefore �  

x2

1 � x3  dx �
1
3

 ln�1 � x3� � c3�  

x2

1 � x3  dx � ln�1 � x3�,

dy

dx
�

3x2

1 � x3

y � ln�1 � x3�.

a �
1
3

.

h1x 2 � 1 � x3, h¿ 1x 2 � 3x2

�  

x2

1 � x3  dx

Example

The method works, since if then 

1. This begins with 

2.

3. Therefore �  

sin x
22 � cos x

 dx � ln�22 � cos x� � k

dy

dx
�

sin x
22 � cos x

y � ln�22 � cos x�.

a � 1.h1x 2 � 22 � cos x, h¿ 1x 2 � sin x

�  

sin x
22 � cos x

 dx

Example

The method works, since if then 

1. This begins with 

2.

3. therefore �  

sin x
cos x

 dx � �ln�cos x� � c��  

sin x
cos x

 dx � ln�cos x�

dy

dx
�

�sin x
cos x

y � ln�cos x�.

a � �1.h1x 2 � cos x, h¿ 1x 2 � �sin x

�  

sin x
cos x

 dx

This is the method of 
integrating tan x.

This is a slightly different
case since the constant
is part of the question
rather than being 
produced through the
process of integration.
However, it is dealt with
in the same way.

Example

Again this works, since if then 

1. This begins with 

2.

3. Therefore 

1 �  

3e x

14 � e x
 dx � 3�  

e x

14 � e x
 dx � 3 ln�14 � e x� � c

�  

ex

14 � ex  dx � ln�14 � ex�

dy

dx
�

ex

14 � ex

y � ln�14 � ex�.

a � 1.h1x 2 � 14 � ex, h'1x 2 � ex

�  

3ex

14 � ex  dx

If the limits were both
numbers, and an exact
answer was not required,
then a calculator could
be used to evaluate the
integral. However, if one
or both of the limits are
not known, an exact 
answer is required, or if
the question appears on
the non-calculator paper,
then this technique
must be used.

Example

The technique will still work in the case of definite integration, since if

then We begin by writing the integral in

the form 

1. This begins with 

2.

3. therefore

If the question had asked for an exact answer to then we

would proceed as above, but the final lines would be:

�
  3

2 

 

x2

1x3 � 3 24
 dx,

 � B� 1
91p3 � 3 23

�
1

11 979
R

 � B�1
9

 1p3 � 3 2�3 �
1
9

 18 � 3 2�3R
3 2�3R p

2
B�1

9
 1x3 ��

 �
  p

2 

x21x3�3 2�4 dx�9�
  p

2 

x21x3�3 2�4 dx � 3 1x3�3 2�3 4
2     
p

dy

dx
� �31x3 � 3 2�4 � 3x2 � �9x21x3 � 3 2�4

y � 1x3 � 3 2�3.

3 2�4 dx.�
  p

2 

x21x3   �

a �
1
3

.h¿ 1x 2 � 3x2h1x 2 � x3 � 3,

�
  p

2 

 

x2

1x3 � 3 24
 dx



1 2 �cos¢3x �
p

4
≤ dx�sin¢u �

3p
4
≤ du
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Exercise 1
Without using a calculator, find the following integrals.

410

 �
254 979

2 910 897 000

 � B� 1
243 000

�
1

11 979
R

 � B�1
9

 127 � 3 2�3 �
1
9

 18 � 3 2�3R
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Example

The method works in this case, since if then 

1. This begins with 

2.

3. Therefore �x˛1x2 � 1 2�
1
2 dx � 1x2 � 1 2

1
2 � c.

dy

dx
�

1
2

 1x2 � 1 2� 
1
2 12x 2 � x˛1x2 � 1 2� 

1
2

y � 1x2 � 1 2
1
2.

�x˛1x2 � 1 2� 
1
2 dx

a �
1
2

.h1x 2 � x2 � 1, h'1x 2 � 2x

�  

x

2x2 � 1
 dx

Exercise 1

25 26

27 28 �
  p

1 

 

2x � 1
6x2 � 6x � 15

 dx�  

2ex

ex � e�x dx

�
  p

1 

 

2 ln x
x

 dx�  

2x � 1
13x2 � 3x � 4 24

 dx

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18 �  

ex

2ex � 4
 dx�  

3 sin x
1cos x � 8 23

 dx

�  

2x � 3
x2 � 3x � 5

 dx� 1x � 1 2 1x2 � 2x � 4 25 dx

�  sin 2x2cos 2x � 1 dx�
  a

0 

e2x16e2x � 7 2  dx

�
  0.5

0 

 sin x˛12 cos x � 1 24 dx�  

x

2x2 � 1
 dx

�  sec2 x˛13 tan x � 4 23 dx�x24x2 � 3 dx

�x21 � x2 dx�
p

0

x312x4 � 1 2  dx

�x51x6 � 9 28 dx�  

2
8x � 9

 dx

�
2

0

2 cos x esin x dx�e32x�7 dx

19 20

21 22

23 24 �  

2x � 1
3x2 � 3x � 4

 dx�
  1

0 

 

x
1x2 � 1 25

 dx

�  

sec2 2x
3 tan 2x � 7

 dx�  sin 2x˛11 � 3 cos 2x 2
5
2 dx

� 13x2 � 2 2 13x3 � 6x � 19 2
3
2 dx�  

cos x
3 sin x � 12

 dx

15.2 Integration of functions to give inverse
trigonometric functions
Questions on inverse trigonometric functions come in a variety of forms. Sometimes the
given results can be used as they stand and in other cases some manipulation needs to
be done first. In more difficult cases the method of direct reverse needs to be used.

Example

This situation it is not given in the form and hence there are two

options. It can either be rearranged into that form or alternatively we can use the
method of direct reverse.

Rearranging gives:

 � 2 sin�1
 

x
2

� c

 � �  

2

24 � x2
 dx

 � 1

C
1 �

x2

4

 dx � � 1

B

1
4
24 � x2

 dx

1

2a2 � x2

� 1

C
1 �

x 2

4

 dx.

Example

Using the result 

1 �  

1

24 � x2
 dx � sin�1

 

x
2

� c

1

2a2 � x2
� sin�1

 

x
a

� c

�  

1

24 � x2
 dx



Now we need to look at more complicated examples. If it is a or a

then we need to complete the square and then use the method of direct

reverse. It should be noted that this is not the case for every single example as they could

integrate in different ways, but this is beyond the scope of this syllabus.

number
quadratic

,

number

2quadratic
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Using direct reverse we begin with 

Therefore

1 � 1

C
1 �

x2

4

 dx � 2 sin�1
 

x
2

� c

� 1

2
C

1 �
x2

4

 dx � sin�1
 

x
2

dy

dx
�

1

C
1 �

x2

4

�
1
2

y � sin�1
 

x
2

.
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Example

Rearranging to the standard result of gives:

Using direct reverse we begin with 

Therefore  

1 � 1

¢1 �
x2

9
≤

 dx � 3 tan�1
 

x
3

� c

� 1

3¢1 �
x2

9
≤

 dx � tan�1
 

x
3

dy

dx
�

1

1 �
x2

9

�
1
3

y � tan�1
 

x
3

.

 � 3 tan�1
 

x
3

� c

 �
9
3

 tan�1
 

x
3

� c

 � �  

9
9 � x2 dx

 � 1

1 �
x2

9

 dx �
1

1
9

 19 � x2 2

 dx

�  

1
a2 � x2 dx �

1
a

 tan�1
 

x
a

� c

� 1

1 �
x2

9

 dx

Example

Completing the square gives:

Using direct reverse, we begin with 

Therefore 

1

1
4 �  

1

1 � ¢x � 1
2
≤2 dx �

1
2

 tan�1¢x � 1
2
≤ � c

1
2 �  

1

1 � ¢x � 1
2
≤2 dx � tan�1¢x � 1

2
≤

dy

dx
�

1

1 � ¢x � 1
2
≤2 �

1
2

y � tan�1¢x � 1
2
≤.

 �
1
4 �  

1

1 � ¢x � 1
2
≤2  dx

 � �  

1
4 � 1x � 1 22

 dx

 � �  

1
1x � 1 22 � 4

 dx�  

1
x2 � 2x � 5

 dx

�  

1
x2 � 2x � 5

 dx

Example

Completing the square gives:

Using direct reverse, we begin with y � sin�1¢x � 2
4
≤.

�
1
4 �  

1

B
1 � ¢x � 2

4
≤2 dx

 �
1

416
�  

1

D
1 � ¢x � 2

4
≤2 

dx

� �  

1

216 � 1x � 2 22
 dx

� �  

1

2� 3 1x � 2 22 � 16 4
 dx

� �  

1

2�1x2 � 4x � 12 2
 dx �  

1

2�x2 � 4x � 12
 dx

�  

1

2�x2 � 4x � 12
 dx

The same thing happens with the inverse tan function.
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1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18 �
  p

�2 

 

1

2�x2 � 6x � 6
 dx�

  0.5

0 

 

1
x2 � 4x � 7

 dx

�  

1

2�9x2 � 18x � 99
 dx�  

4

2�x2 � 3x � 10
 dx

�  

1
x2 � 3x � 4

 dx�  

1
9x2 � 6x � 5

 dx

�  

�5

2�x2 � 4x � 5
 dx�  

1
x2 � 6x � 18

 dx

�  

1
4x2 � 8x � 20

 dx�  

1

2�x2 � 2x
 dx

�  

1

21 � 3x2
 dx�

  1

0 

 

1
49 � x2 dx

�
  p

1 

 

1
3 � x2 dx�  

1

C
2 �

x2

4

 dx

�  

1

1 �
x2

9

 dx�  

�1

236 � x2
 dx

�  

1

225 � x2
 dx�  

1
9 � x2 dx

414

Therefore 
1
4 �  

1

D
1 � ¢x � 2

4
≤2 

dx � sin�1¢x � 2
4
≤ � c.

dy

dx
�

1

D
1 � ¢x � 2

4
≤2

�
1
4
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Exercise 2

15.3 Integration of powers of trigonometric
functions
To integrate powers of trigonometric functions the standard results and methods of
direct reverse are again used, but trigonometric identities are also required.

Even powers of sine and cosine
For these we use the double angle identity cos 2x � cos2 x � sin2 x.

Example

Knowing that 

�
1
2

 ¢x �
sin 2x

2
≤ �

1
4

 12x � sin 2x 2 � c

 1 �sin2 x dx � � a  

1 � cos 2x
2

 bdx �
1
2 � 11 � cos 2x 2  dx

 1 sin2 x �
1 � cos 2x

2

 1 cos 2x � 1 � 2 sin2 x

cos 2x � cos2 x � sin2 x

�sin2 x dx

We cannot use this idea with

If then 

and so 

there is a cosine term that
creates a problem. This 
illustrates a major difference
between differentiation and
integration.

dy

dx
� 3 sin2 x cos x

y � sin3 x,sin3 x.

Example

Knowing that

Using the double angle formula again on 

 �
1
32

 112x � 8 sin 2x � sin 4x 2 � c

 �
1
8

 ¢3x �
4 sin 2x

2
�

sin 4x
4
≤

 �
1
8 � 13 � 4 cos 2x � cos 4x 2  dx

�
1
8 � 12 � 4 cos 2x � 1 � cos 4x 2  dx

 1 �cos4 x dx �
1
4 �¢1 � 2 cos 2x �

1
2

�
cos 4x

2
≤ dx

 1 cos2 2x �
1 � cos 4x

2

 1 cos 4x � 2 cos2 2x � 1

cos 4x � cos2 2x � sin2 2x

cos2 2x.

�
1
4 � 11 � 2 cos 2x � cos2 2x 2  dx

� � a 1 � 2 cos 2x � cos2 2x
4

 bdx

 1 �cos4 x dx � �¢1 � cos 2x
2

≤2

 dx

 1 cos2 x �
1 � cos 2x

2

 1 cos 2x � 2 cos2 x � 1

cos 2x � cos2 x � sin2 x

�cos4 x dx

For higher even powers, it is a
matter of repeating the process
as many times as necessary. This
can be made into a general
formula, but it is beyond the
scope of this curriculum.



Integrating odd powers of multiple angles works in the same way.
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If integration of even powers of multiple angles is required the same method can be used.
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Example

This time 

 �
x
2

�
sin 16x

32
�

1
32

 116x � sin 16x 2 � c

 �sin2 8x dx � � a  

1 � cos 16x
2

 bdx

 1 sin2 8x �
1 � cos 16x

2

 1 cos 16x � 1 � 2 sin2 8x

cos 16x � cos2 8x � sin2 8x

�sin2 8x dx

Odd powers of sine and cosine
For these use the Pythagorean identity with the aim of leaving a
single power of sine multiplied by a higher power of cosine or a single power of cosine
multiplied by a higher power of sine.

cos2 x � sin2 x � 1

Example

using the identity 

To find the method of direct reverse is used.

This begins with 

� 1sin x � cos2 x sin x 2  dx � �cos x �
1
3

 cos3 x � c

 1 �cos2 x sin x dx � �
1
3

 cos3 x � k

 1 �3�cos2 x sin x dx � cos3 x

 1

dy

dx
� �31cos x 22 sin x � �3 cos2 x sin x

y � cos3 x � 1cos x 23

�cos2 x sin x dx

 � � 1sin x � cos2 x sin x 2  dx

cos2 x � sin2 x � 1 � �  sin x˛11 � cos2 x 2  dx

 � �  sin x sin2 x dx

�sin3 x dx

Unlike even powers of cosine and sine, this is a one-stage process, no matter how high
the powers become. This is demonstrated in the next example.

Example

These can all be integrated using the method of direct reverse.

begins with 

begins with 

begins with 

Hence 

where c � k1 � k2 � k3.� sin x � sin3 x �
3
5

 sin5 x �
1
7

 sin7 x � c,

� 1cos x � 3 sin2 x cos x � 3 sin4 x cos x � sin6 x cos x 2  dx

 1 �sin6 x cos x dx �
1
7

 sin7 x � k3

 1 7�sin6 x cos x dx � sin7 x

 1

dy

dx
� 7 sin6 x cos x

y � sin7 x�sin6 x cos x dx

 1 3�sin4 x cos x dx �
3
5

 sin5 x � k2

 1 5�sin4 x cos x dx � sin5 x

 1

dy

dx
� 5 sin4 x cos x

y � sin5 x�3 sin4 x cos x dx

�3 sin2 x cos x dx � sin3 x � k1

1

dy

dx
� 3 sin2 x cos x

y � sin3 x�3 sin2 x cos x dx

 � � 1cos x � 3 sin2 x cos x � 3 sin4 x cos x � sin6 x cos x 2  dx

 � �  cos x˛11 � 3 sin2 x � 3 sin4 x � sin6 x 2  dx

 � �  cos x˛11 � sin2 x 23 dx

 � �  cos x cos6 x dx

�cos7 x dx



Powers of tan x
In this case the identity is used with the aim of getting

or a power of tan x multiplied by It should also be

remembered that and �sec2 x dx � tan x � c.�  tan x dx � �ln�cos x� � c

sec2 x.tan x, sec2 x

1 � tan2 x � sec2 x
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Often this technique will work with mixed powers of sine and cosine and the aim is still
to leave a single power of sine multiplied by a higher power of cosine or a single power
of cosine multiplied by a higher power of sine.
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Example

To find the method of direct reverse is used.

This begins with 

 �
sin 4x

4
�

1
12

 sin3 4x � c � 1cos 4x � sin2 4x cos 4x 2  dx 1

 1 �sin2 4x cos 4x dx �
1

12
 sin3 4x � k

 1 12�sin2 4x cos 4x dx � sin3 4x

 1

dy

dx
� 3 sin2 4x cos 4x � 4 � 12 sin2 4x cos 4x

y � sin3 4x

�sin2 4x cos 4x dx

 � � 1cos 4x � sin2 4x cos 4x 2  dx

 � �  cos 4x˛11 � sin2 4x 2  dx

 � �  cos 4x cos2 4x dx

�cos3 4x dx

Example

Since it is sine that has the odd power, this is the one that is split.

Now these can both be integrated using the method of direct reverse.

begins with 

�cos2 x sin x dx � �
1
3

 cos3 x � k1

 1 �3�cos2 x sin x dx � cos3 x

 1

dy

dx
� �3 cos2 x sin x

y � cos3 x�cos2 x sin x dx

� � 1cos2 x sin x � cos4 x sin x 2  dx

�  sin x sin2 x cos2 x dx � �  sin x˛11 � cos2 x 2cos2 x dx

�sin3 x cos2 x dx

begins with 

Therefore where

c � k1 � k2.

� 1cos2 x sin x � cos4 x sin x 2  dx � �
1
3

 cos3 x �
1
5

 cos5 x � c,

 1 �cos4 x sin x dx � �
1
5

 cos5 x � k2

 1 �5�cos4 x sin x dx � cos5 x

 1

dy

dx
� �5 cos4 x sin x

y � cos5 x�cos4 x sin x dx

Example

This is first turned into 

Using the identity gives 

To find 

direct reverse is used. This happens because the derivative of tan x is and
also explains why it is necessary to have with the power of tan x.

To integrate this we begin with 

So 

Hence 

Therefore 

Thus 

 �
1
2

 tan2 x � ln�cos x� � c

 �tan3 x dx � �  tan x sec2 x � tan x dx

�  tan x sec2 x dx �
1
2

 tan2 x � k

2�  tan x sec2 x dx � tan2 x,

dy

dx
� 2 tan x sec2 x

y � tan2 x.

sec2 x
sec2 x

�  tan x sec2 x dx

�  tan x˛1sec2 x � 1 2  dx � �  tan x sec2 x � tan x dx

�  tan x tan2 x dx.

�tan3 x dx
We need to extract

out of the power

of tan x in order to 

produce sec2 x � 1

tan2 x



15.4 Selecting the correct technique 1
The skill in integration is often to recognize which techniques to apply. Exercise 4
contains a mixture of questions.
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If multiple angles are used, this does not change the method.
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Example

First change this to 

Using the identity: 

The integral of was done in the example above and the result will just be
quoted here. The integral of is done by direct reverse.

This begins with

Hence �tan5 x dx �
1
4

 tan4 x �
1
2

 tan2 x � ln cos x � c.

 1 �tan3 x sec2 x dx �
1
4

 tan4 x � k

 1 4�tan3 x sec2 x dx � tan4 x

 1

dy

dx
� 4 tan3 x sec2 x

y � tan4 x

tan3 x sec2 x
tan3 x

�tan3 x˛1sec2 x � 1 2  dx � � 1tan3 x sec2 x � tan3 x 2  dx

�tan3 x tan2 x dx.

�tan5 x dx

As with even and odd
powers of sine and 
cosine, as the powers
get higher, we are just
repeating earlier 
techniques and again this
could be generalized.

Example

This time the identity is used.

�
1
2

 tan 2x � x � c

�tan2 2x dx � � 1sec2 2x � 1 2  dx

tan2 2x � sec2 2x � 1

�tan2 2x dx

1 2 3

4 5 6

7 8 9

10 11 12

13 �
  p

0 

 

sin2 x
sec3 x

 dx

�sin3 2x cos2 2x dx�tan3 x sec4 x dx�sin2 x cos2 x dx

�tan3 3x dx�sin9 x dx�sin4 x dx

�sin2 2x dx�cos2 2x dx�
  p

0 

 tan2 2x dx

�sin5 x dx�sin3 2x dx�cos3 x dx

Exercise 3

Exercise 4

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 �  sin 2x˛1sin2 x � 3 24 dx

�  

�2x � 4

2�x2 � 4x � 5
 dx�  

2

2�x2 � 4x � 5
 dx

�  

2
x2 � 2x � 3

 dx�  

x � 1
x2 � 2x � 3

 dx

�sin4 2x dx�  

ex

1ex � 2 2
1
2

 dx

�  

ex

ex � 2
 dx�  

cosec2 x
1cot x � 3 23

 dx

�cos3 x sin x dx�2x11 � x
3
2 27 dx

�cosec2
 

x
2

 e1�cot 
x
2 dx�  cos 2x˛1sin 2x � 3 24 dx

� 1x � 3 2 1x2 � 6x � 8 26 dx�  

6
4 � 16x2 dx

�  

3

21 � 9x2
 dx�  

x3

x4 � 3
 dx

�  

x � 1
x2 � 2x � 3

 dx�  

2x
x2 � 4

 dx

�  

1
3x � 1

 dx�2x dx

�e4x�1 dx2�sin13x � a 2  dx

�sec2¢p
3

� 2x≤ dx�  

sin x
3 � 4 cos x

 dx

�  

2
1 � 4x2 dx3�cos¢4x �

p

2
≤ dx

�¢21 � x �
1

21 � x
�

1
11 � x 22

≤ dx
1
4 �23 � 5x dx

�¢ 3
12x � 1 23

� 21 � 2x≤ dx�  

1

21 � 2x
 dx

� 12 � 7x 23 dx� 1x � 2 24 dx



Definite integration works the same way as with other integration, but the limits in the
substitution need to be changed.

15  Integration 2 – Further Techniques

423

15.5 Integration by substitution
The method we have called direct reverse is actually the same as substitution except that
we do the substitution mentally. The questions we have met so far could all have been
done using a method of substitution, but it is much more time consuming. However,
certain more complicated questions require a substitution to be used. If a question
requires substitution then this will often be indicated, as will the necessary substitution.
Substitution is quite straightforward, apart from “dealing with the dx part”. Below is a
proof of the equivalence of operators, which will allow us to “deal with dx”.

Proof

Consider a function of u, f(u).

Hence integrating both sides gives (equation 1).

Also 

Therefore (equation 2).

Combining equation 1 with equation 2 gives 

Therefore where is the function being integrated.

This is known as the equivalence of operators.

The question is how to use it. There is a great temptation to treat “dx” as part of a
fraction. In the strictest sense it is not, it is a piece of notation, but at this level of
mathematics most people do treat it as a fraction and in the examples we will do so. The

equivalence of operators shown above demonstrates that treating as a fraction will
also work.

dy

dx

p� p

du
dx

 dx � � p du

�  

du
dx

 f'1u 2  dx � �f'1u 2  du

�f' 1u 2  du � f1u 2 � k

f'1u 2 �
d

du
 f1u 2 .

�  

du
dx

 f'1u 2  dx � f1u 2 � k

d
dx

 3f1u 2 4 �
du
dx

� f'1u 2
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Example

Find using the substitution 

This example could also be done by direct reverse. It is possible that an examination
could ask for a question to be done by substitution when direct reverse would
also work.

This is the same as using the equivalence of operators, which would work as
follows:

 1 � p cos x dx � � p du

 � p

du
dx

 dx � � p du

 1 cos x dx � du

 
du
dx

� cos x

11 � sin x 2
1
2 � u

1
2

u � 1 � sin x.�  cos x˛11 � sin x 2
1
2 dx

Making the substitution gives 

The answer cannot be left in this form and we need to substitute for x.

So �  cos x˛11 � sin x 2
1
2 dx �

2
3

 11 � sin x 2
3
2 � c

�
2
3

 u
3
2�u

1
2 du

Example

Find using the substitution 

Hence 

Hence

�
14x � 1 2

3
2

20
 16x � 1 2 � c

�
14x � 1 2

3
2

40
 112x � 2 2

�3x24x � 1 dx �
14x � 1 2

3
2

40
 3314x � 1 2 � 5 4

 �
3

16
 B2

5
 u

5
2 �

2
3

 u
3
2R �

u
3
2

40
 33u � 5 4

 �
3

16 �u
3
2 � u

1
2 du

1 �3x24x � 1 dx � �3¢u � 1
4
≤u1

2
 

du
4

dx �
du
4

du
dx

� 4

3x � 3¢u � 1
4
≤

24x � 1 � u
1
2

u � 4x � 1.�3x24x � 1 dx

Example

Find using the substitution 

x � 1 �
u � 3

2

12x � 1 29 � u9

u � 2x � 1.�
  p

0 

1x � 1 2 12x � 1 29 dx
If the question has two
numerical limits and 
appears on a calculator
paper, then perform the
calculation directly on a
calculator.



The substitutions dealt with so far are fairly intuitive, but some of them are less obvious.
In this case the question will sometimes state the substitution.
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When limits are changed using substitution, it is sometimes the case that the limits
switch around and the lower limit is bigger than the upper limit.

424

Because this is a question of definite integration, the limits must be changed.
The reason for this is that the original limits are values of x and we now need
values of u as we are integrating with respect to u.

When 
When 

Hence the integral now becomes

 �
1

440
 31012p � 1 211 � 3312p � 1 210 � 23 4

 �
1
4

 B¢ 12p � 1 211

11
�

312p � 1 210

10
≤ � ¢� 1

11
�

3
10
≤R

 �
1
4

 Bu11

11
�

3u10

10
R2p�1

�1

 �
  2p�1

�1 

¢u � 3
2
≤u9

 

du
2

�
1
4 �

  2p�1

�1 

1u10 � 3u9 2du

x � p, u � 2 p � 1
x � 0, u � �1

1 dx �
du
2

du
dx

� 2
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Example

Evaluate 

On a calculator paper this would be done directly by calculator.

On a non-calculator paper we would proceed as follows.
Let 

When x � �1, u � 3
1 dx � �du

du
dx

� �1

x � 1 � 3 � u

12 � x 24 � u4

u � 2 � x

1 �
  1

�1 

 

1x � 1 2  dx

12 � x 24
� 0.519

�
  1

�1 

 

1x � 1 2  dx

12 � x 24
.

When 

Therefore becomes

 �
14
27

 � ¢�1
2

� 1≤ � ¢�1
18

�
1

27
≤

 � B�1
2u2 �

1
u3R

1

3

�
  1

3 

1u�3 � 3u�4 2  du � Bu�2

�2
�

3u�3

�3
R1

3

�
  1

�1 

 

1x � 1 2  dx

12 � x 24

x � 1, u � 1

Example

Find using the substitution 

Hence becomes 

Now

We now substitute back for x.

Given that 

Also

From the triangle below, 

Hence �21 � x2 dx �
sin�1 x

2
� 2x21 � x2 � c.

cos u � 21 � x2.

sin 2u � 2 sin u cos u

x � sin u1 u � sin�1 x

 �
u

2
�

sin 2u
4

 1 �cos2 u du � �  

1 � cos 2u
2

 du

 1 cos2 u �
1 � cos 2u

2

 1 cos 2u � 2 cos2 u � 1

 cos 2u � cos2 u � sin2 u

�cos2 u du.�21 � x2 dx

dx
du

� cos u1 dx � cos u du

21 � x2 � 21 � sin2 u � 2cos2 u � cos u

x � sin u.�21 � x2 dx

�1 � x2

1
x

�
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Example

Find using the substitution 

From the triangle above, and 

Hence 

If then 

This is now done by direct reverse and begins with 

Therefore �  

2 tan x
cos 2x

 dx � �  

2t
1 � t2 dt � ln�1 � t2� � ln�1 � tan2 x� � c.

1

dy

dt
�

2t
1 � t2

y � ln�1 � t2�.

�  

2 tan x
cos 2x

 dx � �  

2t
1 � t2

1 � t2

�
dt

1 � t2 � �  

2t
1 � t2 dt

1 dx �
dt

1 � t2

dt
dx

� sec2 x � 1 � tan2 x � 1 � t2.t � tan x,

cos 2x � cos2 x � sin2 x �
1

1 � t2 �
t2

1 � t2 �
1 � t2

1 � t2.

cos x �
1

21 � t2
.sin x �

t

21 � t2

t � tan x.�  

2 tan x
cos 2x

 dx

1

√1 � t2

t

x

Example

Find using the substitution 

From the above diagram, 

Therefore �  

1
4 � sin x

 dx � �  

2
dt

1 � t2

4 �
2t

1 � t2

� �  

2
411 � t2 2 � 2t

 dt

1 dx �
2 dt

1 � t2

dt
dx

�
1
2

 sec2
 

x
2

�
1
2

 ¢1 � tan2
 

x
2
≤ �

1
2

 11 � t2 2

sin x �
2t

1 � t2.

t � tan 

x
2

.�  

1
4 � sin x

 dx

1 � t2

1 � t2

2t

x

This is now integrated by direct reverse beginning with 

1 �  

1
4 � sin x

 dx �
8

215
 tan�1

 

1

215
 ¢4 tan 

x
2

� 1≤ � c

1

16
15 �  

1

1 � B 2

215
 ¢2t �

1
2
≤R 2 dt �

8

215
 tan�1

 

2

215
 ¢2t �

1
2
≤

1

2

215
�  

1

1 � B 2

215
 ¢2t �

1
2
≤R 2 dt � tan�1

 

2

215
 ¢2t �

1
2
≤

1

dy

dt
�

2

215

1 � B 2

215
 ¢2t �

1
2
≤R 2

y � tan�1
 

2

215
 ¢2t �

1
2
≤

�
16
15 �  

1

1 � B 2

215
 ¢2t �

1
2
≤R 2 dt

� �  

2

4¢t2 �
t
2

� 1≤
 dt � �  

2

4B¢t �
1
4
≤2

�
15
16
R
 dt

1 Find using the substitution 

2 Find using the substitution 

3 Find 

4 Find using the substitution 

5 Find 

6 Find using the substitution 

7 Find using the substitution 

8 Find 

9 Find using the substitution 

10 Find using the substitution u � 2x � 1.�  

x
12x � 1 24

 dx

u � x � 2.�
  p

1 

12x � 1 2 1x � 2 23 dx

� 1x � 2 223x � 4 dx.

u � x2.�  

2x
1 � x4 dx

u � 2x � 1.�  

1x � 3 2

22x � 1
 dx

�
  p

1 

 

x

22x � 1
 dx.

u � x � 2.�x2x � 2 dx

�  

cos 2x

21 � sin 2x
 dx.

u � 6x2 � 4x � 13.�  

3x � 1
6x2 � 4x � 13

 dx

u � x2 � 3.�x˛1x2 � 3 25 dx

Exercise 5

Since tan x �
2tan

1 � tan2

x
2

x
2



This is the formula for integration by parts.
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11 Find 12 Find 13 Find 

14 Find 15 Find 

16 Find using the substitution 

17 Find using the substitution 

18 Find using the substitution 

19 Find using the substitution 

20 Find using the substitution 

21 Find using the substitution 

22 Find using the substitution 

23 Find using the substitution u2 � xn � 1.�  

4

3x2xn � 1
 dx

t � tan 2x.�  

1
8 � 8 cos 4x

 dx

t � tan 

x
2

.�
  p

0 

 

6
5 � 3 sin x

 dx

t � tan x.�  

1
5 sin2 x � cos2 x

 dx

x � 2 sin u.�
  p

0.5 

24 � x2 dx

t � tan 

x
2

.�  

1
3 � 5 cos x

 dx

x � sin u.�29 � 9x2 dx

t � tan x.�  

1
cos2 x � 4 sin2 x

 dx

�  

x˛1x � 4 2

1x � 2 22
 dx.�

  p

2 

x25x � 2 dx.

�  

x3

1x � 5 22
 dx.�

  p

9 

 

x

2x � 2
 dx.�  

2x � 1
1x � 3 26

 dx.
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15.6 Integration by parts
As was mentioned earlier in the chapter, not all products can be integrated by the
method of direct reverse. Integration by parts is another technique and tends to be used
when one half of the product is not related to the other half. Direct reverse is basically
undoing the chain rule and integration by parts is basically reversing the product rule.
However, unlike direct reverse, this does not mean that it is used for those answers that
came from the product rule.

We will begin by showing the formula.

We know that

where u and v are both functions of x.

Integrating both sides with respect to x gives:

Now is just uv, so:�  

d
dx

 1uv 2  dx

�v 

du
dx

 dx � �  

d
dx

 1uv 2  dx � �u 

dv
dx

 dx

1 v 

du
dx

�
d
dx

 1uv 2 � u 

dv
dx

d
dx

 1uv 2 � v 

du
dx

� u 

dv
dx

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx

The basic method is as follows.

Let one part of the product be v and one part Calculate u and and then use the
formula.

Unlike the product rule in differentiation, in some cases it makes a difference which part

is v and which part is and in other cases it makes no difference. The choice depends

on what can be integrated, and the aim is to make the problem easier. The table below
will help.

du
dx

dv
dx

du
dx

.

One half of product Other half of product Which do you differentiate?

Power of x Trigonometric ratio Power of x
Power of x Inverse trigonometric ratio Power of x
Power of x Power of e Power of x
Power of x ln f(x) ln f(x)
Power of e sin f(x), cos f(x) Does not matter

This can also be summarized as a priority list.

Which part is v?
1. Choose ln f(x).
2. Choose the power of x.

3. Choose or sin f(x), cos f(x).e f1x2

Example 

Find 

Using the formula 

let and 

Now substitute the values in the formula.

1 �x ex dx � x ex � ex � c

�x ex dx � x ex � �1ex dx

1

dv
dx

� 1 and  u � �ex dx � ex

du
dx

� exv � x

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�x ex dx. x is differentiated here
since it will differentiate
to 1 and allow the final
integration to be carried
out.

It is possible to leave out
the mechanics of the
question once you feel
more confident about
the technique.
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Example 

Find 

 � �x cos x � sin x � c

 � �x cos x � �  cos x dx

 �x sin x dx � �x cos x � ��cos x � 1 dx

�x sin x dx.
It is not recommended
to try to simplify the
signs and constants at
the same time as doing
the integration! 

Example 

Find 

Using the formula 

let and 

Substituting the values in the formula gives:

Therefore �x3 ln x dx �
x 4

4
 ln x �

x 4

16
�

x 4

16
 14 ln x � 1 2 � c  

�x3 ln x dx �
x 4

4
 ln x � �  

x  4

4
�

1
x
 dx �

x 4

4
 ln x �

1
4 �x3 dx

1

dv
dx

�
1
x

 and u � �x3 dx �
x 4

4

du
dx

� x3v � ln x

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�x3 ln x dx.

There is no choice but
to differentiate ln x
since it cannot be
integrated at this point.  

Example 

Find 

Using the formula 

let and 

Substituting the values in the formula gives:

 � 4p sin p � 4 cos p � 4

 � 34p sin p � 0 4 � 34 cos p � 4 4

 � 34p sin p � 0 4 � 3�4 cos x 4
p

0

 �
  p

0 

4x cos x dx � 34x sin x 4
0

p
� �

  p

0 

4 sin x dx

1

dv
dx

� 4 and  u � �  cos x dx � sin x

du
dx

� cos xv � 4x

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�
  p

0 

4x cos x dx.

Example 

Find 

Here the integration by parts formula will need to be applied twice.

Using the formula 

let and 

We need to find This is again done using the method of integration

by parts.

Using the formula 

let and 

Combining the two gives:

� x2 ex � 2x ex � 2ex � c

�x ex dx � x2 ex � 21x ex � ex 2

1 �x ex dx � x ex � �1ex dx � x ex � ex

1

dv
dx

� 1 and  u � �ex dx � ex

du
dx

� exv � x

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�x ex dx.

1 �x ex dx � x2 ex � �2x ex dx � x2 ex � 2�x ex dx

1

dv
dx

� 2x and  u � �ex dx � ex

du
dx

� exv � x2

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�x2 ex dx.

It is always a good idea
to take the constants
outside the integral
sign. 

Example 

Find 

This is a slightly different case, since it makes no difference which part is integrated
and which part is differentiated. With a little thought this should be obvious since,
excluding constants, repeated integration or differentiation of these functions gives
the same pattern of answers. Remember the aid

and the fact that functions of differentiate or integrate to themselves.ex

Differentiate   

S
C

�S
�C

    Integrate

�e2x sin x dx.



Find these integrals using the method of integration by parts.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 �
  p

0 

x˛12x � 1 2n dx�eax sin bx dx

�xn ln x dx�2ex sin x cos x dx�e2x sin 3x dx

�e3x cos x dx�e2x12x � 1 2  dx�tan�1 x dx

�sin�1 x dx�ex cos x dx�x2 e�3x dx

�3x2 ln 8x dx�x2 ln 3x dx�x2 e2x dx

�x2 sin x dx�
  p

1 

x˛1x � 1 29 dx�x sin 2x dx

�x4 ln x dx�x e2x dx�x cos x dx
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We begin by letting 

Using the formula 

let and 

Applying the formula again, being very careful to ensure that we continue to
integrate the trigonometric function and differentiate the power of e gives:

Hence 

Hence 

 1 I �
1
5

 1�e2x cos x � 2e2x sin x 2 �
e2x

5
 1�cos x � 2 sin x 2 � c

 1 5I � �e2x cos x � 2e2x sin x

 1 I � �e2x cos x � 2e2x sin x � 4I

� �e2x cos x � 2¢e2x sin x � 2�e2x sin x dx≤I � �e2x sin x dx

� e2x sin x � 2�e2x sin x dx

�e2x cos x dx � e2x sin x � �sin x � 2e2x dx

1

dv
dx

� 2e2x and  u � �cos x dx � sin x

v � e2x and 
du
dx

� cos x

� �e2x cos x � 2�e2x cos x dx

1 I � �e2x sin x dx � �e2x cos x �� � cos x � 2e2x dx

1

dv
dx

� 2e2x and  u � �sin x dx � �cos x

du
dx

� sin xv � e2x

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�e2x sin x dx � I.
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This is the original
integral I. 

Calling the original
integral I makes this
rearrangement easier.

Example 

Find 

This is done as a special case of integration by parts. However, it is not a product
of two functions. To resolve this issue we let the other function be 1.

Hence this becomes and the integration by parts formula is applied

as usual.

Using the formula 

let and 
du
dx

� 1v � ln x

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�1 ln x dx

� ln x dx.

Hence �1 ln x dx � x ln x � �x �
1
x
 dx � x ln x � �1 dx � x ln x � x � c

 u � �1 dx � x1

dv
dx

�
1
x

  and

Exercise 6

15.7 Miscellaneous techniques
There are two other techniques that need to be examined. These methods are normally
only used when it is suggested by a question or when earlier techniques do not work.

Splitting the numerator
This is a trick that can really help when the numerator is made up of two terms. Often
these questions cannot be tackled by a method of direct reverse as the derivative of the
denominator does not give a factor of the numerator. Substitution is unlikely to simplify
the situation and integration by parts does not produce an integral that is any simpler.

Example

Find 

Splitting the numerator gives two integrals.

�  

2x � 1
x2 � 1

 dx � 2�  

x
x2 � 1

 dx � �  

1
x2 � 1

 dx

�  

2x � 1
x2 � 1

 dx.

To integrate inverse trigonometric functions an identical method is used, for example

= �1 # cos�1 x dx.�cos�1 x dx



Algebraic division
If the numerator is of higher or equal power to the denominator, then algebraic division
may help. Again this only needs to be tried if other methods have failed. In Chapter 8,

rational functions (functions of the form where P(x) and Q(x) are both polynomials)

were introduced when finding non-vertical asymptotes. Algebraic division was used if
degree of of Q(x). In order to integrate these functions exactly the same
thing is done.

P1x 2 � degree

P1x 2

Q1x 2
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The first integral can be done by direct reverse and the second one is a standard

result. To integrate the first integral we begin with 

So 

Hence 

Therefore 

� ln�x2 � 1� � tan�1 x � c

�  

2x � 1
x2 � 1

 dx � 2�  

x
x2 � 1

 dx � �  

1
x2 � 1

 dx

2�  

x
x2 � 1

 dx � ln�x2 � 1�

dy

dx
�

2x
x2 � 1

y � ln�x2 � 1�.
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Example

Find 

This is a slightly different case as we now make the numerator and then
split the numerator. Hence

becomes 

The first integral is calculated by direct reverse and the second integral will
become a function of inverse tan.

Consider the first integral.

To integrate this we know it began with something to do with 

Hence 

Now look at the second integral.

Using direct reverse, we begin with y � tan�1¢x � 1
5
≤.

�
2
25 �  

1

1 � ¢x � 1
5
≤2 dx

�  

2
x2 � 2x � 26

 dx � �  

2
1x � 1 22 � 25

 dx � �  

2
25 � 1x � 1 22

 dx

�  

2x � 2
x2 � 2x � 26

 dx � ln�x2 � 2x � 26� � k1

1

dy

dx
�

2x � 2
x2 � 2x � 26

2x � 26�.y � ln�x2 �

�  

2x � 2
x2 � 2x � 26

 dx

�  

2
x2 � 2x � 26

 dx.�  

2x � 2
x2 � 2x � 26

 dx ��  

2x
x2 � 2x � 26

 dx

2x � 2

�  

2x
x2 � 2x � 26

 dx.

Here we complete the
square on the
denominator to produce
an inverse tan result. 

Therefore 

Putting the two integrals together gives:

� ln�x2 � 2x � 26��
2
5

 tan�1¢x � 1
5
≤ � c

�  

2x
x2 � 2x � 26

 dx � �  

2x � 2
x2 � 2x � 26

 dx � �  

2
x2 � 2x � 26

 dx

1

2
25 �  

1

1 � ¢x � 1
5
≤2 dx �

2
5

 tan�1¢x � 1
5
≤ � k2

1
5 �  

1

1 � ¢x � 1
5
≤2 dx � tan�1¢x � 1

5
≤

dy

dx
�

1

1 � ¢x � 1
5
≤2 �

1
5

Example

Find 

Algebraically dividing the fraction:

So the question becomes 

�1 �
2

x � 1
 dx � x � 2 ln�x � 1� � c

�1 �
2

x � 1
 dx.

1
x � 1�x � 3

x � 1
2

�  

x � 1
x � 3

 dx.



Find these by using a substitution.

11 using the substitution 

12 using the substitution 

13

14

15 using the substitution 

16 using the substitution 

17 using the substitution 

18 using the substitution 

19 using the substitution 

20 using the substitution 

Find these by integrating by parts.

21 22 23

24 25 26

27 28

Integrate these trigonometric powers.

29 30 31

32 33 34

35 36 37

38 39

Use either splitting the numerator or algebraic division to find these.

40 41

42 43 �  

x2 � 3
2x � 1

 dx�  

x3 � 1
x � 1

 dx

�  

3x � 4
3x2

2
� 2x � 3

 dx�  

2x � 1

21 � x2
 dx

�cos4
 

x
6

 dx�tan2 x sec4 x dx

�2 sin2 ax cos2 ax dx�tan4
 

x
2

 dx�sin5
 

x
4

 dx

�cos3 2x dx�sin2 3x dx�cos2 u du

�  

tan3 x
cos2 x

 dx�  

cos2 x
cosec x

 dx�  cos x sin2 x dx

�eax sin 2x dx�tan�1¢1
x
≤ dx

� ln12x � 1 2  dx�x2 sin 

x
2

 dx�e�2x cos 2x dx

�x cos¢x �
p

6
≤ dx�x e3x dx�  

1
x2  ln x dx

x � 2 � p2�  

x � 1

x2x � 2
 dx

x2 � p�  

3x
1 � x4 dx

x � 2 sin u�  

1

x224 � x2
 dx

t � tan 

x
2�  

1
2 � cos x

 dx

x �  sin u�24 � 4x2 dx

u � ex�  

1
e x � e�x dx

�
  p

1 

 

2x � 1
1x � 3 26

 dx

�2x23x � 4 dx

u � x � 5�  

x2

1x � 5 22
 dx

u � 1 � x�2x˛11 � x 27 dx
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Evaluate these integrals.

1 2 3

4 5 6

7 8 �  

x2 � 1
x � 3

 dx�  

x � 3
x � 4

 dx

�  

�2x � 5

2�x2 � 6x � 4
 dx�  

2x � 3
x2 � 4x � 6

 dx�  

4x � 7
x2 � 4x � 8

 dx

�  

x � 5
x2 � 3

 dx�  

3x � 4
x2 � 4

 dx�  

x � 1

21 � x2
 dx
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Example

Find 

Algebraically dividing the fraction:

So the question becomes 

� 1x � 1 2 �
2

x � 1
 dx �

x2

2
� x � 2 ln�x � 1� � c

� 1x � 1 2 �
2

x � 1
 dx.

x � 1
x � 1�x2 � 0x � 1

x2 � x
�x � 1
�x � 1

2

�  

x2 � 1
x � 1

 dx.

15.8 Further integration practice
All the techniques of integration for this curriculum have now been met. The following
exercise examines all the techniques. It should be noted that there is often more than
one technique that will work. For example, direct reverse questions can be done by
substitution and some substitution questions can be done by parts.

Exercise 7

Exercise 8

Find these integrals using the method of direct reverse.

1 2

3 4

5 6

7 8

9 10 �  

2

2�x2 � 8x � 9
 dx�  

2
4x2 � 8x � 5

 dx

�  

sin x
cosn x

 dx� 14x � 2 2ex2�x�5 dx

�  

cos x

21 � sin x
 dx�sec2¢2x �

p

3
≤ dx

�  

4
1 � 4x2 dx�  

2x
3x2 � 1

 dx

� 142x � 42x � 1 � 411 � 3x 23 2  dx� 1cos 3x � sin 2x 2  dx



Even though all the techniques for this syllabus have been met, there are still a lot of
functions that cannot be integrated. There are two reasons for this. First, there are other
techniques which have not been covered and second there are some fairly simple
looking functions which cannot be integrated by any direct method. An example of this

is However, questions like these in the form of definite integrals can be asked

as it is expected that these would be done on a calculator. If a definite integral is asked
for on a calculator paper, then it should be done on a calculator unless there is a good
reason (for example being asked for an exact answer).

�ex2

 dx.
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15.9 Selecting the correct technique 2
The different techniques of integration should now be familiar, but in many
situations the technique will not be given. The examples below demonstrate how
similar looking questions can require quite different techniques.
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Example

Find 

This is direct reverse beginning with 

So 

 1 �  

3x � 2
3x2 � 4x � 8

 dx  �
1
2

 ln�3x2 � 4x � 8� � c

 1 2�  

3x � 2
3x2 � 4x � 8

 dx � ln�3x2 � 4x � 8�

 
dy

dx
�

6x � 4
3x2 � 4x � 8

�
213x � 2 2

3x2 � 4x � 8

y � ln�3x2 � 4x � 8�.

�  

3x � 2
3x2 � 4x � 8

 dx.

Example

Find 

Write the integral as 

This is direct reverse beginning with 

So

 1 � 13x � 2 2 13x2 � 4x � 8 2�4 dx �
1
2

 13x2 � 4x � 8 2�3 � c

 1 2� 13x � 2 2 13x2 � 4x � 8 2�4 dx � 13x2 � 4x � 8 2�3

 
dy

dx
� 16x � 4 2 13x2 � 4x � 8 2�4 � 213x � 2 2 13x2 � 4x � 8 2�4

y � 13x2 � 4x � 8 2�3.

� 13x � 2 2 13x2 � 4x � 8 2�4 dx.

�  

3x � 2
13x2 � 4x � 8 24

 dx.

Example

Find 

This is a case of splitting the numerator.

Hence the integral becomes 

The first integral is direct reverse of 

So 
dy

dx
�

6x � 4
3x2 � 4x � 8

y � ln�3x2 � 4x � 8�.

�  

6x � 4
3x2 � 4x � 8

 dx � �  

1
3x2 � 4x � 8

 dx.

�  

6x � 3
3x2 � 4x � 8

 dx.

The second integral requires completion of the square.

Using direct reverse, this begins with 

Therefore

Hence

� ln�3x2 � 4x � 8� �
1

220
 tan�1¢x �

2
3
≤ � c

�  

6x � 3
3x2 � 4x � 8

 dx � �  

6x � 4
3x2 � 4x � 8

 dx � �  

1
3x2 � 4x � 8

 dx

                 1

3
20 �  

1

1 �
9
20

 ¢x �
2
3
≤2 dx �

1

220
 tan�1¢x �

2
3
≤ � k2  

3

220
�  

1

1 �
9
20

 ¢x �
2
3
≤2 dx � tan�1¢x �

2
3
≤

dy

dx
�

1

1 �
9
20

 ¢x �
2
3
≤2 �

3

220

y � tan�1
 

3

220
 ¢x �

2
3
≤.

�
1
20
3

�  

1
9
20

 ¢x �
2
3
≤2

� 1
 dx �

3
20 � 1

1 �
9
20

 ¢x �
2
3
≤2 dx

� �  

1

3B¢x �
2
3
≤2

�
20
9
R
 dx � �  

1

3¢x �
2
3
≤2

�
20
3

 dx

�  

1
3x2 � 4x � 8

 dx � �  

1

3¢x2 �
4
3

 x �
8
3
≤
 dx

1 �  

6x � 4
3x2 � 4x � 8

 dx � ln�3x2 � 4x � 8 � � k1
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Use a calculator where appropriate to find these.

1 2 3

4 5 6

7 8 9

10 11 12

13 using the substitution 

14 15 16

17 18 19

20 21 22

23 24 25

26 27 28 �B
1 � 2x
1 � 2x

 dx�  

tan4 x
cos4 x

 dx�  

x2 � 7

52x
 dx

�e�3x cos x dx�
  0.5

0.1 

 

23 � 5x
x

 dx�
  2

1 

 

3x4

x3 � 3
 dx

�x4 ln 2x dx�  

1

2x˛12 � x 2
 dx� log4 x dx

�  

1

2�x2 � 4x � 29
 dx�  

3x2

2
 sin 2x dx�

  2

0 

e2x2

 dx

�
  5

2 

 

3
5 � 7x2 dx�cos4 x dx�  

3
x2 � 6x � 25

 dx

u � 2 � 5x�  

x
12 � 5x 23

 dx

�
  p

0 

 

sin x
a � b cos x

 dx�  

ex

12ex � 1 23
 dx�  

1

225 � 4x2
 dx

�  

2x � 3
x2 � 1

 dx�
  1

0 

 

x3

11 � ex 2
1
3

 dx�x2 e�2x dx

�
  
p

2

p

6 

 cos6 x sin 2x dx�cosec 4x cot 4x dx� 12x
2
3 � 4x

1
4 22 dx

�e4x�5 dx�23x � 5 dx� 1x � 3 23 dx
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Example

Work out 

This cannot be done by any direct method, so the only choice is to use a calculator
which will give the answer of 522. 

�
  2

1 

x ex3

 dx.

Exercise 9

29 using the substitution 

30 31 using the substitution 

32 33

34 using the substitution 

35 36 37

38 �
  
p

3

0 

 cos 6x cos 3x dx

�  

sin x cos x
cos2 x � sin2 x

 dx�
  4

1 

 sin�1
 

1
x
 dx�

  0

�1 

 

3x7

2 � 13x
 dx

x � a sin u�
  a

0 

x22a2 � x2 dx

�
  q

0 

x e�x dx�cos�1 2x dx

u � x � 1�
  a

0 

 

2x
1x � 1 24

 dx�
  0

�1 

24 � 3ex dx

t � tan 

x
2�  

1
3 � 2 cos x

 dx

15.10 Finding the area under a curve
We will now look at finding areas under curves by using these techniques.

Example

Consider the curve Using a calculator, find the area bounded by
the curve, the x-axis, the y-axis and the line where 

Drawing the curve on a calculator gives:

To do this question the first point of intersection of the curve with the x-axis
needs to be found. Again this is done on a calculator.

2 	 a 	 4.x � a
y � ex cos x.



Use a calculator where appropriate.

1 Calculate the area bounded by the lines and the curve

2 Find the area between the curves and shaded in the
diagram below.

y � x sin xy � cos 2x

y �
x2

x2 � 1
.

y � 0, x � 1
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Hence the area is given by:

To find integration by parts is used.

Letting 

and using the formula 

gives and 

and 

Hence 

Again using the formula 

and letting and 

and 

Hence 

Putting it all together 

1 A �  2.41 �
1
2

�  
1
2

 1ea sin a � ea cos a 2 � 2.41

B1
2

 1ea sin a � ea cos a 2 �
1
2

 1e1.57 sin 1.57 � e1.57 cos 1.57 2R�

 1 A �  B1
2

 1e1.57 sin 1.57 � e1.57 cos 1.57 2 �
1
2

 1e0 sin 0 � e0 cos 0 2R

 1 A �  B1
2

 1ex sin x � ex cos x 2R
0

1.57

 �  B1
2

 1ex sin x � ex cos x 2R
1.57 

a

 1 I �
1
2

 1ex sin x � ex cos x 2 � c

1 I � �ex cos x dx � ex sin x � ex cos x � I

� �ex cos x � �ex cos x dx

�ex sin x dx � �ex cos x � ��cos x � ex dx

u � �sin x dx � �cos x1

dv
dx

� ex

du
dx

� sin xv � ex

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

I � �ex cos x dx � ex sin x � �  sin x � ex dx � ex sin x � �ex sin x dx

u � �  cos x dx � sin x1

dv
dx

� ex

du
dx

� cos xv � ex

�v 

du
dx

 dx � uv � �u 

dv
dx

 dx,

�ex cos x dx � I

�ex cos x dx

A � 2 �
  1.57

0 

ex cos x dx 2 � 2 �
  a

1.57 

ex cos x dx 2
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Exercise 10

2
A

�2

�3 30

y

x

y � x sin x

y � cos 2x
1

�1

0

y

x

3 Find the area bounded by the curve the x-axis and the lines

and 

4 Sketch the curve and show that the area bounded

by the curve and the y-axis is 

5 Find the value of the shaded area in the diagram below which shows the

curve. 

2
3

 p
5
2.

y2 � p21p � 2x 2 , p H ��

x � 1.x � 0

y � xe�2x,

6 If find 

Hence show that 

Draw a diagram showing the area this integral represents.

7 Consider the circle and the line This line splits the

circle into two segments. Using integration, find the area of the smaller

segment.

x �
3a
4

.y2 � x2 � a2

�
  p

0 

 

1
2
24 � x2 dx � 6p24 � p2 � 8 sin�1¢p

2
≤, 0 	 p 	 2.

dy

dx
.y � 3x24 � x2 � 4 sin�1

 

x
2

,

y2

4
�

x2

9
� 1



9 a Find the equation of the tangent to the curve which passes

through the origin.

b Find the area bounded by the curve, the tangent and the x-axis.

10 Find [IB Nov 96 P1 Q18]

11 Find 

12 Let Find the area enclosed by the graph of f and the

x-axis. [IB May 01 P1 Q18]

13 For the curve 

a find the coordinates of any maximum of minimum points
b find the equations of any asymptotes
c sketch the curve

d find the area bounded by the curve and the line 

14 Calculate the area bounded by the graph of and the x-axis, between

and the smallest positive x-intercept. [IB Nov 00 P1 Q5]

15 Let 

a Use integration by parts to show that 

b Use your answer to part a to calculate the exact area enclosed by f(x) and the
x-axis in each of the following cases. Give your answers in terms of 

i

ii

iii

c Given that the above areas are the first three terms of an arithmetic sequence,
find an expression for the total area enclosed by f(x) and the x-axis for

where Give your answers in terms of n and 

[IB May 01 P2 Q1]

p.n H ��.
p

6
	 x 	

12n � 1 2p

6
,

5p
6

	 x 	
7p
6

3p
6

	 x 	
5p
6

p

6
	 x 	

3p
6

p.

�f1x 2  dx �
1
3

 x sin 3x �
1
9

 cos 3x � c.

f1x 2 � x cos 3x.

x � 0

y � x sin1x 22

y �
1
2

.

y �
1

1 � x2:

f: x S

sin x
x

, p 	 x 	 3p.

�  

a cos x
3 � b sin x

 dx.

�  

dx
x2 � 6x � 13

.

y �
1 � ln x

x
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8 Show that the exact ratio of to is 

9 Show that is 

10 The curve crosses the x-axis at P and the y-axis at Q. Find

the area bounded by OP, OQ and the curve PQ in terms of e given that O is

the origin.

11 Using the substitution find the area bounded by the curve

the x-axis and the lines and 

12 Find the area bounded by the curve and the x-axis.

13 Find the area bounded by the curve and the x-axis.

14 Find the area between the curves and y � e3x.y � x sin x

y � x2 sin x

y �
sin x

21 � cos x

x � a, a 7 1.x � 1y � x22x � 1,

u2 � 2x � 1,

y � 12x � 3 2e2x

1
ln 10

 13 ln 3 � 2 ln 2 � 1 2 .�
  3

2 

 log10 x dx

�e�p.�
  3p

2p 

e�x cos x dx�
  p

0 

e�x cos x dx
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Review exercise

1 Evaluate 

2 Using the substitution or otherwise, find the integral 

[IB May 99 P1 Q14]

3 Evaluate 

4 Find [IB May 98 P1 Q17]

5 Find the area bounded by the curve the lines 

and the x-axis.

6 Find the real numbers a and b such that for all

values of x. Hence or otherwise find [IB Nov 88 P1 Q15]

7 The area bounded by the curve the x-axis and the lines 

and is 0.1. Find the

value of a given that 

8 Find the indefinite integral [IB May 97 P1 Q13]�x2 e�2x dx.

a 7 0.

x � a � 1

x � ay �
1

1 � 4x2,

�  dx

221 � 4x � x2
.

21 � 4x � x2 � a � 1x � b 22

x � 2

x � �2,y �
1

x2 � 2x � 15
,

�arctan x dx.

�
  k

4 

 

x

25
2x2 � 4 dx.

�x
B

1
2

x � 1 dx.

u �
1
2

x � 1,

�
  1

0 

1e � k ekx 2  dx.
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When students study integral
calculus, the temptation is to see it
as a theoretical subject. However,
this is not the case. Pelageia
Yakovlevna Polubarinova Kochina,
who was born on 13 May 1899 in
Astrakhan, Russia, spent much of
her life working on practical
applications of differential
equations. Her field of study was
fluid dynamics and An application of
the theory of linear differential equations to
some problems of ground-water motion is
an example of her work. She
graduated from the University of Petrograd in 1921 with a degree in pure
mathematics. Following her marriage in 1925, Kochina had two daughters, Ira and
Nina, and for this reason she resigned her position at the Main Geophysical
Laboratory. However for the next ten years she continued to be active in her research
and in 1934 she returned to full-time work after being given the position of professor
at Leningrad University. In 1935 the family moved to Moscow and Kochina gave up
her teaching position to concentrate on full-time research. She continued to publish
until 1999, a remarkable achievement given that she was 100 years old!

16 Integration 3 – Applications

16.1 Differential equations
An equation which relates two variables and contains a differential coefficient is called a

differential equation. Differential coefficients are terms such as and 

The order of a differential equation is the highest differential coefficient in the equation.

Therefore, a first order equation contains only. For example However,

a second order equation contains and could also contain An example of this

would be Hence a differential equation of nth order would contain 

and possibly other lower orders.
dn

˛y

dx˛

n

d2
˛y

dx˛

2 � 3 

dy

dx
� 7y � 0.

dy

dx
.

d2
˛y

dx˛

2

dy

dx
� 5y � 0.

dy

dx

dn
˛y

dx˛

n.
dy

dx
, 

d2
˛y

dx˛

2

A linear differential equation is one in which none of the differential coefficients

are raised to a power other than one. Hence is not a linear

differential equation. Within the HL syllabus only questions on linear differential
equations will be asked.

The solution to a differential equation has no differential coefficients within it. So to solve

differential equations integration is needed. Now if then 

is called the differential equation and is called the solution.

Given that many things in the scientific world are dependent on rate of change it should
come as no surprise that differential equations are very common and so the need to be
able to solve them is very important. For example, one of the first researchers into
population dynamics was Thomas Malthus, a religious minister at Cambridge University,
who was born in 1766. His idea was that the rate at which a population grows is directly
proportional to its current size. If t is used to represent the time that has passed since the
beginning of the “experiment”, then would represent some reference time such
as the year of the first census and p could be used to represent the population’s size at

time t. He found that and this is the differential equation that was used as the

starting point for his research.

http://calculuslab.sjdccd.cc.ca.us/ODE/7-A-3/7-A-3-h.html

Accessed 2 October 2005

A further example comes from physics. Simple harmonic motion refers to the periodic
sinusoidal oscillation of an object or quantity. For example, a pendulum executes simple
harmonic motion. Mathematically, simple harmonic motion is defined as the motion

executed by any quantity obeying the differential equation 

Types of solution to differential equations

Consider the differential equation 

This can be solved using basic integration to give:

There are two possible types of answer.

1. The answer above gives a family of curves, which vary according to the value which
k takes. This is known as the general solution.

y �
1
2

 e2x � 2x˛

2 � k

dy

dx
� e2x � 4x.

d2
˛x

dt˛

2 � ��2
˛x.

dp

dt
� kp

t � 0

y � x˛

3 � k

dy

dx
� 3x˛

2. 
dy

dx
� 3x˛

2y � x˛

3 � k,

x˛

2 � 5 ¢dy

dx
≤2

� 6y � 0

0 x

y



2. Finding the constant of integration, k, produces one specific curve, which is known
as the particular solution. The information needed to find a particular solution is
called the initial condition. For the example above, if we are told that (0, 5) lies on
the curve, then we could evaluate k and hence find the particular solution.

Always give the answer to a differential equation in the form if possible.

If the general solution is required, the answer will involve a constant.

If the initial condition is given, then the constant should be evaluated and the particular
solution given.

16.2 Solving differential equations by direct
integration

Differential equations of the form can be solved by integrating both sides.

If we are asked to solve then we can integrate to get

It was shown in Chapter 15 that the first integral could be found using direct reverse
and the second can be solved using the technique of integration by parts.

For the first integral: For the second integral:

We begin with 

using integration by parts

Hence 

And therefore 

Hence the solution to is 

If the values of y and x are given then k can be calculated. Given the initial condition
that when we find that:

 0 �
1
2

 ln 2 � 0 �
1
4

� k

x � 1y � 0

y �
1
2

 ln11 � x˛

2 2 �
x˛

2

2
 ln x �

x˛

2

4
� k.

dy

dx
�

1
1 � x˛

2 � x ln x

 �
x˛

2

2
 ln x �

x˛

2

4
� k˛2� x

1 � x˛

2  dx �
1
2

 ln11 � x˛

2 2 � k˛1

 �
x˛

2

2
 ln x � � x

2
 dx

dy

dx
�

2x
1 � x˛

2

 �x ln x dx �
x˛

2

2
 ln x � � x˛

2

2
a

1
x
b  dx

y � ln11 � x˛

2 2

y � � x
1 � x˛

2  dx � �x ln x dx.

dy

dx
�

1
1 � x˛

2 � x ln x,

dn
˛y

dx˛

n � f1x 2

y � f1x 2 ,

y �
1
2

 e2x � 2x˛

2 �
9
2

 1 k �
9
2

 1 5 �
1
2

� 0 � k

y �
1
2

 e2x � 2x˛

2 � k
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This is not the final answer.

The final answer should always be in this form.

.

Many questions involving differential equations are set in a real-world context as many
natural situations can be modelled using differential equations.

 y �
1
2

 ln11 � x˛

2 2 �
x˛

2

2
 ln x �

x˛

2

4
�

1
4

�
1
2

 ln 2

 1 k �
1
4

�
1
2

 ln 2

Example

The rate of change of the volume (V) of a cone as it is filled with water is directly

proportional to the natural logarithm of the time (t) it takes to fill. Given that

when seconds and that when seconds,

find the formula for the volume.

We start with 

To turn a proportion sign into an equals sign we include a constant of propor-
tionality, say k, which then needs to be evaluated.

Hence 

Given that when we get:

Given that when 

Hence 
or V � 0.311t ln t � 0.311t � 22.3

V � 0.311 3t ln t � t � 71.8 4

 1 c � 71.8
 25 � 0.311 38 ln 8 � 8 � c 4

t � 8V � 25 

 1 V � 0.311 3 t ln t � t � c 4

 Hence V � 0.311Bt ln t � �t a
1
t
b  dtR using integration by parts

 1 V � 0.311�  ln t dt

 1 V � �0.311 ln t dt

 So   
dV
dt

� 0.311 ln t

1 k �
1

2 ln 5
� 0.311 p

1
2

� k ln 5

t � 5
dV
dt

�
1
2

dV
dt

� k ln t

dV
dt

r ln t.

t � 8V � 25 cm3t � 5
dV
dt

�
1
2

 cm3>s

The constant can be included
within the brackets or it can
be outside. It will evaluate to
the same number finally.

Given that the question is
dealing with volume and
time, this formula is only
valid for t 7 0.

The two constants of 
integration and can
be combined into one 
constant k.

k˛2k˛1

This is the particular 
solution.



In certain situations we may be asked to solve differential equations other than first order.
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Example

Solve the differential equation giving the general solution.

From basic integration:

Continuing to integrate:

 y � cos x �
kx˛

3

6
�

cx˛

2

2
� dx � e

 
dy

dx
� �sin x �

kx˛

2

2
� cx � d

 
d2

˛y

dx˛

2 � �cos x � kx � c

 1

d3
˛y

dx˛

3 � sin x � k

 
d3

˛y

dx˛

3 � �  cos x dx

d4
˛y

dx˛

4 � cos x,

Example

Find the particular solution to the differential equation 

given that when when and when

Hence 

When 

Integrating again gives:

 1

dy

dx
� e�5x � 4x˛

3 � 12x � d

 
dy

dx
� � 1�5e�5x � 12x˛

2 � 12 2  dx

 1

d2
˛y

dx˛

2 � �5e�5x � 12x˛

2 � 12

 1 c � �12
 1 �5e�5 � �5e�5 � 12 � c

x � �1, 
d2

˛y

dx˛

2 � �5e5

1

d2
˛y

dx˛

2 � �5e�5x � 12x˛

2 � c

d2
˛y

dx˛

2 � � 125e�5x � 24x 2  dx

d3
˛y

dx˛

3 � 25e�5x � 24x

x � 0, y � 0.

x � 1, 
dy

dx
� �8,x � �1, 

d2
˛y

dx˛

2 � �5e5,

d3
˛y

dx˛

3 � 25e�5x � 24x

If we were given the
boundary conditions then 
the constants k, c, d, and e
could be evaluated.

Find the general solutions of these differential equations.

1 2 3

4 5 6

7 8 9

10 11 12

Find the particular solutions of these differential equations.

13 given that when 

14 given that when 

15 given that when and that when

16 given that when and that when

x � 0, y � 5

x �
p

4
, 

dy

dx
� 3

d2
˛y

dx˛

2 �
2

1 � x˛

2

x � 1, y � 4

x �
1
2

, 
dy

dx
� 2

d2
˛y

dx˛

2 � 12x � 1 24

x �
p

4
, y � 2

dy

dx
� 3 sin˛¢4x �

p

2
≤

x � 2, y � 0
dy

dx
�

4x
4x˛

2 � 3

d4
˛y

dx˛

4 � x cos x
d3

˛y

dx˛

3 � x ln x
d2

˛y

dx˛

2 � sec2 x

d2
˛y

dx˛

2 � 13x � 2 2
1
2

dy

dx
� sin2 2x

dy

dx
�

5x

21 � 15x˛

2

dy

dx
� xe

2kx
3

dy

dx
�

cos x
1 � sin x

dy

dx
� x sin x

dy

dx
� 2x˛11 � x˛

2 2
1
2

dy

dx
� 13x � 7 24

dy

dx
� x˛

2 � sin x

Now when 

So 

The final integration gives:

When gives:

Therefore y �
e�5x

�5
� x˛

4 � 6x˛

2 � e�5
˛x �

1
5

 1 f �
1
5

 0 � �
1
5

� f

x � 0, y � 0

1  y �
e�5x

�5
� x˛

4 � 6x˛

2 � e�5
˛x � f

 y � � 1e�5x � 4x˛

3 � 12x � e�5 2  dx

dy

dx
� e�5x � 4x˛

3 � 12x � e�5

 1 d � �e�5

 1 �8 � e�5 � 4 � 12 � d

x � 1, 
dy

dx
� �8

Exercise 1
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16.3 Solving differential equations 
by separating variables

Equations in which the variables are separable can be written in the form

These can then be solved by integrating both sides with respect to x.g1y 2  
dy

dx
� f1x 2 .

453

1. Put in the form 

This gives an equation in the form which simplifies to 

The variables are now separated onto opposite sides of the

equation. 

2. Integrate both sides with respect to x.

3. Perform the integration.

�g1y 2  dy � �f1x 2  dx.

�g1y 2  
dy

dx
 dx � �f1x 2  dx

g1y 2  
dy

dx
� f1x 2

Method

Example

Find the general solution to the differential equation 

Following step 1:

Following step 2 and step 3:

 1 y � ;22x˛

2 � x � k

 1 y˛

2 � 2x˛

2 � x � k

 1

2y˛

2

2
� k˛1 �

4x˛

2

2
� x � k˛2

 1 �2y dy � � 14x � 1 2  dx

 �2y 

dy

dx
 dx � � 14x � 1 2  dx

2y 

dy

dx
� 4x � 1

dy

dx
�

4x � 1
2y

.

Since there is an integral on
each side of the equation, a
constant of integration is
theoretically needed on each
side. For simplicity, these are
usually combined and written
as one constant.

In this situation an explicit
equation in y cannot be
found.

Example

Solve to find the general solution of the equation 

Following step 1:

Following step 2 and step 3:

 1 � 1y˛

2 � 1 2  dy � �xe�x dx

 � 1y˛

2 � 1 2  
dy

dx
 dx � �xe�x dx

1y˛

2 � 1 2  
dy

dx
� xe�x

ex
 

dy

dx
�

x
y˛

2 � 1
.

As was shown earlier, k can be evaluated if the initial condition that fits the
equation is given. In this situation, we could be told that when 
and we can evaluate k.

Therefore the final answer would be

y˛

3

3
� y � xe�x � e�x � 0.927

1  k � 0.927 p

1  k �
4
3

� 3e�2

1
3

� 1 � 2e�2 � e�2 � k

x � 2, y � 1

 1

y˛

3

3
� y � �xe�x � e�x � k

 1

y˛

3

3
� y � �xe�x � �1e�x dx

Example

The diagram below shows a tangent to a curve at a point P which cuts the 
x-axis at the point A. Given that OA is of length qx, show that the points on the
curve all satisfy the equation

dy

dx
�

y

x � qx

0 x

y

A

P

qx

0

y

y

x � qxqx
(qx, 0)

P(x, y)

x

a Hence show that the equation is of the form where k is a

constant.
b Given that q is equal to 2, find the equation of the specific curve which

passes through the point (1, 1).

The gradient is 
¢y

¢x
.

y � kx˛

1
1 � q

Therefore the gradient is 

Hence 
dy

dx
�

y

x � qx

y � 0

x � qx
.
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a Following the method of separating variables:

Now by using the laws of logarithms:

b The curve passes through the point (1, 1) and 

 1 y �
1
x

 1 y � 1x˛

�1

 1 k � 1

 1 1 � k˛11 2�1

 1 � k˛11 2
1

1 � 2

q � 2.

 1 y � kx˛

1
1 � q

 1

y

k
� x˛

1
1 � q

 1 ln2 y
k
2 � ln�x�˛

1
1 � q

 ln� y� � ln k �
1

1 � q
 ln�x�

 1 ln�  y� �
1

1 � q
 ln�x� � ln k

 1 ln� y� �
1

1 � q
 ln�x� � c

 1 �1
y

 dy � � 1
x˛11 � q 2

 dx

 1 �1
y

 dy � � 1
x � qx

 dx

 1 �1
y
 
dy

dx
 dx � � 1

x � qx
 dx

 
1
y
 
dy

dx
�

1
x � qx

To simplify equations of this
type (i.e. where natural
logarithms appear in all
terms) it is often useful to let
c � ln k.

Technically the absolute value
signs should remain until the
end, but in this situation they
are usually ignored.

Example

A body has an acceleration a, which is dependent on time t and velocity v and is
linked by the equation

Given that when seconds, and when second,

and that k takes the smallest possible positive value, find the velocity

of the body after 6 seconds.

From the work on kinematics, we know that acceleration is the rate of change

of velocity with respect to time, i.e. 

Therefore the equation can be rewritten as 
dv
dt

� v sin kt.

a �
dv
dt

.

v � 2 ms�1,

t � 1v � 1 ms�1t � 0

a � v sin kt

This can be solved by separating variables.

The problem here is that when we substitute values for v and t, there are still

two unknown constants. This is why two conditions are given. Now when

seconds, gives:

Hence 

The other values can now be substituted to evaluate k:

This equation cannot be solved by any direct means and so a graphing calculator
needs to be used to find a value for k.

To do this, input the equation into a calculator and

then solve it for Since the question states that k should have the smallest

possible positive value, then the value of k is the smallest positive root given by

the calculator.

y � 0.

y �
1
x

 cos x �
1
x

� ln 2

1 ln 2 � �
1
k

 cos k �
1
k

ln�v� � �
1
k

 cos kt �
1
k

1  c �
1
k

1  0 � �
1
k

� c

 ln�1� � �
1
k

 cos 0 � c

v � 1 ms�1t � 0

 1 ln�v� � �
1
k

 cos kt � c

 1 �1
v

 dv � �  sin kt dt

 1 �1
v
 
dv
dt

 dt � �  sin kt dt

 
1
v
 
dv
dt

� sin kt

This value is and hence 

The equation now reads 

The value of v when seconds, can now be found by substituting in the
value 

 1 v � 1.98 ms�1

 1 v � e0.683

 1 ln�v� � 0.683 p

 ln�v� � 0.533 cos11.88 � 6 2 � 0.533

t � 6.
t � 6

ln�v� � 0.533 cos 1.88t � 0.533

1
k

� 0.533 p .k � 1.88 p
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Another real-world application of differential equations comes from work done with
kinematics.
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Find the general solutions of these differential equations.

1 2 3

4 5 6

7 8 9

10 11 12

Find the particular solutions of these differential equations.

13 given that when 

14 given that when 

15 given that when 

16 given that when 

17 given that when 

18 given that when t � 1, s �
p

3
ds
dt

� 2t˛

2 � 9s˛

2
˛t˛

2

t � 0, u �
p

2
u2

 

du
dt

� e2t sin t

x � 2, y � 8
2y

3x
 
dy

dx
�

2y˛

2 � 3

4x˛

2 � 1

y �
p

4
, x � 4x 

dy

dx
� sin2 y

x � 1, y � 1e2x
 

dy

dx
� 31y

x � 2, y � 4
dy

dx
� y˛13 � x 24

3y˛1x � 1 2 � 1x˛

2 � 2x 2  
dy

dx
e2x�y

 

dy

dx
� 1v 

dv
dt

� cos2 at

1
x
 
dy

dx
�
13x � 1 29

y˛

2s˛

2
 

ds
dt

� sin�1 t
dy

dx
�

4y

24 � x˛

2

5x 

dy

dx
� 6eyy˛

3

x
 
dy

dx
� ln x1sin x � cos x 2  

dy

dx
� cos x � sin x

dy

dx
�

3 � 2y

4 � 3x
2x 

dy

dx
� y˛

2 � 1y 

dy

dx
� tan x

Exercise 2

You will need to use the
substitution 
to perform the integration.

u � 3x � 1

The following exercise contains a mixture of questions on the material covered in this
chapter so far.

In questions 1 to 5, solve the differential equations.

1 2 3

4 given that when 5

6 Consider the expression 

a Using differentiation, find an expression for 
dz
dx

.

z � x � y.

cos2 x 

dy

dx
� cos2 yx � 0, y � 3

1
x˛

2 
dy

dx
�

3
y˛

211 � x˛

3 2

d2
˛x

dt˛

2 � � sin nt
d2

˛x
dt˛

2 � �2
˛t � 0

dy

dx
� tan x

Exercise 3

16.4 Verifying that a particular solution fits
a differential equation

The easiest way to tackle questions of this form is to differentiate the expression the
required number of times and then substitute into the differential equation to show that
it actually fits.

b Hence show that the differential equation can be changed

to 

c Find the general solution of the differential equation and

hence write down the solution to the differential equation 

7 Find the particular solution to the equation where A and B are

constants that do not need to be evaluated, given that and 

for both and 

8 A hollow cone is filled with water. The rate of increase of water with

respect to time is Given that when seconds,

find a general formula for the volume V at any time t.

9 Oil is dripping out of a hole in the engine of a car, forming a thin circular
film of the ground. The rate of increase of the radius of the circular film is

given by the formula Given that when seconds, the

radius of the film is 4 cm, find a general formula for the radius r at any time t.

10 The rate at which the height h of a tree increases is proportional to the
difference between its present height and its final height s. Show that its

present height is given by the formula where B is a constant.

11 Show that the equation of the curve which satisfies the differential

equation and passes through the point is 

y � 12 � 23 2x.

¢23
3

, 23≤dy

dx
�

1 � y˛

2

1 � x˛

2

h � s �
e�kt

B

t � 5
dr
dt

� 2 ln t˛

2.

V � 4 cm3,

t �
p

12
dV
dt

� 4 sin ¢t �
p

4
≤.

x � 1.x � 0

d2
˛y

dx˛

2 � 0y � 0

A 

d4
˛y

dx˛

4 � B,

dy

dx
� 1x � y 22.

dz
dx

� z˛

2 � 1

dz
dx

� z˛

2 � 1.

dy

dx
� 1x � y 22

Example

Show that is a solution to the differential equation

We begin with the expression 

Differentiating using the chain rule: 
dy

dx
� 4e2x

y � 2e2x.

d2
˛y

dx˛

2 � 6 

dy

dx
� 9y � 50e2x

y � 2e2x



Sometimes the question will involve constants and in this case, on substitution, they will
cancel out.
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Differentiating again: 

Substituting back into the left-hand side of the original differential equation
gives:

Since this is the same as the right-hand side, this is verified.

8e2x � 6 # 4e2x � 9 # 2e2x � 50e2x

d2
˛y

dx˛

2 � 8e2x

Example

Show that is a solution to 

We begin with the expression 

Differentiating using the chain rule: 

Differentiating again: 

Substituting these back into the left-hand side of the original differential equation
gives:

Since this is the same as the right-hand side, this is verified.

 � 0
 � 10Ae�2x � 15e�3x � 10Ae�2x � 15Be�3x

 � 4Ae�2x � 9Be�3x � 10Ae�2x � 15Be�3x � 6Ae�2x � 6Be�3x

4Ae�2x � 9Be�3x � 51 �2Ae�2x � 3Be�3x 2 � 61Ae�2x � Be�3x 2

d2
˛y

dx˛

2 � 4Ae�2x � 9Be�3x

dy

dx
� �2Ae�2x � 3Be�3x

y � Ae�2x � Be�3x

d2
˛y

dx˛

2 � 5 

dy

dx
� 6y � 0.y � Ae�2x � Be�3x

Exercise 4

Verify that these solutions fit the differential equations.

1

2

3

4

5

6

7
d2

˛y

dx˛

2 �
dy

dx
� y � 1 � xy � Ae�x

2 cos 

23
2

 x � x,

d2
˛y

dx˛

2 � 3 

dy

dx
� 2y � sin xy � Ae�x � Be�2x �

1
10

 1sin x � 3 cos x 2 ,

d2
˛y

dx˛

2 � 2 

dy

dx
� y � exy � e x ¢A � Bx �

1
2

 x˛

3≤,

d2
˛y

dx˛

2 � 2 

dy

dx
� y � 3xexy � ex1A � Bx 2 � e2x,

d2
˛y

dx˛

2 � 3 

dy

dx
� 2y � 4 � x �

1
4

 e2xy � ex �
1
4

 e2x �
1
2

 x �
11
4

,

d2
˛y

dx˛

2 � 2 

dy

dx
� 8y � 2e�2xy � �

1
4

 e�2x,

d2
˛y

dx˛

2 � y � 2xy � 2x,

16.5 Displacement, velocity and acceleration
This is one of the more important applications of integral calculus. In Chapter 10,
velocity and acceleration were represented as derivatives.

Reminder: if s is displacement, v is velocity and t is time, then:

and 

Since we can represent velocity and acceleration using differential coefficients,
solving problems involving velocity and acceleration often involves solving a differential
equation.

a �
d2

˛s
dt˛

2 �
dv
dt

.

v �
ds
dt

Example

Given that the velocity v of a particle at time t is given by the formula 

and that when find the formula for the displacement at any time t.

Beginning with the formula: 

we know that 

So

Integrating both sides with respect to t gives:

Now when 

 1 s �
1t � 1 24

4
�

23
4

 1 k �
23
4

 6 �
12 � 1 24

4
� k

t � 2, s � 6

 1 s �
1t � 1 24

4
� k

 1 �ds � � 1t � 1 23 dt

 �ds
dt

 dt � � 1t � 1 23 dt

ds
dt

� 1t � 1 23

v �
ds
dt

v � 1t � 1 23

t � 2, s � 6,

v � 1t � 1 23

It is quite straightforward to find the displacement if there is a formula relating velocity
and time and to find the velocity or the displacement if there is a formula relating
acceleration and time. However, what happens when acceleration is related to
displacement? The connection here was shown in Chapter 10 to be

a � v 

dv
ds

.
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Example

The acceleration of a particle is given by the formula Given that when

find the formula for the velocity in terms of the displacement s.

We know that when 

Hence

 1 v � ;2e2s � 3

 1 v˛

2 � e˛

2s � 3

 
v˛

2

2
�

e2s

2
�

3
2

1  k �
3
2

 1

4
2

�
e0

2
� k

s � 0, v � 2

 1

v˛

2

2
�

e2s

2
� k

 1 �v dv � �e2s ds

 1 �v 

dv
ds

 ds � �e2s ds

 1 v 

dv
ds

� e2s

 a � e2s

s � 0, v � 2,

a � e2s.

Example

A particle moves in a straight line with velocity Its initial velocity is

At any time t, the velocity v is given by the equation 

Prove that the particle comes instantaneously to rest after seconds. Given

that the particle moves s metres in t seconds, show that the particle first comes

to rest after a displacement of metres.

We solve this using the method of variables separable.

1 tan�1 v � �t � k

 1 � 1
1 � v˛

2 
dv
dt

 dt � ��1 dt

 1

1
1 � v˛

2 
dv
dt

� �1

 1

dv
dt

� �11 � v˛

2 2

 
dv
dt

� 3 � v˛

2 � 2

1
2

 ln�1 � u˛

2�

tan�1 u

dv
dt

� 3 � v˛

2 � 2.u ms�1.

v ms�1.

It is given that when 

So 

The particle comes to instantaneous rest when 

Hence the result is proved.

To find the displacement s we use the fact that 

The equation becomes 

Again we solve this using the method of variables separable.

To integrate the left-hand side, we use the method of direct reverse.

Letting 

So returning to the original equation:

When 

So 

We now find the displacement when the particle first comes to instantaneous
rest, this is when 

Hence the result is proved.

1  s �
1
2

 ln�1 � u˛

2�

 1 0 � �s �
1
2

 ln�1 � u˛

2�

 
1
2

 ln�1 � 02� � �s �
1
2

 ln�1 � u˛

2�

v � 0.

1
2

 ln�1 � v˛

2� � �s �
1
2

 ln�1 � u˛

2�

 1 c �
1
2

 ln�1 � u˛

2�

1 
1
2

 ln�1 � u˛

2� � �0 � c

v � u, s � 0

1
2

 ln�1 � v˛

2� � �s � c

 1 � v
1 � v˛

2  dv �
1
2

  ln�1 � v˛

2� � k

 1

dy

dv
�

2v
1 � v˛

2

 y � ln11 � v˛

2 2

 1 � v
1 � v˛

2  dv � ��1 ds

 1 � v
1 � v˛

2 
dv
ds

 ds � ��1 ds

 
v

1 � v˛

2 
dv
ds

� �1

v 

dv
ds

� �11 � v˛

2 2 .
dv
dt

� �11 � v˛

2 2

dv
dt

� v 

dv
ds

.

 1 t � tan�1 u

 1 tan�1 0 � �t � tan�1 u

v � 0.

tan�1 v � �t � tan�1 u

 1 k � tan�1 u

 1 tan�1 u � �0 � k

t � 0, v � u.
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1 The acceleration in of a particle moving in a straight at time t is given by

the formula When and Find the velocity

and displacement at any time t.

2 A particle starts to accelerate along a line AB with an initial velocity of

and an acceleration of at time t after leaving A.

a Find a general formula for the velocity v of the particle.
b Find the velocity after 8 seconds.
c Find a general formula for the displacement s of the particle.
d Find the displacement after 10 seconds.

3 The acceleration in of a particle moving in a straight line at time t is

given by the formula Given that the particle has an initial

velocity of find the distance travelled by the particle in the third

second of its motion.

4 The acceleration in of a particle moving in a straight line at time t is

given by the formula The particle is initially at rest when its

displacement is 0.5 m from a fixed point O on the line.

a Find the velocity and displacement of the particle from O at any time t.
b Find the time that elapses before the particle comes to rest again.

5 The velocity of a particle is given by the formula and is valid for all

Given that when find the displacement at any time t.

6 The acceleration of a particle is given by the formula Given

that when find the formula for the velocity as a function of

displacement for any s.

7 Consider a particle moving with acceleration Given that when 

find the formula for the velocity as a function of displacement for any s.

8 A particle moves along a line AB. Given that A is 2 metres from O and it

starts at A with a velocity of find the formula for the velocity of the

particle as a function of s, given that it has acceleration 

9 The acceleration in of a particle moving in a straight line at time t is

given by the formula When seconds, 

a Find the velocity when 

b Show that the particle has a terminal velocity of 

10 Consider a particle with acceleration The particle moves along a

straight line, PQ, starting from rest at P.

a Show that the greatest speed of the particle in its motion along PQ is

¢3
2

� ln 16≤ ms�1.

e2t � 4.

7 

1
2

 ms�1.

t � 4.

v � 8 ms�1.t � 2a � �
1
t˛

2.

ms�2

a � 12s � 1 24.

2 ms�1,

v � 2,

s � 0,a � s e2s.

s �
p

4
, v � 2,

a � sin  ¢s �
p

4
≤.

t � 2, s � 10,t 7 1.

v �
t˛

2 � 1
1 � t

a � cos 3t.

ms�2

6 ms�1,

a � 2t˛

3 � 3t � 4.

ms�2

�6t˛

310 ms�1

s � 0.t � 0, v � 0a � 4t˛

2 � 1.

ms�2

Exercise 5

16.6 Volumes of solids of revolution
Consider the problem of finding the volume of this tree trunk.

b Find the distance covered by the particle in the first four seconds of its
motion.

11 A bullet is decelerating at a rate of when its velocity is 

During the first second the bullet’s velocity is reduced from to

a Find the value of k.
b Deduce a formula for the velocity at any time t.

c Find the distance travelled during the time it takes for the velocity to reduce

from to 

12 Consider a particle with acceleration The particle starts from rest

and moves in a straight line.

a Find the maximum velocity of the particle.
b The particle’s motion is periodic. Give the time period of the particle. (This is

the time taken between it achieving its maximum speeds.)

13 A particle is moving vertically downwards. Gravity is pulling it downwards,
but there is a force of kv acting against gravity. Hence the acceleration
experienced by the particle at time t is If the particle starts from rest,
find the velocity at any time t. Does this velocity have a limiting case?

g � kv.

sin �t ms�2.

60 ms�1.220 ms�1

60 ms�1.

220 ms�11
2

v ms�1.kv ms�2

1.3 m
0.3 m

10 m

There are a number of ways that this can be done.

First, we could assume that the tree trunk is a cylinder of uniform radius and calculate
the volume of the cylinder.

To do this, we need to calculate an average radius. This would be 

Hence the volume of the tree trunk is 

This is an inaccurate method.

A better way would be to divide the tree trunk into 10 equal portions as shown below
and then calculate the volume of each portion.

pr˛

2
˛h � p � 0.82 � 10 � 6.4p m3 � 20.1 m3.

1.3 � 0.3
2

� 0.8 m.

1.3 m
0.3 m

1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m



If we take an average radius for each section and assume that each portion is
approximately a cylinder with height 1 m, then the volume will be:

This is still an approximation to the actual answer, but it is a better approximation than
the first attempt. As we increase the number of portions that the tree trunk is split into,
the better the accuracy becomes.

Consider the case of the curve If the part of the curve between and

is rotated around the x-axis, then a volume is formed as shown below.x � 3

x � 1y � x˛

2.

 � 22.7 m3

1.152 � 1.252 2

 � p # 110.352 � 0.452 � 0.552 � 0.652 � 0.752 � 0.852 � 0.952 � 1.052 �

1p # 0.952 # 1 2 � 1p # 1.052 # 1 2 � 1p # 1.152 # 1 2 � 1p # 1.252 # 1 21p # 0.852 # 1 2 �

1p # 0.352 # 1 2 � 1p # 0.452 # 1 2 � 1p # 0.552 # 1 2 � 1p # 0.652 # 1 2 � 1p # 0.752 # 1 2 �
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0
1

y � x2

3

y

x

This is known as a volume of solid of revolution. The question now is how to calculate
this volume. In Chapter 14, to find the area under the curve, the curve was split into
infinitesimally thin rectangles and then summed using integration. Exactly the same
principle is used here except rather than summing infinitesimally thin rectangles, we sum
infinitesimally thin cylinders.

Effectively, this is what we did when we found the volume of the tree trunk.

Consider the diagram below.

0

y

x

C D

y � x2
A(x, y)

y

B(x �   x, y �   y)� �

�x

Look at the element ABCD where A is on the curve and has coordinates (x, y). Since in

this case then the coordinates of A are ABCD is approximately a

cylinder with radius y and whose “height” is 

Therefore the volume of and hence the volume V of the entire

The smaller becomes, the closer this approximation is to V,

i.e. V � limdxS0a
x�b

x�a
py˛

2 dx.

dx

solid � a
x�b

x�a
py˛

2 dx.

ABCD � py˛

2 dx

dx.

1x, x˛

2 2 .y � x˛

2,

If this question appeared
on a calculator paper
then the integration can
be done on a calculator.

Example

Find the volume generated when one complete wavelength of the curve
is rotated through radians about the x-axis.

By drawing the curve on a graphing calculator it is evident that there are an infinite
number of complete wavelengths. In this case the one which lies between 0 and

will be chosen.p

2py � sin 2x

The volume of the solid formed is given by the formula 

Hence 

At this stage the decision on whether to use a graphing calculator or not will
be based on whether the question appears on the calculator or non-calculator
paper. The calculator display for this is shown below. In this case an answer of

is found.4.93 units3

V � p�
p

0

 sin2 2x dx.

V � p�
p

0

y˛

2 dx.

�

This answer will need to
be multiplied by p.

This is the formula for a
full revolution about the
x-axis.

In this case 

 1 V �
242p

5

 1 V �pB243
5

�
1
5
R

 1 V � p Bx˛

5

5
R

1

3

 1 V � p�
3

1

x˛

4 dx

 V � p�
3

1

y˛

2 dx

y � x˛

2,

V � p�
b

a
y˛

2 dx 

a and b are the boundary
conditions which ensure
that the volume is finite.



It is possible to rotate curves around a variety of different lines, but for the purposes of
this syllabus it is only necessary to know how to find the volumes of solids of revolution
formed when rotated about the x- or the y-axes.

Volumes of solids of revolution when rotated about
the y-axis
The method is identical to finding the volume of the solid formed when rotating about

the x-axis. Consider the curve y � x˛

2.

467466

On a non-calculator paper we would proceed as follows.
From the trigonometrical identities we have:

and 

giving 

So 

Hence

 1 V �
p2

2
 units3

 1 V �
p

2
 �1p � 0 2 � 10 � 0 2 �

 1 V �
p

2
 B¢p �

sin 4p
4
≤ � ¢0 �

sin 0
4
≤R

 1 V �
p

2
 Bx �

sin 4x
4
R

0

p

 1 V �
p

2 �
p

0

11 � cos 4x 2  dx

 V � p�
p

0

¢1 � cos 4x
2

≤ dx

 1  sin2 2x �
1 � cos 4x

2

 1  cos 4x � 1 � 2 sin2 2x

cos 4x � 1 � sin2 2x � sin2 2x

cos2 2x � 1 � sin2 2x

cos2 2x � sin2 2x � 1,

cos 4x � cos2 2x � sin2 2x
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y � x2

A(x, y)

y

x

B(x �   x, y �   y)� �
�y x

D

C

Look at the element ABCD where A is on the curve and has coordinates (x, y). If 

then Hence the coordinates of A are ABCD is approximately a cylinder

with radius x and whose “height” is dy.

1y ˛

1
2, y 2 .x � y ˛

1
 2.

y � x˛

2,

Example

Find the volume of the solid of revolution formed when the area bounded by
the curve and the lines is rotated about the y-axis.

As before, plotting the curve on a calculator or drawing a diagram first is a
good idea.

x � 0, y � 3, y � 6xy � 2

As the rotation is taking place about the y-axis, the required formula is:

V � p�
6

3

x˛

2 dy

This is the formula for a
full revolution about the
y-axis.

Therefore the volume of 

and the volume V of the entire 

The smaller becomes, the closer this approximation is to V,

i.e. 

In this case To find the volume of the solid formed when the part of the curve

between and is rotated about the y-axis, we proceed as follows.

1  V � 2p

 1 V �pB4
2

� 0R

 1 V �pBy˛

2

2
R

0

2

 1 V � p�
2

0

y dy

 V � p�
2

0

x˛

2 dy

y � 2y � 0

x � y ˛

1
2.

V � p�
b

a
x˛

2 dy 

V � limdyS0a
y�b

y�a
px˛

2 dy

dy

solid � a
y�b

y�a
px˛

2 dy.

ABCD � px˛

2 dy
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Up until now it appears that volumes of solids of revolution are a theoretical application

of integration. However, this is not the case. In the field of computer-aided design,

volumes of solids of revolution are important. If, for example, we wanted to design a

wine glass, then we could rotate the curve around the y-axis to give a possible

shape. If we wanted a thinner wine glass, then we could rotate the curve 

Because this can be all modelled on a computer, and a three-dimensional graphic

produced, designers can work out the shape that they want.

y � x˛

4.

y � x˛

2

469468

Since then 

So we have:

The calculator display is shown below.

 1 V �
2p
3

 1 V �pB¢�4
6
≤ � ¢�4

3
≤R

 1 V �pB4y˛

�1

�1
R

3

6

 1 V � p�
6

3

4y˛

�2 dy

 1 V � p�
6

3

4
y˛

2 dy

 V � p�
6

3

¢2
y
≤2

 dy

x �
2
y

xy � 2,

Remember that this
answer will need to
be multiplied by p.

Hence V � 2.09 units3.

y � x4

y � x2

y

x

Exercise 6

1 Find the volumes generated when the following areas are rotated through
radians about the x-axis.

a The area bounded by the curve the x-axis, the y-axis and the
line 

b The area bounded by the curve and the x-axis.

c The area bounded by the curve the x-axis and the line 

d The area bounded by the curve the x-axis, the y-axis and the

line 

e The area bounded by the curve the x-axis and the line 

f The area bounded by the curve the x-axis and the line

g The area bounded by the curve and the x-axis.

h The area bounded by the curve the x-axis and the lines 

and 

i The area bounded by the curve the x-axis and line 

j The area bounded by the curve the x-axis and the lines

and 

2 Find the volumes generated when the following areas are rotated through
radians about the y-axis.

a The area bounded by the curve and the x-axis.

b The area bounded by the curve the y-axis and the line 

c The area bounded by the curve the y-axis and the line 

d The area bounded by the curve the y-axis and the lines 

and 

e The area bounded by the curve the y-axis, the x-axis and the

line 

f The area bounded by the curve the y-axis and the line 

g The area bounded by the curve the y-axis and the line

3 Find a general formula for the volume generated when the area bounded 

by the curve , the and the line is rotated through 

radians about the x-axis.

4 Find the volume obtained when the region bounded by the curve

the x-axis and the lines and is rotated through

360˚ about the x-axis.

x � 6x � 3y � 3 �
4
x
,

2px � ax axisy � x˛

2

y � 1.5.

y � ln1x � 1 2 ,

y �
p

3
.y � sin�1 x,

y � 2.

y � x˛

2 � 4x,

y � 0.8.

y � 0.2y � sin x,

y � 2.y � ex,

y � 2.y � x˛

3,

y � 4 � x˛

2

2p

x � 1.5.x � 0.5

y � e2x sin x,

x �
p

6
.y � tan 2x,

x �
p

4
.

x � 0y � sin 4x,

y � 9x � x˛

2 � 14

x � 5.

y �
1
3

 12x � 1 22,

x � 3.y � x˛

2 � 1,

x � 1.

y � 1 � 1x,

x � 2.y � x˛

3,

y � 4x � x˛

2

x � 2.
y � 3x � 2,

2p
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5 Consider the curve The part of the curve between and

is rotated through radians about the y-axis. Find the volume of

the solid of revolution formed.

6 Find the volume generated when the area bounded by the curve 
the x-axis, the y-axis and the line is rotated through about the
y-axis.

7 Consider the curve A volume is formed by revolving this curve

through about the y-axis. The radius of the rim of this volume is 5 cm.

Find the depth of the shape and its volume.

8 Sketch the curve and shade the area that is bounded by the

curve and the x-axis. This area is rotated through radians about the 

x-axis. Find the volume generated. What is the volume when it is rotated

through radians about the y-axis?

9 The parabola is rotated through about its axis of symmetry,

thus forming a volume of solid of revolution. Calculate the volume enclosed

between this surface and a plane perpendicular to the y-axis. This plane is a

distance of 7 units from the origin.

10 Find the volume of the solid of revolution formed when the area included

between the x-axis and one wavelength of the curve is rotated

through about the x-axis.

11 Consider the part curve which lies between 

and where n is an integer. Find the volume generated when

this area is rotated through radians about the x-axis.

12 a Using the substitution evaluate 

b Hence or otherwise, find the volume generated when the area bounded by

the curve the y-axis and the line is rotated

through radians about the y-axis.2p

y � a, 0 6 a 6 1,y˛

2 � 1 � x˛

4,

�21 � x˛

2 dx.x � sin u,

2p

x � 1n � 1 2p

x � 1n � 1 2py˛

2 � x˛

2 sin x

360°

y � b sin 

x
a

360°y � 8x˛

2

2p

2p

y � �x˛

2 � 1�

360°

y �
1
5

 x˛

2.

360°y � 2
y � ln x,

2py � 5

y � 2y � x ˛

1
2.
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Review exercise

1 The region A is bounded by the curve and by the lines 

and Find the exact value of the volume formed when the area

A is rotated fully about the x-axis.

2 Solve the differential equation given that when 

[IB Nov 00 P1 Q17]

3 A particle moves in a straight line with velocity, in metres per second, at time

t seconds, given by 

Calculate the total distance travelled by the particle in the first two seconds
of motion. [IB Nov 02 P1 Q11]

v˛1t 2 � 6t˛

2 � 6t, t 	 0.

x � 2.y � 0xy 

dy

dx
� 1 � y˛

2,

x �
p

6
.x � 0

y � sin¢2x �
p

3
≤

4 Consider the region bounded by the curve the x-axis and the

lines Find in terms of a, the volume of the solid generated when

this region is rotated through radians about the x-axis.

5 Solve the differential equation and sketch one of the solution

curves which does not pass through 

6 The acceleration of a body is given in terms of the displacement s metres as

Determine a formula for the velocity as a function of the

displacement given that when Hence find the exact

velocity when the body has travelled 5 m.

7 The temperature T°C of an object in a room, after t minutes, satisfies the

differential equation where k is a constant.

a Solve this equation to show that where A is a constant.

b When and when 
i Use this information to find the value of A and of k.

ii Hence find the value of t when [IB May 04 P1 Q4]

8 The velocity of a particle is given by the formula for 

Using the substitution find the displacement travelled between

seconds and seconds.

9 Consider the curve The triangular region of this curve which

occupies the first quadrant is rotated fully about the x-axis. Show that the

volume of the cone formed is 

10 A sample of radioactive material decays at a rate which is proportional to
the amount of material present in the sample. Find the half-life of the
material if 50 grams decay to 48 grams in 10 years. [IB Nov 01 P1 Q19]

11 The acceleration in of a particle moving in a straight line at time t, is

given by the formula The particle starts from rest from a point

where its displacement is 0.5 m from a fixed point O on the line.

a Find the velocity and displacement of the particle from O at any time t.

b Find the time that elapses before the particle comes to rest again.

12 a Let where k is a constant.

Show that 

A particle is moving along a straight line so that t seconds after passing

through a fixed point O on the line, its velocity is given by

v˛1t 2 � t sin ¢p
3

 t≤.
v˛1t 2  ms�1

dy

dx
� k˛

2
˛x sin1kx 2 .

y � sin1kx 2 � kx cos1kx 2 ,

a � sin 

2p
3

 t.

ms�2

1
3

 pr˛

2
˛h.

y � �
r
h

 x � r.

t � Tt � 2

t � sec2 u,

t 7 1.v �
1

t˛

22t � 1

T � 40.

t � 15, T � 70.t � 0, T � 100

T � A ekt � 22

dT
dt

� k˛1T � 22 2

s � 1 m, v � 2 ms�1.

a �
3s

s˛

2 � 1
.

y � 0.

dy

dx
� 5xy

2p

x � ;  a.

y � e�2x,
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b Find the values of t for which given that 
c i Write down a mathematical expression for the total distance travelled

by the particle in the first six seconds after passing through O.
ii Find this distance. [IB Nov 01 P2 Q2]

13 When air is released from an inflated balloon it is found that the rate of

decrease of the volume of the balloon is proportional to the volume of the

balloon. This can be represented by the differential equation 

where v is the volume, t is the time and k is the constant of proportionality.

a If the initial volume of the balloon is find an expression, in terms of k,
for the volume of the balloon at time t.

b Find an expression, in terms of k, for the time when the volume is 

[IB May 99 P1 Q19]

14 Show by means of the substitution that 

Hence find the exact value of the volume 

formed when the curve bounded by the lines and

is rotated fully about the -axis.

15 Consider the curve 

a Sketch the part of the curve that lies in the first quadrant.

b Find the exact value of the volume when this part of the curve is
rotated through about the x-axis.

c Show that where is the volume generated when the curve is

rotated fully about the y-axis and a and b are integers.

V˛y

V˛y

V˛x
�

a
b

360°

V˛x

y˛

2 � 9a˛14a � x 2 .

x

x � 1x � 0y �  

1
x˛

2 � 1
 

��
p

4

0

 cos2 u du.�
1

0

 

1
1x˛

2 � 1 22
 dx

x � tan u

v˛0

2
.

v˛0,

dv
dt

� �kv,

0 
 t 
 6.v˛1t 2 � 0,
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Abraham de Moivre was born in

Vitry-le-François in France on 26

May 1667. It was not until his late

teenage years that de Moivre had

any formal mathematics training. In

1685 religious persecution of

Protestants became very serious in

France and de Moivre, as a

practising Protestant, was

imprisoned for his religious beliefs.

The length of time for which he

was imprisoned is unclear, but by

1688 he had moved to England and

was a private tutor of mathematics,

and was also teaching in the coffee

houses of London. In the last decade

of the 15th century he met Newton

and his first mathematics paper

arose from his study of fluxions in

Newton’s Principia.This first paper was accepted by the Royal Society in 1695 and in

1697 de Moivre was elected as a Fellow of the Royal Society. He researched mortality

statistics and probability and during the first decade of the 16th century he published

his theory of probability. In 1710 he was asked to evaluate the claims of Newton and

Leibniz to be the discoverers of calculus.This was a major and important undertaking

at the time and it is interesting that it was given to de Moivre despite the fact he had

found it impossible to gain a university post in England. In many ways de Moivre is

best known for his work with the formula .The theorem that comes

from this bears his name and will be introduced in this chapter.

De Moivre was also famed for predicting the day of his own death. He noted that each
night he was sleeping 15 minutes longer and by treating this as an arithmetic
progression and summing it, he calculated that he would die on the day that he slept
for 24 hours.This was 27 November 1754 and he was right!

1cos x � i sin x 2n

17 Complex Numbers

Abraham de Moivre



Dividing imaginary numbers
This is done in the same way as multiplication.
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17.1 Imaginary numbers
Up until now we have worked with any number k that belongs to the real numbers and

has the property Hence we have not been able to find and

have not been able to solve equations such as In this chapter we begin by

defining a new set of numbers called imaginary numbers and state that 

An imaginary number is any number of the form

Adding and subtracting imaginary numbers
Imaginary numbers are added in the usual way and hence 

They are also subtracted in the usual way and hence 

Multiplying imaginary numbers
When we multiply two imaginary numbers we need to consider the fact that powers of
i can be simplified as follows:

3i � 7i � �4i.

3i � 7i � 10i.

 � ni

 � 2n˛

2 � 2�1

 2�n˛

2 � 2n˛

2 � �1

i � 2�1.

x˛

2 � �1.

2negative numberk˛

2 � 0.
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 i˛

5 � i˛

4 � i � 1 � i � i

 i˛

4 � i˛

2 � i˛

2 � �1 � �1 � 1

 i˛

3 � i˛

2 � i � �1 � i � �i

 i2 � i � i � 2�1 � 2�1 � �1

This pattern now continues and is shown
in the diagram:

i

i2 � �1

i3 � �i

 1 � i4

Example

Simplify 

Since we simplify this to the form 

Hence

 � �1
 � 18 � �1

 � 1i˛

4 28 � i˛

2

 i˛

34 � i˛

32 � i˛

2

i˛

4n � i˛

x.i˛

4 � 1

i˛

34.

Example

Simplify 

 � 45i
 � 4511 26 � i

 � 451i˛

4 26 � i

 � 45i˛

24 � i

15i˛

7 � 3i˛

18 � 45i˛

25

15i˛

7 � 3i˛

18.

Example

Simplify 

 �
12
5

 i

 �
12
5

 11 22i

 �
12
5

 1i˛

4 22i

 �
12
5

 i˛

9

 60i˛

27 � 25i˛˛

18 �
60i˛˛

27

25i˛˛

18

60i˛

27 � 25i˛

18.

If the power of i in the numerator is lower than the power of i in the denominator then

we need to use the fact that i˛

4 � 1.

Example

Simplify 

 � �
3
2

 i

 �
3
2

 i˛

3

 �
3i˛

8

2i˛

5 since i˛

8 � 1i˛

4 22 � 1

 �
3

2i˛

5

 27i˛

20 � 18i˛

25 �
27i˛

20

18i˛

25

27i˛

20 � 18i˛

25.
This reminds us that
every fourth multiple
comes full circle.

Hence when performing these operations the answers should not involve powers of i.
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1 Add the following imaginary numbers.
a b

c d
2 Subtract the following imaginary numbers.

a

b

c

d

3 Multiply the following imaginary numbers giving the answer in the form n or ni
where 
a b

c d

e f

g

4 Divide the following imaginary numbers giving the answer in the form n or ni
where 

a b

c d

5 Find x if:

a b

6 Simplify these.

a b

c d

e
6i � 3i˛

2 � 2i˛

3

4i

3i˛

5 �
2i˛

6

6i˛

3

3i˛

4

2i
�

2i˛

5

i˛

2 �
3i
i˛

2

2i˛

3 � 3i˛

3 � 7i˛

4

3i
3i˛

3 � 6i˛

5 � 8i˛

7 � 2i˛

9

3 � 2i˛

2

i
� xixi � 3i˛

3 � 4i˛

5 � 2i

16 � i
15i˛

3

6i˛

2

6i˛

7 � 3i˛

315i˛

3 � 2i

n H �.

3i˛

2 � 5i˛

4 � 6i˛

5

7i˛

7 � 5i˛

59i2 � 8i˛

5

8i � 12i˛

415i˛

2 � 3i˛

3

4i � 8i16 � 15i
n H �.

25i � 31i � 16i � 62i

56i � 80i

38i � 23i

20i � 8i

15i � 45i5i � 70i � 35i � 2i

20i � 18i3i � 15i

Exercise 1

17.2 Complex numbers
A complex number is defined as one that has a real and an imaginary part. Examples
of these would be or 

They are generally written in the form where x and y can have any real value
including zero.

Hence 6 is a complex number since it can be written in the form and 5i is a
complex number since it can be written as 

Hence both real numbers and imaginary numbers are actually subsets of complex
numbers and the notation for this set is 

Thus we can say 

Adding and subtracting complex numbers
This is done by adding or subtracting the real parts and the imaginary parts in separate
groups.

3 � 5i H �.

�.

0 � 5i.
6 � 0i

z � x � iy

6 � 5i.2 � 3i

Example

Simplify 

 � 7 � 4i
 15 � 7i 2 � 12 � 3i 2 � 15 � 2 2 � 17i � 3i 2

15 � 7i 2 � 12 � 3i 2 .

Multiplication of complex numbers
This is done by applying the distributive law to two brackets and remembering that

It is similar to expanding two brackets to form a quadratic expression.i˛

2 � �1.

Example

Simplify 

 � 5 � 5i
 19 � 2i 2 � 14 � 7i 2 � 19 � 4 2 � 1�2i � �7i 2

19 � 2i 2 � 14 � 7i 2 .

Example

Simplify 

 � �12 � 5i
 � 61�1 2 � 9i � 4i � 6

 12i � 3 2 13i � 2 2 � 6i˛

2 � 9i � 4i � 6

12i � 3 2 13i � 2 2 .

We can also use the binomial theorem to simplify complex numbers.

Example

Simplify 

 � 37
 � 36 � 1�1 2

 16 � i 2 16 � i 2 � 36 � 6i � 6i � i˛

2

16 � i 2 16 � i 2 .

Example

Express in the form 

 � �597 � 122i
 � 243 � 4051�2i 2 � 2701�4 2 � 9018i 2 � 15116 2 � 132i 2
 � 243 � 4051�2i 2 � 27014i˛

2 2 � 901�8i˛

3 2 � 15116i˛

4 2 � 132i˛

5 2

5C˛313 2
21�2i 23 � 5C˛413 2

11�2i 24 � 5C˛513 2
01�2i 25�

 13 � 2i 25 � 5C˛013 2
51�2i 20 � 5C˛113 2

41�2i 21 � 5C˛213 2
31�2i 22

x � iy.13 � 2i 25



Zero complex number
A complex number is only zero if both the real and imaginary parts are zero, i.e. 

Equal complex numbers
Complex numbers are only equal if both the real and imaginary parts are separately
equal. This allows us to solve equations involving complex numbers.

0 � 0i.
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Division of complex numbers
Before we do this, we have to introduce the concept of a conjugate complex number.
Any pair of complex numbers of the form and are said to be conjugate
and is said to be the conjugate of 

If is denoted by z, then its conjugate is denoted by or 

Conjugate complex numbers have the property that when multiplied the result is real.
This was demonstrated in the example at the top of the page and the result in general is

To divide two complex numbers we use the property that if we multiply the numerator
and denominator of a fraction by the same number, then the fraction remains
unchanged in size. The aim is to make the denominator real, and hence we multiply
numerator and denominator by the conjugate of the denominator. This process is called
realizing the denominator. This is very similar to rationalizing the denominator of a
fraction involving surds.

 � x˛

2 � y˛

2

 � x˛

2 � 1�1 2y˛

2

 1x � iy 2 1x � iy 2 � x˛

2 � ixy � ixy � i2y˛

2

z*.zx � iyx � iy

x � iy.x � iy
x � iyx � iy

Note the similarity to
evaluating the difference
of two squares.

Example

Write in the form 

 �
1
5

�
8
5

 i

 �
1 � 8i

5

 �
4 � 8i � 3
4 � 1�1 2

 �
4 � 6i � 2i � 3i˛

2

4 � 2i � 2i � i˛

2

 
2 � 3i
2 � i

�
12 � 3i 2

12 � i 2
�
12 � i 2

12 � i 2

a � ib.
2 � 3i
2 � i

Example

Solve 

Equating the real parts of the complex number gives 
Equating the imaginary parts of the complex number gives y � �7.

x � 9.

 1 x � iy � 9 � 7i

 1 x � iy � 6 � 7i � 31�1 2

 1 x � iy � 6 � 2i � 9i � 3i˛

2

 x � iy � 13 � i 2 12 � 3i 2

x � iy � 13 � i 2 12 � 3i 2 .

This idea also allows us to find the square root of a complex number.

This can also be done in
a different way that will
be dealt with later in the
chapter.

Example

Find the values of in the form 

We now use the idea of equal complex numbers and equate the real and
imaginary parts.

Equating real parts 
Equating imaginary parts 
These equations can be solved simultaneously to find a and b.

If we substitute into we find

Ignoring the imaginary roots

Therefore

If we had used the imaginary values for a then

 1 b �
2
i
   or   b � �

2
i

 a � i    or    a � �i  

23 � 4i � 2 � i or �2 � i

 1 b � 1 or b � �1

 1 a � 2 or a � �2

 1 1a˛

2 � 4 2 1a˛

2 � 1 2 � 0

 1 a˛

4 � 3a˛

2 � 4 � 0

 a˛

2 � ¢2
a
≤2

� 3

a˛

2 � b˛

2 � 3b �
2
a

1 2ab � 4 1 ab � 2
1 a˛

2 � b˛

2 � 3

 1 3 � 4i � a˛

2 � b˛

2 � 2iab

 1 3 � 4i � a˛

2 � 2iab � i˛

2b˛

2

 1 123 � 4i 22 � 1a � ib 22

 Let 23 � 4i � a � ib

a � ib.23 � 4i

As with the square root
of a real number, there
are two answers and
one is the negative of
the other.

It is usually assumed
that a and b are real
numbers and we ignore
imaginary values for a
and b, but if we assume
they are imaginary the
same answers result.



Complex roots of a polynomial equation
We know from Chapter 4 that solving any polynomial equation with real coefficients
always involves factoring out the roots. Hence if any polynomial has complex roots these
will always occur in conjugate pairs. For a polynomial equation it is possible that some of
the roots will be complex and some will be real. However, the number of complex roots
is always even. Hence a polynomial of degree five could have:

• five real roots;
• three real roots and two complex roots; or
• one real root and four complex roots.

Having two real roots and three complex roots is not possible.

To find the roots we need to use long division.
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Complex roots of a quadratic equation
In Chapter 2 we referred to the fact that when a quadratic equation has the property

then it has no real roots. We can now see that there are two complex

conjugate roots.

b˛

2 � 4ac 6 0,

480

So

as before � 2 � i or �2 � i
 � i � 2i˛

2 or �i � 2i˛

2

 23 � 4i � i � i˛1�2i 2  or �i � i˛12i 2

 1 b � �2i  or  b � 2i
 1 b � 2i˛

3  or   b � �2i˛

3

 1 b �
2i˛

4

i
  or  b � �

2i˛

4

i
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Example

Solve the equation 

Using the quadratic formula 

 1 x � 1 � i23 or x � 1 � i23

 1 x �
2 ; 2i23

2

 1 x �
2 ; 2�12

2
�

2 ; 2�1212
2

 x �
2 ; 24 � 16

2

x˛

2 � 2x � 4 � 0.

Example

Form a quadratic equation which has a complex root of 
Since one complex root is the other root must be its complex conjugate.
Hence the other root is 
Thus the quadratic equation is

 1 x˛

2 � 4x � 5 � 0

 1 x˛

2 � 4x � 14 � 2i � 2i � i˛

2 2 � 0

 1 x˛

2 � 12 � i 2x � 12 � i 2x � 12 � i 2 12 � i 2 � 0

 3x � 12 � i 2 4 3x � 12 � i 2 4 � 0

2 � i.
2 � i

2 � i.

Example

Given that is a solution to the equation find

the other two roots.
Since one complex root is another complex root must be its conjugate.
Hence is a root.
Thus a quadratic factor of the equation is 

Using long division:

Hence 

1 z � �1, 2 � i, 2 � i

z˛

3 � 3z˛

2 � z � 5 � 1z � 1 2 1z˛

2 � 4z � 5 2 � 0

z � 1
1z˛

2 � 4z � 5 2 �z˛

3 � 3z˛

2 � z �5
� z˛

3 � 4z˛

2 � 5z

z̨ 2 � 4z� 5
� z̨2 � 4z� 5

0   

 1 z˛

2 � 4z � 5

 1 z˛

2 � 4z � 14 � 2i � 2i � i˛

2 2

 1 z˛

2 � 12 � i 2z � 12 � i 2z � 12 � i 2 12 � i 2

 3z � 12 � i 2 4 3z � 12 � i 2 4

2 � i
2 � i

z˛

3 � 3z˛

2 � z � 5 � 0,z � 2 � i

Many of the operations we have covered so far could be done on a calculator.

The sign in the 
formula ensures that the
complex roots of 
quadratic equations are
always conjugate.

;



1 Add these pairs of complex numbers.
a and 

b and 
c and 

d and 

e and 

2 Find 

a and 

b and 

c and 

d and 

3 Simplify these.

a b c

d e f

g h i

j k

4 Realize the denominator of each of the following fractions and hence express
each in the form 

a b c d

e f g h

i j

5 Express these in the form 

a b c d

6 Solve these equations for x and y.

a b c

d e f

g h i

j k

7 Find the real and imaginary parts of these.

a b c

d e f

g h i

j
x

1 � iy
�

3
4 � 3xi

3211 � i23 2 44¢cos 

p

3
� i sin 

p

3
≤2

13 � 2i 25

x
x � iy

�
x

x � iy
a

2 � ib
�

3
4 � ia

3 � i
2 � i

�
1

7 � 4i

3
2 � 5i

�
5

3 � 4i
3 � 7i

8 � 11i
16 � 5i 2 12 � 3i 2

x � iy � ¢ 2 � i
3 � 2i

≤2

� 15ix � iy � 6i˛

2 � 3i � 12 � i 22

x � iy �
2 � 7i
3 � 4i

� 21x � iy 22 � 15ix � iy � 12 � 5i 22

x � iy �
3i � 2
i � 4

x � iy � 6i˛

2 � 3ix � iy � 13 � 2i 22

x � iy � �3ix � iy � 8x � iy � 15 � 7i

1�1 � 3i 2813 � 4i 2511 � 2i 2311 � i 24

x � iy.

ix˛¢3x � iy

y � ix
≤2 � 5i

x � iy

i ˛¢3 � 4i
3 � i

≤2 � i
2 � i

x � iy

2x � iy
4 � 12i

2i

�5 � 4i
�2 � 5i

3 � 4i
5 � 2i

5i
2 � 3i

2
3 � i

a � bi.

i˛1m � 2i 2313 � i 21m � in 23
1x � iy 22111 � 2i 22i˛15 � 2i 2 112 � 5i 2

1a � bi 2 1a � bi 2115 � 9i 2 115 � 9i 219 � 5i 2 115 � 4i 2

i˛12 � 7i 215 � 3i 2 110 � i 213 � 2i 2 12 � 5i 2

v � �12 � 17iu � �5 � 4i

v � 17 � 4iu � �3 � 6i

v � 3 � 15iu � 16 � 7i

v � 2 � 13iu � 5 � 8i

u � v.

�3 � 29i�4 � 18i

6 � 14i8 � 7i

3 � 7i4 � 8i
13 � 16i5 � 12i

6 � 9i2 � 7i
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Example

Find 

16 � 6i 2 � 17 � 2i 2 � 13 � 4i

16 � 6i 2 � 17 � 2i 2 .

Example

Find 

or �3 � 2i25 � 12i � 3 � 2i

25 � 12i.

Example

Express in the form 

15 � 4i 27 � 4765 � 441 284i

x � iy.15 � 4i 27

Exercise 2

As with real numbers
the calculator only gives
one value for the square
root, unless the negative
square root is specified.
To find the second
square root, we find the
negative of the first.



As with a vector the complex number will usually have an arrow on it to signify the
direction and is often denoted by z.

On an Argand diagram the complex number can be represented by the vector

where A has coordinates (2, 9). However, since it is the line that represents the

complex number, the vectors and also represent the complex number 2 � 9i.DE
¡

BC
¡

OA
¡

2 � 9i
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8 Find the square roots of these.

a b c d

e f g h

i

9 Solve these equations.

a b c

d e
10 Form an equation with these roots.

a b c

d e f

11 Find a quadratic equation with the given root.

a b c d

12 Find a quartic equation given that two of its roots are and 

13 Given that is a root of the equation 

find the other two roots.

14 Find, in the form all the solutions of these equations.

a b

15 Given that express in the form where a and

b are real numbers.

16 Given that the complex number z and its conjugate satisfy the equation

find the possible values of z.

17 If express in its simplest form.

18 Let and be complex numbers. Solve the simultaneous equations

Give your answer in the form where 

19 If find z in the form where 

20 Consider the equation where p and q
are real numbers. Find the values of p and q.

21 If find z in the form where x, y H �.x � iy2z �
3

1 � 2i
� 4 � 3i,

41p � iq 2 � 2q � 3ip � 312 � 3i 2

x, y H �.x � iyz � 1 �
2

1 � i23
,

x, y H �.x � iy
 2z˛1 � iz˛2 � 3 � i
 z˛1 � 2z˛2 � 4

z˛2z˛1

2z �
39
z

z � 12 � 5i,

zz* � iz � 66 � 8i,

z*

a � ib,2z �
1
z

z � �2 � 7i,

z˛

3 � 6z � 20z˛

3 � z˛

2 � z � 15

a � ib,

z˛

3 � 5z˛

2 � 8z � 6 � 0,z � 1 � i

3 � 2i.2 � i

a � ib7 � 6i4 � 3i2 � 7i

5 � 2i, 5 � 2i, 3, �33 � 2i, 3 � 2i, 21 � 2i, 1 � 2i, 1

4 � 3i, 4 � 3i3 � i, 3 � i2 � 3i, 2 � 3i

21x � 4 2 1x � 1 2 � 31x � 7 23x˛

2 � 6x � 5 � 0

x˛

2 � 3x � 15 � 0x˛

2 � x � 1 � 0x˛

2 � 6x � 10 � 0

i ̨¢2 � i
4 � i

≤2

2i �
3 � 2i
1 � i

3 � i
4 � 3i

2 � i
3i

2 � 5i

12 � 13i4 � 3i1 � i�15 � 8i
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17.3 Argand diagrams
We now need a way of representing complex numbers in two-dimensional space and
this is done on an Argand diagram, named after the mathematician Jean-Robert
Argand. It looks like a standard two-dimensional Cartesian plane, except that real
numbers are represented on the x-axis and imaginary numbers on the y-axis.

Hence on an Argand diagram the complex number is represented as the vector 

For this reason it is known as the Cartesian form of a complex number.

¢2
5
≤.2 � 5i

O x

iy

2 � 5i

This is similar to the idea of position vectors and tied vectors introduced in Chapter 12.

x

iy
A C

O

2 � 9i

2 � 9i
z � 2 � 9i

B

D

E

Example

The complex numbers and where m and n are real

numbers, have the property 

a Find the values of m and n.
b Using these values of m and n, find the distance between the points which

represent and in the Argand diagram.

a

Equating real parts:

equation (i) 1 7m � 6n � 28

 
m
2

�
3n
7

� 2

 1

m
2

�
3n
7

� i˛¢m
2

�
4n
7
≤ � 2

 1

m˛11 � i 2

2
�

n˛13 � 4i 2

7
� 2

 1

m˛11 � i 2

11 � i 2 11 � i 2
�

n˛13 � 4i 2

13 � 4i 2 13 � 4i 2
� 2

 
m

1 � i
�

n
3 � 4i

� 2

z˛2z˛1

z˛1 � z˛2 � 2.

z˛2 �
n

3 � 4i
,z˛1 �

m
1 � i



Multiplication by i on the Argand diagram
Consider the complex number 

Hence

These are shown on the Argand diagram.

 1 iz � �y � ix

 iz � ix � i˛

2y

z � x � iy.
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Addition and subtraction on the Argand diagram
This is similar to the parallelogram law for vectors which was explained in Chapter 12.

Consider two complex numbers and represented by the vectors and OB
¡

.OA
¡

z˛2z˛1

486

Equating imaginary parts:

equation (ii)

Subtracting equation (ii) from equation (i): 

Substituting in equation (i): 

b From part a and 

These are shown on the Argand diagram.

Hence the distance between the points is 
D
¢6
7

�
8
7
≤2

� ¢� 
8
7

�
8
7
≤2

�
2260

7
.

z˛2 �
n˛13 � 4i 2

7
�

213 � 4i 2

7
z˛1 �

m˛11 � i 2

2
�

811 � i 2

7

m �
16
7

14n � 28 1 n � 2

 1 7m � 8n � 0

 
m
2

�
4n
7

� 0

x

iy

z1

z2

O

8
7

8
7� i

6
7

8
7� i
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A

B

C

z2

z1

z1�z1

z1 �z1
O x

If AC is drawn parallel to OB, then also represents We know from vectors that

Hence is represented by the diagonal 

Similarly 

Hence is represented by the diagonal BA
¡

.z˛1 � z˛2

1 BA
¡

� OA
¡

� OB
¡

OB
¡

� BA
¡

� OA
¡

OC
¡

.z˛1 � z˛2

OA
¡

� AC
¡

� OC
¡

.

z˛2.AC
¡

Example

Show and on an Argand diagram.

Let and and represent them on the diagram by the

vectors and respectively. Let C be the point which makes OABC a

parallelogram.

From the diagram it is clear that and 

and these two diagonals represent and respectively. This is

confirmed by the fact that and

z˛1 � z˛2 � 15 � 3i 2 � 12 � 5i 2 � 3 � 8i.

z˛1 � z˛2 � 15 � 3i 2 � 12 � 5i 2 � 7 � 2i

z˛1 � z˛2z˛1 � z˛2

BA
¡

� ¢5
3
≤ � ¢ 2

�5
≤ � ¢3

8
≤OC

¡

� ¢ 7
�2
≤

OB
¡

OA
¡

z˛2 � 2 � 5iz˛1 � 5 � 3i

15 � 3i 2 � 12 � 5i 215 � 3i 2 � 12 � 5i 2

x

iy

z1 � 5 � 3i

z2 � 2 � 5i

z1 � z2 � 3 � 8i

z1 � z2 � 7 � 2i

O

B

C

A

x

iy

Oy

y

x

x

B
A

iz � �y � ix z � x � iy

Considering this diagram the gradient of OA is and the gradient of OB is Since

the product of gradients is these two lines are perpendicular. Hence if

we multiply a complex number by i, the effect on the Argand diagram is to rotate the

vector representing it by 90° anticlockwise.

�1,

�
x
y
.

y

x



If we are asked to express a complex number given in Cartesian form in modulus-
argument form, then we proceed as follows.

If and 

Then

The modulus of a complex number is assumed positive and hence we can ignore the
negative square root.

Also

 1 u � arctan¢y
x
≤

 1 tan u �
y

x

y

x
�

r sin u
r cos u

cos2 u � sin2 u � 1 1 r � 2x˛

2 � y˛

2

 � r˛

21cos2 u � sin2 u 2

 x˛

2 � y˛

2 � r˛

2 cos2 u � r˛

2 sin2 u

y � r sin ux � r cos u
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Notation for complex numbers
So far we have only seen the representation of a complex number in Cartesian form,
that is However, there are two other forms which are very important.

Polar coordinate form

This is more commonly called the modulus-argument form or the mod-arg form. It
defines the complex number by a distance r from a given point and an angle radians
from a given line. Consider the diagram below.

u

x � iy.
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Example

If draw z and iz on an Argand diagram and state iz in the form

 � �4 � 3i

 iz � 3i � 4i˛

2

a � ib.
z � 3 � 4i,

x

iy

O

iz � �4 � 3i z � 3 � 4i

r

P

O

iy

r sin �

r cos �

�
x

represents the complex number has magnitude r and is inclined at an

angle of radians.

From the diagram and 

Thus

y � r sin u.x � r cos u

u

x � iy. OP
¡

OP
¡

x � iy � r˛1cos u � i sin u 2 .

This is the modulus-argument form of a complex number where the modulus is r and
the angle, known as the argument, is It is usual to give in radians. We sometimes
express this as 

If we are asked to express a complex number given in modulus-argument form in
Cartesian form, then we use the fact that and y � r sin u.x � r cos u

1r, u 2 .
uu.

Example

Express the complex number in Cartesian form.

Hence in Cartesian form the complex number is 23 � i.

 1 y � 2 sin 
p

6
� 1

 y � r sin u

 1 x � 2 cos 
p

6
� 23

 x � r cos u

¢2, 
p

6
≤

Example

Express in polar form.

Hence in polar form the complex number is 51cos 0.927 � i sin 0.927 2 .

 1 u � 0.927 p

 1 u � arctan¢4
3
≤

 1 u � arctan¢y
x
≤

 1 r � 232 � 42 � 225 � 5

 r � 2x˛

2 � y˛

2

3 � 4i

This leads us on to the problem of which quadrant the complex number lies in. From the

work done in Chapter 1 we know that has infinite solutions. To resolve

this problem, when calculating the argument in questions like this, it is essential to draw 

u � arctan ¢y
x
≤
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a sketch. Also, by convention, the argument always lies in the range This
is slightly different to the method used in Chapter 1 for finding angles in a given range.
We will demonstrate this in the example below.

�p 6 x 	 p.

17  Complex Numbers

490

x

iy

12
O

12 � 5i

�5

�

x

iy

5

O�12

�

�12 � 5i

Example

Express the following in modulus-argument form.

a

b

c
In all cases the modulus is the same since the negative signs do not have an effect.

In terms of the argument we will examine each case in turn.
a

From the diagram it is clear that the complex number lies in the fourth quadrant
and hence the argument must be a negative acute angle.

Hence in modulus-argument form the complex number is

b

From the diagram it is clear that the complex number lies in the second
quadrant and hence the argument must be a positive obtuse angle.

 u � arctan¢y
x
≤

i sin1�1.18 2 4 .13 3cos1�1.18 2 �

 1 u � �1.17 p

 1 u � arctan¢ 12
�5
≤

 u � arctan¢y
x
≤

 1 r � 2122 � 52 � 2169 � 13

 r � 2x˛

2 � y˛

2

�12 � 5i

�12 � 5i

12 � 5i

However, this is clearly in the wrong quadrant and hence to find the required
angle we need to add to this giving 

Hence in modulus-argument form the complex number is 

c

From the diagram it is clear that the complex number lies in the third quadrant
and hence the argument must be a negative obtuse angle.

However, this is clearly in the wrong quadrant and hence to find the required
angle we need to subtract from this giving 

Hence in modulus-argument form the complex number is 
i sin1�1.97 2 4 .13 3cos1�1.97 2 �

u � �1.96 pp

 1 u � 1.17 p

 1 u � arctan¢�12
�5
≤

 u � arctan¢y
x
≤

i sin11.97 2 4 .13 3cos11.97 2 �

u � 1.96 pp

 1 u � �1.17 p

 1 u � arctan¢�12
5
≤

x

iy

�5

O�12
�

�12 � 5i

Example

Express in polar form.

To do this we begin by expressing the complex number in Cartesian form, by
realizing the denominator.

Hence and 

 1 r �
B

9
5

� 1.34 p

 1 r˛

2 � ¢3
5
≤2

� ¢�6
5
≤2

r sin u � �
6
5

r cos u �
3
5

 �
3 � 6i

5

 
3

1 � 2i
�

311 � 2i 2

11 � 2i 2 11 � 2i 2

3
1 � 2i

This comes directly
from a calculator.



 1

z
r

� eiu
1 z � reiu

 1 ln 
z
r

� iu
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Exponential form

This is similar to the mod-arg form and is sometimes called the Euler form. A complex

number in this form is expressed as where r is the modulus and is the argument.

Hence becomes in exponential form.

To express Cartesian form in exponential form or vice versa, we proceed in exactly the
same way as changing between polar form and Cartesian form.

We will now show that polar form and exponential form are equivalent.

Let 

We now treat this as a variables separable differential equation.

When 

 1 ln z � ln r � iu

u � 0, z � r 1 ln r � ln c

 1 ln z � iu � ln c

 1 �1
z
 dz � � i du

 1 �1
z
 
dz
du

 du � � i du

 1

1
z
 
dz
du

� i

 1

dz
du

� iz

 1

dz
du

� ir˛1cos u � i sin u 2

 1

dz
du

� r˛1�sin u � i cos u 2

z � r˛1cos u � i sin u 2

5ei 
4p
35¢cos 

4p
3

� i sin 

4p
3
≤

ureiu
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From the diagram the complex number lies in the fourth quadrant and hence
the argument is a negative acute angle.

Hence 
3

1 � 2i
� 1.34 3cos1�1.11 2 � i sin1�1.11 2 4 .

 1 u � �1.10 p

 1 tan u � �2

 
r sin u
r cos u

�

�6
5
3
5

x

iy

�O

3
5

3
5

6
5� 6

5� i
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Example

Express in exponential form.

and 

From the diagram above the complex number lies in the second quadrant and
hence the argument is a positive obtuse angle.

From the calculator However, this is clearly in the wrong quadrant
and hence to find the required angle we need to add to this giving

1 �2 � 5i � 229e˛

1.95i

u � 1.95 p

p

u � �1.19 p

 1 tan u � �2.5

 
r sin u
r cos u

�
5

�2

 1 r � 229

 1 r˛

2 � 1�2 22 � 15 22
r sin u � 5r cos u � �2

�2 � 5i

�2

5�2 � 5i

�
O x

iy

Products and quotients in polar form
If and 

Remembering the compound angle formulae from Chapter 7

Hence if we multiply two complex numbers in polar form, then we multiply the moduli
and add the arguments.

1 z˛1z˛2 � ab 3cos1a � b 2 � i sin1a � b 2 4

 1 z˛1z˛2 � ab 3 1cos a cos b � sin a sin b 2 � i˛1sin a cos b � cos a sin b 2 4

 1 z˛1z˛2 � ab˛1cos a cos b � i sin a cos b � i cos a sin b � i˛

2 sin a sin b 2

 Then z˛1z˛2 � ab˛1cos a � i sin a 2 1cos b � i sin b 2

z˛2 � b˛1cos b � i sin b 2z˛1 � a˛1cos a � i sin a 2

and arg1z˛1z˛2 2 � arg z˛1 � arg z˛2�z˛1z˛2� � �z˛1� � �z˛2�

Similarly 
z˛1

z˛2
�

a
b

 3cos1a � b 2 � i sin1a � b 2 4 .

A calculator will also
give complex numbers
in exponential form if
required.

The standard notation
for the modulus of a
complex number z is 
and the standard 
notation for the 
argument of a complex
number z is arg (z).

�z�



1 If and using the
parallelogram law, represent these lines on an Argand diagram, showing
the direction of each line by an arrow.
a b c d e

2 Express these complex numbers in the form 

a b c d e 10 f 6i

3 Express these complex numbers in the form 
a b c d e 8 f 2i1 � 9i�2 � 7i�3 � 4i4 � 4i

reiu.

4 � 5i�5 � i�2 � 2i1 � i23

r˛1cos u � i sin u 2 .

z˛3 � z˛4z˛4 � z˛1z˛1 � z˛4z˛2 � z˛3z˛1 � z˛3

z˛4 � �5 � i,z˛1 � 1 � 2i, z˛2 � 2 � 4i, z˛3 � �4 � 3i
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Hence if we divide two complex numbers in polar form, then we divide the moduli and
subtract the arguments.
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Example

Let and 
a Find the product in the form 
b Find and in exponential form.

c Hence show that 

a

b For and 

The diagram shows the complex number lies in the fourth quadrant and
hence the argument is a negative acute angle.

For and 

 1 r � 210

 1 r˛

2 � 13 22 � 1�1 22
r sin u � �1z˛2, r cos u � 3

1 z˛1 � 25e˛

i1arctan1�1
222

 1 u � arctan¢�1
2
≤

 1 tan u � �
1
2

 
r sin u
r cos u

�
�1
2

 1 r � 25

 1 r˛

2 � 12 22 � 1�1 22
r sin u � �1z˛1, r cos u � 2

 � 5 � 5i

 � 6 � 2i � 3i � i˛

2

 z˛1z˛2 � 12 � i 2 13 � i 2

�
p

4
� arctan¢�1

2
≤ � arctan¢�1

3
≤.

z˛1z˛2z˛1, z˛2

x � iy.z˛1z˛2

z˛2 � 3 � i.z˛1 � 2 � i

x

iy

�1

O

2
�

2 � i

x

iy

�1

O
3

�

3 � i

and arg¢z˛1

z˛2
≤ � arg z˛1 � arg z˛22 z˛1

z˛2
2 � �z˛1�

�z˛2�

The diagram shows the complex number lies in the fourth quadrant and
hence the argument is a negative acute angle.

For and 

The diagram shows the complex number lies in the fourth quadrant and
hence the argument is a negative acute angle.

c Since 

�
p

4
� arctan¢�1

2
≤ � arctan¢�1

3
≤

arg1z˛1z˛2 2 � arg z˛1 � arg z˛2

 1 z˛1z˛2 � 522e�i 1p4 2

 1 u � �
p

4

 1 tan u � �1

 
r sin u
r cos u

�
�5
5

 1 r � 522

 1 r˛

2 � 15 22 � 1�5 22

r sin u � �5z˛1z˛2, r cos u � 5

1 z˛2 � 210e˛

i˛1arctan1�1
322

 1 u � arctan¢�1
3
≤

 1 tan u � �
1
3

 
r sin u
r cos u

�
�1
3

�5

5

5 � 5i

O x

iy

�

Exercise 3



15 a Find the modulus and argument of the complex number

b Shade the region in the Argand plane such that and

for any complex number 

c Determine if z lies in this region.


.
1
2

6 �
� 6 3

p

2
6 arg 
 6

3p
4

z �
122 � i 2 11 � i22 2

11 � i 22
.
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4 Express these in the form 

a b

c d

e f g h

5 If and find the modulus and argument of:

a b c 2mn d

6 Find the modulus and argument of each root of these equations.

a b c

7 a Express these complex numbers in exponential form.
i ii

iii iv
b Hence find the modulus and argument of:

i ii iii iv v

vi vii viii

8 a If and draw and on an Argand diagram.

b If and draw and on an Argand diagram.
c Write down the transformation which maps the line segment onto

the line segment 

9 a If and express and in polar form.

b Hence find the modulus and argument of and 

10 If and express and in the form 

Sketch an Argand diagram showing the points P representing the complex 

number and Q representing the complex number 

11 a Show that 

b Hence find the roots to the equation in the form 

c Let the two complex roots be denoted by and Verify that 

and 
12 a The two complex numbers and are represented on an Argand 

diagram. Show that 

b If and find:

i the greatest possible value of 

ii the least possible value of 

13 If where is real, show that 

14 a Find the solutions to the equation in modulus-

argument form.
b On the Argand diagram, the roots of this equation are represented by the

points P and Q. Find the angle POQ.

3z˛

2 � 4z � 3 � 0

1
1 � z

�
1
2

� i cot 
u

2
.uz � cos u � i sin u

�z1 � z2�.
�z1 � z2�

z˛2 � 12 � 5i,�z1� � 3

�z1 � z2� 	 �z1� � �z2�.
z˛2z˛1

z˛2 � z˛1
2.

z˛1 � z˛2
2z˛2.z˛1

x � iy.z˛

3 � 1

z˛

3 � 1 � 1z � 1 2 1z˛

2 � z � 1 2 .

106z˛1 � 39z˛2.

106z˛1 � 39z˛2

x � iy.z2z1z˛2 �
2 � i
3 � 2i

,z˛1 �
3 � i

2 � 7i

z˛1

z˛2
.z˛1z˛2

z˛2z˛1z˛2 � �1 � i,z˛1 � 2 � i23

z˛3z˛4.
z˛1z˛2

z˛4z˛3z˛4 � �iz˛2,z˛3 � �iz˛1

z˛2z˛1z˛2 � 2 � 3i,z˛1 � 3 � 5i

3z ˛3z ˛42 

z˛3

z˛4

z˛1

z˛4

z˛3

z˛2

z˛2

z˛4
z˛4z˛1z˛3z˛1z˛1z˛2

z˛4 � 1 � i23z˛3 � 24 � 7i

z˛2 � �3 � 4iz˛1 � 5 � 12i

z˛

2 � 4z � 7 � 0z˛

2 � 2z � 5 � 0z˛

2 � 3z � 7 � 0

4m
n

3m � 5n2m � n

n � 2 � i,m � 5 � 7i

219e�i 
3p
815e�i 

p
625ei 

2p
33ei 

3p
4

215¢cos¢� p
12
≤ � i sin¢� p

12
≤≤10¢cos¢�p

4
≤ � i sin¢�p

4
≤≤

25¢cos 

5p
6

� i sin 

5p
6
≤2¢cos 

p

3
� i sin 

p

3
≤

a � ib.
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17.4 de Moivre’s theorem
We showed earlier that 

Hence        

This is more often stated in polar form.

 z˛

n � r˛

neinu 1

 z˛

n � 1reiu 2n

z � reiu.

If then z˛

n � r˛

n1cos u � i sin u 2n � r˛

n1cos nu � i sin nu 2 .z � r˛1cos u � i sin u 2

This is de Moivre’s theorem.

An alternative proof of
de Moivre’s theorem,
using the method of
proof by induction, will
be shown in Chapter 18.

Example

Write in the form 

Using de Moivre’s theorem

 � cos p � i sin p

 � cos 5p � i sin 5p

 ¢cos 

p

3
� i sin 

p

3
≤15

� cos 

15p
3

� i sin 

15p
3

cos nu � i sin nu.¢cos 

p

3
� i sin 

p

3
≤15

Remember: The
argument of a complex
number lies in the
range �p 6 u 	 p.

Example

Write in the form 

 � 256¢cos 

2p
3

� i sin 

2p
3
≤

 � 256¢cos 

8p
3

� i sin 

8p
3
≤

 B2¢cos 

p

3
� i sin 

p

3
≤R8

� 28¢cos 

p

3
� i sin 

p

3
≤8

r˛1cos nu � i sin nu 2 .B2¢cos 

p

3
� i sin 

p

3
≤R8



This is an alternative way of finding multiple angles of sin and cos in terms of powers of
sin and cos.
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Example

Write in the form 

We know that and 

Hence

 � 1cos u � i sin u 2�
1
5

 cos 

u

5
� i sin 

u

5
� cos¢�u

5
≤ � i sin¢�u

5
≤

sin1�u 2 � �sin ucos1�u 2 � cos u

1cos u � i sin u 2n.cos 

u

5
� i sin 

u

5

Example

Simplify 

Since de Moivre’s theorem is used on expressions of the form 
we need to put all expressions in this form:

We now apply de Moivre’s theorem:

Since and 

� 41cos u � i sin u 2

sin1�u 2 � �sin ucos1�u 2 � cos u

 � 41cos1�u 2 � i sin1�u 2 2

 � 41cos u � i sin u 2�1

 
41cos u � i sin u 241cos u � i sin u 2�2

1cos u � i sin u 23

14 cos 4u � 4i sin 4u 2 1cos1�2u 2 � i sin1�2u 2 2

1cos 3u � i sin 3u 2

� i sin nu 2r˛1cos nu

14 cos 4u � 4i sin 4u 2 1cos 2u � i sin 2u 2

1cos 3u � i sin 3u 2
.

Example

Use de Moivre’s theorem to derive expressions for and in terms
of and 

From de Moivre’s theorem we know that

Using Pascal’s triangle or the binomial theorem, we find

By equating real parts we find 

And by equating imaginary parts we find � 4 cos u sin3 u.sin 4u � 4 cos3 u sin u

cos 4u � cos4 u � 6 cos2 u sin2 u � sin4 u.

 � cos4 u � 4i cos3 u sin u � 6 cos2 u sin2 u � 4i cos u sin3 u � sin4 u

4 cos u1i sin u 23 � 1i sin u 24�

 cos 4u � i sin 4u � cos4 u � 41cos3 u 2 1i sin u 2 � 61cos2 u 2 1i sin u 22

1cos u � i sin u 24 � cos 4u � i sin 4u

sin u.cos u
sin 4ucos 4u

Example

Using de Moivre’s theorem, show that where and

use the equation to solve 

Since we want we need expressions for and 
From de Moivre’s theorem we know that

Using Pascal’s triangle we find

By equating real parts we find 

And by equating imaginary parts we find 

If we now let 

Hence this equation can be solved using 

Hence the solutions to the equation are tan¢�p
4
≤, tan 

p

12
, tan 

5p
12

 1 u � �
p

4
, 
p

12
, 

5p
12

 1 3u � �
3p
4

, 
p

4
, 

5p
4

tan 3u � 1
 1 t˛

3 � 3t˛

2 � 3t � 1 � 0

 
3t � t˛

3

1 � 3t˛

2 � 1

tan 3u � 1

 1 tan 3u �
3t � t˛

3

1 � 3t˛

2

 1 tan 3u �

3 

sin u
cos u

�
sin3 u
cos3 u

cos3 u
cos3 u

� 3 

sin2 u
cos2 u

 Hence tan 3u �
sin 3u
cos 3u

�
3 cos2 u sin u � sin3 u
cos3 u � 3 cos u sin2 u

sin 3u � 3 cos2 u sin u � sin3 u.

cos 3u � cos3 u � 3 cos u sin2 u.

 � cos3 u � 3i cos2 u sin u � 3 cos u sin2 u � i sin3 u

 cos 3u� i sin 3u�cos3 u�31cos2 u 2 1i sin u 2�31cos u 2 1i sin u 22� 1i sin u 23

1cos u � i sin u 23 � cos 3u � i sin 3u

cos 3u.sin 3utan 3u

t˛

3 � 3t˛

2 � 3t � 1 � 0.

t � tan utan 3u �
3t � t˛

3

1 � 3t˛

2

Dividing numerator and
denominator by cos3 u

Letting t � tan u

Example

If using de Moivre’s theorem, show that 

Since and 
1
z

� cos u � i sin u

sin1�u 2 � �sin ucos1�u 2 � cos u
 � cos1�u 2 � i sin1�u 2

 
1
z

� z˛

�1 � 1cos u � i sin u 2�1

1
z

� cos u � i sin u.z �cos u� i sin u,

Since 
and i˛

4 � 1.
i˛

2 � �1, i˛

3 � �i

Since and
i˛

3 � �i

i˛

2 � �1

This now leads to four useful results.

If and by adding the two equations together

we find

1
z

� cos u � i sin u,z � cos u � i sin u
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z �
1
z

� 2 cos u

If we subtract the two equations we find

z �
1
z

� 2 sin u

This can be generalized for any power of z.

If then 

and 

Once again by adding and subtracting the equations we find

z˛

�n � 1cos u � i sin u 2�n � cos1�nu 2 � i sin1�nu 2 � cos nu � i sin nu.

z˛

n � 1cos u � i sin u 2n � cos nu � i sin nuz � cos u � i sin u,

and  z˛

n �
1
z˛

n � 2 sin nu

 z˛

n �
1
z˛

n � 2 cos nu

Important points to note

1. The roots are equally spaced around the Argand diagram. Thus for the square root 

they are apart. Generally for the nth root they are apart.

2. All the roots have the same moduli.

2p
n

p

Example

Using the result show that 

We know that 

Hence 

Hence

 1 sin3 u �
sin 3u � 3 sin u

4

 8 sin3 u � 2 sin 3u � 6 sin u

 � z˛

3 �
1
z˛

3 � 3¢z �
1
z
≤

 1 8 sin3 u � z˛

3 � 3z �
3
z

�
1
z˛

3

¢z �
1
z
≤3

� 12 sin u 23 � 8 sin3 u

z �
1
z

� 2 sin u

 sin3 u �
sin 3u � 3 sin u

4
.z˛

n �
1
z˛

n � 2 sin nu,

Method

1. Write the complex number in polar form.
2. Add to the argument then put it to the necessary power. This will allow us

to find multiple solutions.
3. Apply de Moivre’s theorem.
4. Work out the required number of roots, ensuring that the arguments lie in the

range Remember the number of roots is the same as the 
denominator of the power.

�p 6 u 	 p.

2np

Example

Find the cube roots of 
Step 1. Let 
Equating real and imaginary parts

The diagram shows the complex number lies in the first quadrant and hence the

argument is a positive acute angle.

Step 4. If we now let we will find the three solutions.

Hence 

These can be converted to the form 

12 � 2i 2
1
3 � �0.366 � 1.37i, 1.36 � 0.366i, �1 � i

x � iy.

8
1
6 ¢cos¢3p

4
≤ � i sin¢3p

4
≤≤

12 � 2i 2
1
3 � 8

1
6

˛¢cos¢�7p
12
≤ � i sin¢�7p

12
≤≤, 

n � �1, 0, 1

 Step 3. 12 � 2i 2
1
3 � 8

1
6

˛bcos¢ p
12

�
2np

3
≤ � i sin¢ p

12
�

2np
3
≤r

 Step 2. 12 � 2i 2
1
3 � 8

1
6

˛bcos¢p
4

� 2np≤ � i sin¢p
4

� 2np≤r
1
3

1 2 � 2i � 28¢cos 

p

4
� i sin 

p

4
≤

 1 u �
p

4

 1 tan u � 1

 
r sin u
r cos u

�
2
2

 1 r � 222 � 22 � 28

 1 r sin u � 2
 1 r cos u � 2

2 � 2i � r˛1cos u � i sin u 2
2 � 2i.

2

2O x

iy

�

2 � 2i

This calculation can also
be done directly on the
calculator.

Roots of complex numbers
Earlier in the chapter we found the square root of a complex number. We can also do
this using de Moivre’s theorem, which is a much more powerful technique as it will allow
us to find any root.



The fourth roots of unity will be:
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We can also use the exponential form to evaluate roots of a complex number.

17  Complex Numbers

502

Example

Find 

Step 1. Let 
Equating real and imaginary parts

The diagram shows the complex number lies in the fourth quadrant and hence
the argument is a negative acute angle.

Step 4. Clearly, if we let we will find three solutions, but does

or give the fourth solution? Since is negative, then using

takes the argument out of the range Hence we use

Thus 
These can be converted to the form 

11 � i 2
1
4 � �0.213 � 1.07i, 1.07 � 0.213i, 0.213 � 1.07i, �1.07 � 0.213i

x � iy.
11 � i 2

1
4 � 2

1
8e�i 

9p
16, 2

1
8e�i 

p
16, 2

1
8ei 

7p
16, 2

1
8ei 

15p
16

n � 2.

�p 6 x 	 p.n � �2

p

16
n � �2n � 2

n � �1, 0, 1

 Step 3. 11 � i 2
1
4 � 2

1
8ei1�p

16 �np
2 2

 Step 2. 11 � i 2
1
4 � 122ei1�p4 �2np2 2

1
4

1 1 � i � 22e�i 
p
4

 1 u � �
p

4

 1 tan u � �1

 
r sin u
r cos u

�
1

�1

 1 r � 212 � 1�1 22 � 22

 1 r sin u � �1
 1 r cos u � 1

1 � i � reiu

11 � i 2
1
4.

�1

1

1 � i

O x

iy

�

Roots of unity
We can find the complex roots of 1 and these have certain properties.

1. Since the modulus of 1 is 1, then the modulus of all roots of 1 is 1.
2. We know that the roots are equally spaced around an Argand diagram. Since one

root of unity will always be 1, we can measure the arguments relative to the real
axis.
Hence the cube roots of unity on an Argand diagram will be:

1

1

1
x

iy

2
3

2
3

2
3

�

�

�

1
�1 O x

iy

i

�i

3. Since the roots of unity are equally spaced and all have modulus 1, if we call one

complex root b, say, then for the cube roots of unity the other roots will be 1 and

Similarly for the fifth roots, if one complex root is b, then the other roots will be

and b˛

4.1, b˛

2, b˛

3

b˛

2.

Example

a Simplify 

b Hence factorise 
c If is a complex root of this equation, simplify:

i

ii

iii

iv

a

b

c

i Since 

ii Since and from part b

iii

Since 

iv

 � 1 � 


 1
 � 1 2 1
2 � 
 2 � 
3 � 
2 � 
2 � 



3 � 1, 
4 � 1 � 
 � 



4 � 
3 � 


1 � z � z˛

2 � 0, 1 � 
 � 
2 � 0z � 


z � 
, 
3 � 1

 1 1z � 1 2 11 � z � z˛

2 2 � 0

 z˛

3 � 1 1 z˛

3 � 1 � 0

 � 
3 � 1

 1
 � 1 2 11 � 
 � 
2 2 � 
 � 
2 � 
3 � 1 � 
 � 
2

1
 � 1 2 1
2 � 
 2


4

1 � 
 � 
2


3




z˛

3 � 1.

1
 � 1 2 11 � 
 � 
2 2 .

Again, this calculation
can also be done directly
on the calculator.



5 Without first calculating them, illustrate the nth roots of unity on an Argand
diagram where n is:
a 3 b 6 c 8 d 9

6 a Express the complex number 16i in polar form.
b Find the fourth roots of 16i in both polar form and Cartesian form.

7 a Write in polar form.

b Hence find the real and imaginary parts of 
8 Prove those trigonometric identities using methods based on de Moivre’s

theorem.

a

b where 

9 a Use de Moivre’s theorem to show that where 

b Use your result to solve the equation 

10 Let and Express 

in the form 

11 Let and 

a Write in modulus-argument form.

b Find r if 

12 Given that is a complex cube root of unity, and

simplify each of the expressions and

and find the product and the sum of these two expressions.

13 By considering the ninth roots of unity, show that:

14 a If show that and

b Hence show that:

i

ii

15 Consider 
a Find the root to this equation in the form which has the

smallest positive argument. Call this root 

b Find in modulus-argument form.

c Plot the points that represent on an Argand diagram.

d The point is mapped to by a composition of two linear

transformations. Describe these transformations.
16 a Show that satisfies the equation 

b Knowing that the three roots of the equation are equally spaced

around the Argand diagram and have equal modulii, write down the other

z˛

3 � i

z˛

3 � i.�i

z˛1
n�1z˛1

n

z˛1
2, z˛1

3, z˛1
4, z˛1

5, z˛1
6, z˛1

7

z˛1
2, z˛1

3, z˛1
4, z˛1

5, z˛1
6, z˛1

7

z˛1.
r˛1cos u � i sin u 2

z˛

7 � 128.

sin6 u �
1
32

 1�cos 6u � 6 cos 4u � 15 cos 2u � 10 2

cos4 u � sin4 u �
1
4

 1cos 4u � 3 2

2 sin nu.z˛

n �
1
z˛

n �

z˛

n �
1
z˛

n � 2 cos nuz � cos u � i sin u,

cos 

2p
9

� cos 

4p
9

� cos 

6p
9

� cos 

8p
9

� �
1
2

11 � 
 � 3
2 2

11 � 3
 � 
2 21 � 
 � 
2 � 0,


3 � 1


�z˛1z˛2
2� � 4.

z˛2

z˛2 � 3 � 4i.z˛1 � r¢cos 

p

3
� i sin 

p

3
≤

x � iy.

¢z˛1

z˛2
≤4

z˛2 � m¢cos 

p

3
� i sin 

p

3
≤.z˛1 � m¢cos 

p

6
� i sin 

p

6
≤

t˛

4 � 4t˛

3 � 6t˛

2 � 4t � 1 � 0.

t � tan u.
tan 4u �

4t � 4t˛

3

1 � 6t˛

2 � t˛

4

t � tan utan 6u � 2¢ 3 � 10t˛

2 � 3t˛

4

1 � 15t˛

2 � 15t˛

4 � t˛

6≤
sin 3u � 3 cos2 u sin u � sin3 u

11 � i23 216.

1 � i23
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1 Use de Moivre’s theorem to express each of these complex numbers in the
form 

a b c

d e f

g h i

j

2 Express each of these in the form 

a b

c d

e f

3 Simplify these expressions.
a

b

c

d

e

f

g

h

i

j

4 Use de Moivre’s theorem to find these roots.
a the square root of b the square root of 

c the cube roots of d the cube root of 

e the fourth roots of f the fifth roots of 

g the sixth roots of 23 � i

�5 � 12i3 � 4i

3 � 5i1 � i

�2 � 2i�5 � 12i

4

B
¢cos 

p

3
� i sin 

p

3
≤

¢cos 

p

8
� i sin 

p

8
≤5¢cos 

p

16
� i sin 

p

16
≤�2

¢cos 

p

8
� i sin 

p

8
≤4

¢cos 

p

4
� i sin 

p

4
≤5¢cos 

p

3
� i sin 

p

3
≤2

¢cos 

p

6
� i sin 

p

6
≤4

¢cos 

1
3

 u � i sin 

1
3

 u≤¢cos 

1
2

 u � i sin 

1
2

 u≤
1cos 4u � i sin 4u 2 1cos 7u � i sin 7u 2

1cos 10u � i sin 10u 2 1cos 2u � i sin 2u 2

1cos u � i sin u 2

1cos 4u � i sin 4u 2

1cos 5u � i sin 5u 2

1cos 8u � i sin 8u 2

1cos 5u � i sin 5u 2

1cos 2u � i sin 2u 2¢cos 

1
2

 u � i sin 

1
2

 u≤
1cos 3u � i sin 3u 2 1cos 5u � i sin 5u 2

cos 

1
8

 u � i sin 

1
8

 ucos 2u � i sin 2u

cos¢�1
4

 u≤ � i sin¢�1
4

 u≤6 cos1�3u 2 � 6i sin1�3u 2

4 cos 

1
2

 u � 4i sin 

1
2

 ucos 7u � i sin 7u

r˛1cos u � i sin u 2n.

¢cos 

p

5
� i sin 

p

5
≤

1
2

¢cos 

p

4
� i sin 

p

4
≤�5¢cos 

p

6
� i sin 

p

6
≤9¢cos 

p

3
� i sin 

p

3
≤6

341cos u � i sin u 2 4�
1
31cos u � i sin u 2

1
21cos u � i sin u 2�9

331cos u � i sin u 2 4�51cos u � i sin u 225321cos u � i sin u 2 410

r˛1cos nu � i sin nu 2 .
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Exercise 4



12 Given that find the values of a and b if
a a and b are real
b a and b are conjugate complex numbers.

13 Let 

a Show that 

[You may assume that for the purposes of differentiation and integration, i may
be treated in the same way as a real constant.]

b Hence show, using integration, that 
c Use this result to deduce de Moivre’s theorem.

d i Given that where use 

de Moivre’s theorem with to find the values of the constants a, b and c.

ii Hence deduce the value of [IB Nov 06 P2 Q5]

14 Given that z and are complex numbers, solve the simultaneous equations

expressing your solution in the form where a and b are real. [IB Nov 89 P1 Q20]

15 Let for 

a i Find using the binomial theorem.
ii Use de Moivre’s theorem to show that 

b Hence prove that 

c Given that find the exact value of [IB May 06 P2 Q2]

16 Consider the complex number 

a i Find the modulus of z.
ii Find the argument of z, giving your answer in radians.

b Using de Moivre’s theorem, show that z is a cube root of one, i.e. 

c Simplify expressing your answer in the form where a

and b are exact real numbers. [IB Nov 02 P2 Q2]

17 In this Argand diagram, a circle has centre the origin and radius 5, and the

line which is parallel to the imaginary axis has equation The complex 
number z corresponds to a point inside, or on, the boundary of the shaded region. 
Write down inequalities which Arg z and Re z must satisfy. (Re z means the real
part of z.)

�z�,

x � �2.

u �
p

3

a � bi,11 � 2z 2 12 � z˛

2 2 ,

z � 321.

z �

¢cos 

p

4
� i sin 

p

4
≤2¢cos 

p

3
� i sin 

p

3
≤3

¢cos 

p

24
� i sin 

p

24
≤4 .

tan 3u.sin u �
1
3

,

sin 3u � sin u
cos 3u � cos u

� tan u.

 sin 3u � 3 sin u � 4 sin3 u.

cos 3u � 4 cos3 u � 3 cos u and
z˛

3

�
p

4
6 u 6

p

4
.z � cos u � i sin u

a � bi

z � 
 � 11
iz � 5
 � 29




lim
uS0

 

sin 6u
sin u

.

n � 6

sin u � 0,
sin 6u
sin u

� a cos5 u � b cos3 u � c cos u,

y � eiu.

dy

du
� iy.

y � cos u � i sin u.

12 � 3i 2a � 3b � 2 � 5i,
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two roots, and of the equation in modulus-argument form. 

( lies in the second quadrant.)

c Find the complex number such that and 

17 The complex number z is defined by 

a Show that 

b Deduce that 

c Using the binomial theorem, expand 

d Hence show that giving

the values of a, b, c and d.

cos6 u � a cos 6u � b cos 4u � c cos 2u � d

1z � z˛

�1 26.

z˛

n �
1
z˛

n � 2 cos nu.

1
z

� cos1�u 2 � i sin1�u 2 .

z � cos u � i sin u.


z˛2 � �i.
z˛1 � z˛2


z˛1

z˛2,z˛1
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Review exercise

1 Find the modulus and argument of the complex number 

2 Find the real number k for which is a zero of the 

polynomial [IB Nov 00 P1 Q10]

3 If is a root of the equation find the values of a

and b.
4 If z is a complex number and find the value of 

[IB Nov 00 P1 Q18]
5 a Show that 

b Hence or otherwise, find 

6 Solve the equation for x and y, leaving your answers as 

rational numbers. [IB May 94 P1 Q15]
7 Find a cubic equation with real coefficients, given that two of its roots are 3

and 

8 If find the real part and the imaginary part of 

9 Given that where b is real and positive, find the exact value

of b when [IB May 01 P1 Q14]

10 a If find the modulus and argument of z.
b Hence find the modulus and argument of 
c i On an Argand diagram, point A represents the complex number 0 + i,

B represents the complex number z and C the complex number 
Draw these on an Argand diagram.

ii Calculate the area of triangle OBC where O is the origin.
iii Calculate the area of triangle ABC.

11 a Verify that 
b Hence or otherwise, find the cube roots of unity in the form 
c Find the cube roots of unity in polar form and draw them on an Argand

diagram.
d These three roots form the vertices of a triangle. State the length of each

side of the triangle and find the area of the triangle.

a � ib.
1z � 1 2 11 � z � z˛

2 2 � z˛

3 � 1.

z˛

2.

z˛

2.
z � 1 � i23 ,

arg z � 60°.

z � 1b � i 22,

z �
1
z
.z � x � iy,

1 � i23.

�i
x � iy

�
4 � 7i
5 � 3i

11 � i 264.

11 � i 24 � �4.

�z�.�z � 16� � 4�z � 1�,

z˛

2 � az � b,z � 1 � 2i

z˛

2 � kz � 5.

1 � ki, 1i � 2�1 2 ,

5 � 7i
1 � 2i
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(�5, 0)
�

(0, �5)

(5, 0)

(0, 5)

0

iy

x

x � �2



18 Let and where and 

a Express in the form where 

b For what values of k is a real number?

19 a Find all three solutions of the equation where z is a complex
number.

b If is the solution of the equation which has the smallest

positive root, show that 

c Find the matrix product giving your answer

in its simplest form (that is, not in terms of ).
d Solve the system of simultaneous equations

giving your answer in numerical form (that is, not 
in terms of ). [IB Nov 98 P2 Q4]

20 and are complex numbers on the Argand diagram relative to the 

origin. If show that and differ by 

21 a Find the two square roots of in the form where x and y
are real.

b Draw these on the Argand diagram, labelling the points A and B.

c Find the two possible points and such that triangles and
are equilateral.ABC˛2

ABC˛1C˛2C˛1

x � iy3 � 4i

p

2
.arg z˛2arg z˛1�z˛1 � z˛2� � �z˛1 � z˛2�,

z˛2z˛1




 x � 
2y � 
z � �3

 x � 
y � 
2z � �3

 x � y � z � 3




£
1 1 1
1 
 
2

1 
2 


≥£
1 1 1
1 
2 


1 
 
2

≥
1 � 
 � 
2 � 0.

z˛

3 � 1z � 


z˛

3 � 1

z



a, b H �.a � ib
z



i � 2�1.k H �
 � k � 7iz � 3 � ik
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Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji was born on 13 April 953 in
Baghdad, Iraq and died in about 1029. His importance the field of mathematics is
debated by historians and mathematicians. Some consider that he only reworked
previous ideas, while others see him as the first person to use arithmetic style
operations with algebra as opposed to geometrical operations.

In his work, Al-Fakhri, Al-Karaji succeeded in defining x, and 

and gave rules for finding the products of any pair without reference to geometry. He

was close to giving the rule 

but just failed because he did not define .

In his discussion and demonstration of this work Al-Karaji used a form of
mathematical induction where he proved a result using the previous result and
noted that this process could continue indefinitely. As we will see in this chapter,
this is not a full proof by induction, but it does highlight one of the major
principles.

Al-Karaji used this form of induction in his work on the binomial theorem,
binomial coefficients and Pascal’s triangle. The table shown is one that Al-Karaji
used, and is actually Pascal’s triangle in its side.

He also worked on the sums of the first n natural numbers, the squares of the first
n natural numbers and the cubes of these
numbers, which we introduced in Chapter 6.

x˛

0 � 1

x˛

n
˛x˛

m � x˛

m�n for all integers n and m

1
x

, 
1

x˛

2, 
1

x˛

3, px˛

2, x˛

3, p

18 Mathematical Induction

col 1 col 2 col 3 col 4 col 5

1

1

1

1

1 1 1 1

1

1

2

3

3

6

4

4

10

10

5

5

509



511

18.1 Introduction to mathematical
induction

Mathematical induction is a method of mathematical proof. Most proofs presented in
this book are direct proofs – that is proofs where one step leads directly from another to
the required result. However, there are a number of methods of indirect proof including
proof by contradiction, proof by contrapositive and proof by mathematical induction. In
this curriculum, we only consider proof by induction for positive integers.

Mathematical induction is based on the idea of proving the next step to be true if the
previous one is true. If the result is true for an initial value, then it is true for all values.
This is demonstrated by the following metaphor.

Consider a ladder that is infinite in one direction. We want to prove that the ladder is
completely safe, that is each rung on the ladder is sound.

18  Mathematical Induction

k + 1
k

3
2
1

First, test the bottom rung on the ladder and check that it is sound. Then assume that a
rung on the ladder, somewhere further up, is also sound. Call this the kth rung. Using
this assumption, show that the next rung up, the rung, is also sound if the
assumption is true. Since we know the first rung is sound, we can now say the second
one is sound. As the second one is sound, the third one is sound and so on. So the
whole ladder is safe.

1k � 1 2 th

Example

Prove that by mathematical 

induction.

We cannot use the standard results for and here as we are being

asked to prove it by mathematical induction.

1 For 

Since the result is true for n � 1.LHS � RHS,

 � �2

  � �2 � 3 � 5

  � 112 2 1�1 2 � 311 22 � 511 2

RHS � 111 � 1 2 11 � 2 2 LHS � a
1

r�1
3r˛

2 � 5r  

n � 1,

a
n

r�1
r˛

2
a
n

r�1
r

a
n

r�1
3r˛

2 � 5r � n˛1n � 1 2 1n � 2 2  ∀n H ��

Example

Prove by mathematical induction.

Remembering the meaning of this notation, we know that means that

we need to prove it is true for all positive integers, i.e. n � 1, n H �.

∀ n H ��

a
n

r�1
r �

n˛1n � 1 2

2
  ∀ n H ��
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1 Prove the result is true for 
It is important to show this very clearly (even though it is often obvious).

Since the result is true for 

2 Assume the result is true for 

i.e. 

3 Now consider the result for We want to show that

4 For 

which is the required form.

5 So the result is true for when true for Since the result is
true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 �
1k � 1 2 1k � 2 2

2

 �
k˛1k � 1 2 � 21k � 1 2

2

 �
k˛1k � 1 2

2
�

21k � 1 2

2

 �
k˛1k � 1 2

2
� 1k � 1 2

 a
k�1

r�1
r � a

k

r�1
r � 1k � 1 2

n � k � 1,

a
k�1

r�1
r �
1k � 1 2 1k � 1 � 1 2

2
�
1k � 1 2 1k � 2 2

2

n � k � 1.

a
k

r�1
r �

k˛1k � 1 2

2

n � k, k 7 1, k H �,

n � 1.LHS � RHS,

  � 1 � 1

RHS �
112 2

2
 LHS � a

1

r�1
r  

n � 1.
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Adding on the
term.1k � 1 2th

We are using the
assumption here.

This communication is
identical for virtually all
induction proofs. It is
worth learning its form.

Method for mathematical induction

1. Prove the result is true for an initial value (normally ).
2. Assume the result to be true for another value, stating this result.
3. Consider the case for writing down the goal – the required form.
4. Using the assumption, show that the result is then true for 
5. Communicate why this proves the result using mathematical induction.

n � k � 1.
n � k � 1,

n � k, k 7 1,
n � 1
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2 Assume the result to be true for 

i.e. 

3 Consider We want to show that

4 For 

which is the required form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � 1k � 1 2 1k � 2 2 1k � 1 2

 � 1k � 1 2 3k˛

2 � k � 2 4

 � 1k � 1 2 3k˛1k � 2 2 � 31k � 1 2 � 5 4

 � k˛1k � 1 2 1k � 2 2 � 31k � 1 22 � 51k � 1 2

 � a
k

r�1
13r˛

2 � 5r 2 � 31k � 1 22 � 51k � 1 2

a
k�1

r�1
3r˛

2 � 5r

n � k � 1,

a
k�1

r�1
3r˛

2 � 5r � 1k � 1 2 1k � 1 � 1 2 1k � 1 � 2 2 � 1k � 1 2 1k � 2 2 1k � 1 2

n � k � 1.

a
k

r�1
3r˛

2 � 5r � k˛1k � 1 2 1k � 2 2

n � k,
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Adding on the
term.1k � 1 2 th

We are using the
assumption here.

Example

Prove that by mathematical induction.

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

a
k�1

r�1
 

1
r˛1r � 1 2

�
k � 1

k � 1 � 1
�

k � 1
k � 2

n � k � 1.

a
k

r�1
 

1
r˛1r � 1 2

�
k

k � 1

n � k,

n � 1.LHS � RHS,

 �
1
2

 �
1
2

 �
1

112 2

 RHS �
1

1 � 1
 LHS � a

1

r�1

1
r˛1r � 1 2

n � 1,

a
n

r�1

1
r˛1r � 1 2

�
n

n � 1
 ∀n H ��
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4 For 

which is the required form.

5 So the result is true for when true for Since the result

is true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 �
k � 1
k � 2

 �
1k � 1 22

1k � 1 2 1k � 2 2

 �
k˛

2 � 2k � 1
1k � 1 2 1k � 2 2

 �
k˛1k � 2 2

1k � 1 2 1k � 2 2
�

1
1k � 1 2 1k � 2 2

 �
k

k � 1
�

1
1k � 1 2 1k � 2 2

 � a
k

r�1

1
r˛1r � 1 2

�
1

1k � 1 2 1k � 2 2

a
k�1

r�1
 

1
r˛1r � 1 2

n � k � 1,

Adding on the
term.1k � 1 2th

We are using the
assumption here.

Example

Prove that by mathematical induction.

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

4 For 

 �
3
2

 13k � 1 2 � 3k�1

 � a
k

r�1
3r � 3k�1

a
k�1

r�1
3r

n � k � 1,

a
k�1

r�1
3r �

3
2

 13k�1 � 1 2n � k � 1.

a
k

r�1
3r �

3
2

 13k � 1 2

n � k,

n � 1.LHS � RHS,

 � 3 � 3

 �
3
2

 12 2 � 31

 RHS �
3
2

 131 � 1 2 LHS � a
1

r�1
3r

n � 1,

a
n

r�1
3r �

3
2

 13n � 1 2∀n H ��

Adding on the
term.1k � 1 2 th

Using the
assumption.
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which is the required form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 �
3
2

 13k�1 � 1 2

 �
3
2

 13.3k � 1 2

 �
1
2

 19.3k � 3 2

 � 3k ¢9
2
≤ �

3
2

 � 3k ¢3
2

� 3≤ �
3
2

 �
3
2

# 3k �
3
2

� 3.3k
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It can be seen from these examples that sigma notation is very useful when proving a
result by induction.

Example

Prove that 

It is simpler to express the LHS using sigma notation. Hence the result becomes

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that

�
1
3

 1k � 1 2 1k � 2 2 1k � 6 2

a
k�1

r�1
r˛1r � 3 2 �

1
3

 1k � 1 2 1k � 1 � 1 2 1k � 1 � 5 2

n � k � 1.

a
k

r�1
r˛1r � 3 2 �

1
3

 k˛1k � 1 2 1k � 5 2

n � k,

n � 1.LHS � RHS,

 � 4

 �
1
3

 12 2 16 2 � 4

 RHS �
1
3

 11 2 11 � 1 2 11 � 5 2 LHS � a
1

r�1
11 2 11 � 3 2

n � 1,

a
n

r�1
r˛1r � 3 2 �

1
3

 n˛1n � 1 2 1n � 5 2 .

1.4 � 2.5 � 3.6 � p � n˛1n � 3 2 �
1
3

 n˛1n � 1 2 1n � 5 2  ∀n H ��.
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Prove these results by mathematical induction.

1 2

3 4

5 6

7 8

9 10

11

12

13

14

15

16

17 5 � 3 � 1 �p � 17 � 2n 2 � n˛16 � n 2

4 � 5 � 6 �p � 1n � 3 2 �
1
2

 n˛1n � 7 2

a
n

r�1

r
2r � 2 � ¢1

2
≤n

1n � 2 2

a
n

r�1

1
r˛1r � 1 2 1r � 2 2

�
n˛1n � 3 2

41n � 1 2 1n � 2 2

a
n

r�1
4r �

4
3

 14n � 1 2

a
n

r�1
12r 22 �

2
3

 n˛1n � 1 2 12n � 1 2

a
n

r�1
r˛1r � 1 2 1r � 2 2 �

1
4

 n˛1n � 1 2 1n � 2 2 1n � 3 2

a
n

r�1
r˛1r � 1 2 �

1
3

 1n � 1 2 1n � 2 2a
n

r�1
12r � 1 23 � n˛

212n˛

2 � 1 2

a
n

r�1
r˛

3 �
1
4

 n˛

21n � 1 22a
n

r�1
6 � 2r � r˛

2 � 6n˛141 � 3n � n˛

2 2

a
n

r�1
4r˛

2 � 3 �
4
3

 n˛14n˛

2 � 6n � 9 2a
n

r�1
8 � 3r �

1
2

 n˛11 � 3n 2

a
n

r�1
5r � 2 �

1
2

 n˛15n � 1 2a
n

r�1
3r � 4 �

11
2

 n˛13n � 1 2

a
n

r�1
2r � 1 � n˛

2
a
n

r�1
r˛

2 �
1
6

 n˛1n � 1 2 12n � 1 2

∀n H ��

Exercise 1

4 For 

which is the required form.

5 So the result is true for when true for Since the result

is true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 �
1
3

 1k � 1 2 1k � 2 2 1k � 6 2

 �
1
3

 1k � 1 2 3k˛

2 � 8k � 12 4

 �
1
3

 1k � 1 2 3k˛1k � 5 2 � 31k � 4 2 4

 �
1
3

 k˛1k � 1 2 1k � 5 2 � 1k � 1 2 1k � 4 2

 � a
k

r�1
r˛1r � 3 2 � 1k � 1 2 1k � 4 2

a
k�1

r�1
r˛1r � 3 2

n � k � 1,

Adding on the
term.1k � 1 2th

Using the
assumption.



Proof of the binomial theorem for positive integer
powers

Prove the binomial theorem, i.e. 

1 For 

Since the result is true for 

2 Assume the result to be true for 

3 Consider We want to show that 

4 For 

� ¢ k
r � 1

≤R1x˛

k�1�r
˛y˛ r 2 � p � B¢k

k
≤ � ¢ k

k � 1
≤Rxy˛ k � ¢k

k
≤y˛  k�1� B¢k

r
≤

 � ¢k
0
≤x˛

k�1 � B¢k
1
≤ � ¢k

0
≤Rx˛

k
˛y˛

1 � B¢k
2
≤ � ¢k

1
≤Rx˛

k�1
˛y˛

2 � p

� p � ¢k
k
≤x˛

0
˛y˛

k�1

 � ¢k
0
≤x˛

k
˛y˛

1 � ¢k
1
≤x˛

k�1
˛y˛

2 � ¢k
2
≤x˛

k�2
˛y˛

3 � p � ¢ k
r � 1

≤x˛

k�r�1
˛y˛ r � ¢k

r
≤x˛

k�r
˛y˛ r�1

� p � ¢k
k
≤x˛

1
˛y

 � ¢k
0
≤x˛ k�1

˛y˛ 0 � ¢k
1
≤x˛

k
˛y˛

1 � ¢k
2
≤x ̨k�1

˛y˛ 2 � p � ¢ k
r � 1

≤x˛

k�r
˛y˛ r�1 � ¢k

r
≤x˛

k�1�r
˛y˛ r

� ¢k
r
≤x˛

k�r
˛y˛

r � p � ¢k
k
≤x˛

0
˛y ̨kR

 � 1x � y 2B¢k
0
≤x˛

k
˛y˛ 0 � ¢k

1
≤x˛ k�1

˛y˛

1 � ¢k
2
≤x˛ k�2

˛y˛ 2 � p �  ¢ k
r � 1

≤x˛

k�r�1
˛y˛ r�1

 � 1x � y 2 a
k

r�0
¢k

r
≤x˛

k�r
˛y˛

r

 � 1x � y 2 1x � y 2 k

1x � y 2 k�1

n � k � 1,

1x � y 2 k�1 � a
k�1

r�0
¢k � 1

r
≤ x̨ k�1�r

˛y ̨rn � k � 1.

 1x � y 2 k

n � k, i.e.

n � 1.LHS � RHS,

 � x � y

 � ¢1
0
≤x˛

1
˛y˛ 0 � ¢1

1
≤x˛

0
˛y˛

1 � x � y

 RHS � a
1

r�0
¢1

r
≤x˛

1�r
˛y˛ r LHS � 1x � y 21

n � 1,

1x � y 2n � a
n

r�0
¢n

r
≤˛ x˛

n�r
˛y˛ r.
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18.2 Proving some well-known results
So far we have concentrated on proving results that involve sigma notation. However,
mathematical induction can be used to prove results from a variety of mathematical
spheres. These include results from calculus, complex numbers and matrices as well as
algebra.

In earlier chapters, it was stated that proofs would be provided using mathematical
induction for the binomial theorem and de Moivre’s theorem. In this syllabus,
knowledge of the proof of de Moivre’s theorem is expected but not for the binomial
theorem.

Proof of de Moivre’s theorem using mathematical
induction
This was proved in Chapter 17 using calculus, but this method must also be known.

Prove de Moivre’s theorem for all positive integers, i.e. 

1 For 

Since the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

which is the required form.

5 So the result is true for when true for Since the result is true for

it is true by mathematical induction.

This can be extended to negative integers by considering where m is a positive
integer.

n � �m

∀n H ��n � 1,

n � k.n � k � 1

 � cos1k � 1 2u � i sin1k � 1 2u
 � cos1u � ku 2 � i˛1sin1ku � u 2 2

 � cos u cos ku � sin u sin ku � i˛1sin ku cos u � sin u cos ku 2
 � cos u cos ku � i sin ku cos u � i sin u cos ku � i˛

2 sin u sin ku

 � 1cos u � i sin u 2 1cos ku � i sin ku 2
 � 1cos u � i sin u 2 1cos u � i sin u 2 k
1cos u � i sin u 2 k�1

n � k � 1,

1cos u � i sin u 2 k�1 � cos1k � 1 2u � i sin1k � 1 2u

n � k � 1.

1cos u � i sin u 2 k � cos ku � i sin kun � k,

n � 1.LHS � RHS,

 � cos u � i sin u � cos u � i sin u
 RHS � cos11u 2 � i sin11u 2 LHS � 1cos u � i sin u 21

n � 1,

� i sin nu1cos u � i sin u 2n � cos nu

18  Mathematical Induction

516

18

19

20 �4 � 0 � 6 � p � 1n � 2 2 1n � 3 2 �
1
3

 n˛1n˛

2 � 3n � 16 2

1.2 � 2.3 � 3.4 � p � n˛1n � 1 2 �
1
3

 n˛1n � 1 2 1n � 2 2

3 � 6 � 11 � p � 1n˛

2 � 2 2 �
1
6

 n˛12n˛

2 � 3n � 13 2

Substituting for k in
the result.

1k � 1 2

We are multiplying the result for

by

to get the result for n � k � 1.

1cos u � i sin u 2n � k

Using the assumption.

 � ¢k
0
≤x˛ k˛y ̨0 � ¢k

1
≤x˛ k�1

˛y˛

1 � ¢k
2
≤x ̨k�2

˛y˛ 2 � p � ¢k
r
≤x˛

k�r
˛y˛ r � p � ¢k

k
≤x˛ 0˛y˛ k� a

k

r�0
¢k

r
≤x˛ k�r

˛y˛ r
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We can now use the result that (which was proved in

Chapter 6).

So the general term becomes 

The expansion is therefore

which is the required form.

5 So the result is true for when true for Since the result is true for

it is true by mathematical induction.

We also use mathematical induction to prove divisibility. This is demonstrated in the
example below.

∀n H ��n � 1,

n � k.n � k � 1

� a
k�1

r�0
¢k � 1

r
≤ x˛

k�1�r
˛y ̨r

� ¢k � 1
k
≤ xy ̨k � ¢k � 1

k � 1
≤ y˛

k�1

¢k � 1
0
≤ x˛

k�1 � ¢k � 1
1
≤ x˛

k
˛y˛

1 � ¢k � 1
2
≤ x˛

k�1
˛y˛

2 � p � ¢k � 1
r
≤1x˛

k�1�r
˛y ̨r 2 � p

� ¢k � 1
r
≤ x˛

k�1�r
˛y ̨r

B¢k
r
≤ � ¢ k

r � 1
≤R1x˛

k�1�r
˛y ̨r 2

¢n
r
≤ � ¢ n

r � 1
≤ � ¢n � 1

r
≤
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Example

Prove that is divisible by 8 for 

This can be restated as 

1 For 

As 8 is a factor of 16, or the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

Since we can say that which is the required
form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

t � 9 p � 719p � 7 2 H �,

 � 819p � 7 2

 � 9.8p � 56

 � 9.8p � 63 � 7

 � 918p � 7 2 � 7

 � 9132k � 7 � 7 2 � 7

 � 9.32k � 7

 � 3232k � 7

321k�12 � 7 � 32k�2 � 7

n � k � 1,

321k�12 � 7 � 8t, t H �.n � k � 1.

32k � 7 � 8p, p H �.n � k,

n � 1.16 � 8 � 2,

 � 16

 32n � 7 � 32 � 7

n � 1,

32n � 7 � 8p, p H �.

n H ��.32n � 7

This allows us to 
use the assumption.

Example

Prove that for all using mathematical induction.

1 Notice here that the initial value is not 

For 

Since the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

We know that and so 

Hence which is the required form.
5 So the result is true for when true for Since the result

is true for it is true by mathematical induction.∀n � 3, n H �n � 3,
n � k.n � k � 1

2k�1
7 2k � 3

2k � 2k � 2 7 2k � 32k � 2 7 3, ∀k � 3

 � 2k � 2k � 2

 7 212k � 1 2

� 2.2k2k�1

n � k � 1,

 1 2k�1
7 2k � 3

 2k�1
7 21k � 1 2 � 1n � k � 1.

2k
7 2k � 1.n � k, k 7 3,

n � 3.LHS 7 RHS,

 � 7 � 8

 RHS � 213 2 � 1 LHS � 23

n � 3,

n � 1.

n � 3, n H �2n
7 2n � 1

Using the assumption.

Induction can also be used to prove results from other spheres of mathematics such as
calculus and matrices.

There are other algebraic results that we can prove using mathematical induction, as
exemplified below.

Example

Prove that 

1 For 

We know the LHS is equal to 1 as the gradient of is 1. However, we
should prove this by differentiation by first principles as part of a proof.
Let 

 � 1

 �
h
h

�
x � h � x

h

f1x � h 2 � f1x 2

h

f1x 2 � x

y � x

 � 1

 � x˛

0 � 1

 RHS � 11 2x˛

1�1 LHS �
d
dx

 1x˛

1 2

n � 1,

d
dx

 1x˛

n 2 � nx˛

n�1, ∀n H ��.
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Hence 

Since the result is true for 

2 Assume the result to be true for i.e. 

3 Consider We want to show that 

4 For 

which is the required form.

5 So the result is true for when true for Since the result is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � x˛

k11 � k 2

 � x˛

k � kx˛

k

 � 1.x˛

k � x.kx˛

k�1

�
d
dx

 1x.x˛

k 2
d
dx

 1x˛

k�1 2

n � k � 1,

d
dx

 1x˛

k�1 2 � 1k � 1 2x˛

k.n � k � 1.

d
dx

 1x˛

k 2 � kx˛

k�1

n � k,

n � 1.LHS � RHS,

lim
hS0

 

f1x � h 2 � f1x 2

h
� 1

Using the product rule 
and the assumption.

Example

Prove that using mathematical induction.

1 For 

Since the result is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

4 For 

 � ¢1 �1
0 1

≤ ¢1 �1
0 1

≤k

¢1 �1
0 1

≤k�1

n � k � 1,

� ¢1 �1k � 1 2
0 1

≤ .¢1 �1
0 1

≤k�1

n � k � 1.

¢1 �1
0 1

≤k

� ¢1 �k
0 1

≤
n � k,

n � 1.LHS � RHS,

 � ¢1 �1
0 1

≤
 LHS � ¢1 �1

0 1
≤1

n � 1,

¢1 �1
0 1

≤n

� ¢1 �n
0 1

≤ ∀n H ��

RHS � ¢1 �1
0 1

≤

which is the required form.

5 So the result is true for when true for Since the result

is true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � ¢1 �1k � 1 2
0 1

≤

 � ¢1 � 0 �k � 1
0 � 0 0 � 1

≤

 � ¢1 �1
0 1

≤ ¢1 �k
0 1

≤ Using the assumption.
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Prove these results using mathematical induction.

1 Prove that is divisible by 7, 

2 Prove that is divisible by 4, 

3 Prove that is divisible by 4, 

4 Prove that is divisible by 64, 

5 Prove that is divisible by 10, 

6 Prove that is divisible by 24, 

7 Prove that for 

8 Prove that for 

9 Prove that for 

10 Find the smallest integer t for which 

Hence prove by induction that for all 

11 For prove that 

12 Prove that 

13 Prove that for all positive integer

values of n.

14 For prove that

15 For prove that T ̨n � £4n
a
n

r�1
4r�1

0 1
≥, ∀n H ��.T � ¢4 t

0 1
≤,

M˛

n � §
1 211 � p˛

n 2

1 � p
0

0 p˛

n 0
0 0 3n

¥, ∀n H ��.M � £
1 2 0
0 p 0
0 0 3

≥,

d˛

n

dx˛

n  1sin 2x 2 � 2n�1 sin¢2x �
1n � 1 2p

2
≤,

d˛

n

dx˛

n  1e˛

px 2 � p˛

n
˛e˛

px, ∀n H ��.

A˛

n � ¢ 2n 0
2n � 1 1

≤ ∀n H ��.A � ¢2 0
1 1

≤,
n 7 t.n! 7 3n

n! 7 3n.

n � 10, n H ��.2n
7 n˛

3,

n � 4, n H ��.n! 7 n˛

2,

n � 4, n H ��.n! 7 2n,

∀n H ��.n˛1n˛

2 � 1 2 13n � 2 2

∀n H ��.6n � 4

∀n H ��.9n � 8n � 1

∀n H ��.5n � 3

∀n H ��.32n � 5

∀n H ��.23n � 1

Exercise 2
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18.3 Forming and proving conjectures
For all of the examples met so far, the result to be proved was given in the question. This
is not always the case; sometimes, it is necessary to form a conjecture which can then be
proved using mathematical induction.
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Example

Form a conjecture for the sum 

In order to form the conjecture, consider the results for the first few values of n.

1
1 � 2

�
1

2 � 3
�

1
3 � 4

� p �
1

n˛1n � 1 2
.

n 1 2 3 4 5

sum
4
5

�
1
30

�
5
6

3
4

�
1
20

�
4
5

2
3

�
1
12

�
3
4

1
2

�
1
6

�
2
3

1
2

Looking at the pattern, we can make a conjecture that

We now try to prove this conjecture using mathematical induction.

This can be expressed as 

1 For 

Since the conjecture is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

4 For 

 �
k˛1k � 2 2

1k � 1 2 1k � 2 2
�

1
1k � 1 2 1k � 2 2

 �
k

k � 1
�

1
1k � 1 2 1k � 2 2

 � a
k

r�1

1
r˛1r � 1 2

�
1

1k � 1 2 1k � 2 2

a
k�1

r�1

1
r˛1r � 1 2

n � k � 1,

�
k � 1
k � 2

.a
k�1

r�1

1
r˛1r � 1 2

�
k � 1

k � 1 � 1

n � k � 1.

a
k

r�1

1
r˛1r � 1 2

�
k

k � 1

n � k,

n � 1.LHS � RHS,

 �
1
2

 �
1
2

 �
1

1 � 2

 RHS �
1

1 � 1
 LHS � a

1

r�1

1
r˛1r � 1 2

n � 1,

a
n

r�1

1
r˛1r � 1 2

.

1
1 � 2

�
1

2 � 3
�

1
3 � 4

� p �
1

n˛1n � 1 2
�

n
n � 1

Using the assumption.

which is the required form.

5 So the conjecture is true for when true for Since it is

true for it is true by mathematical induction.∀ n H ��n � 1,

n � k.n � k � 1

 �
k � 1
k � 2

 �
1k � 1 22

1k � 1 2 1k � 2 2

 �
k˛

2 � 2k � 1
1k � 1 2 1k � 2 2

 �
k˛1k � 2 2 � 1

1k � 1 2 1k � 2 2

Example

Form a conjecture for the pentagonal numbers as shown below. Prove your
conjecture by mathematical nduction.

So the sequence of pentagonal numbers begins 1, 5, 12, 22, 35,

Remembering that these are formed by adding “a new layer” each time, we
can consider this as a sum,

We are trying to find a formula for this. This is an arithmetic progression and
so we can apply the formula for the sum to n terms with 

Hence 

Again, our conjecture can be expressed using sigma notation: 

1 For 

Since the conjecture is true for n � 1.LHS � RHS,

 � 1 � 1

 �
3 � 1

2
 � 3 � 2

 RHS �
3112 2 � 1

2
 LHS � a

1

r�1
3r � 2

n � 1,

�
3n˛

2 � n
2a

n

r�1
3r � 2

 �
3n˛

2 � n
2

 �
n
2

 13n � 1 2

 S˛n �
n
2

 12 � 31n � 1 2 2

a � 1, d � 3.

1 � 4 � 7 � 10 � p � 13n � 2 2

p

1 5 2212
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2 Assume the result to be true for 

i.e. 

3 Consider We want to show that

4 For 

which is the required form.

5 So the conjecture is true for when true for Since it is

true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 �
3k˛

2 � 5k � 2
2

 �
3k˛

2 � k
2

�
6k � 2

2

 �
3k˛

2 � k
2

� 3k � 1

 � a
k

r�1
3r � 2 � 31k � 1 2 � 2

a
k�1

r�1
3r � 2

n � k � 1,

 �
3k˛

2 � 5k � 2
2

 �
3k˛

2 � 6k � 3 � k � 1
2

 a
k�1

r�1
3r � 2 �

31k � 1 22 � 1k � 1 2

2

n � k � 1.

a
k

r�1
3r � 2 �

3k˛

2 � k
2

n � k,

Using the assumption.

Example

For the matrix form a conjecture for Prove your

conjecture by mathematical induction.

To form the conjecture, find the results for the first few values of n.

From this we can make a conjecture that A˛

n � ¢3n 0
0 2n≤.

 A˛

4 � ¢81 0
0 16

≤

 A˛

3 � ¢27 0
0 8

≤

 A˛

2 � ¢9 0
0 4

≤

 A � ¢3 0
0 2

≤

A˛

n, n H ��.A � ¢3 0
0 2

≤,

We can now prove this using mathematical induction.

1 For 

Since the conjecture is true for 

2 Assume the result to be true for 

i.e. 

3 Consider We want to show that 

4 For 

which is the required form.

5 So the conjecture is true for when true for Since the 

conjecture is true for it is true by mathematical induction.∀n H ��n � 1,

n � k.n � k � 1

 � ¢3k�1 0
0 2k�1≤

 � ¢3.3k � 0 0 � 0
0 � 0 0 � 2.2k≤

 � ¢3 0
0 2

≤˛ ¢3k 0
0 2k≤

� ¢3 0
0 2

≤ ˛¢3 0
0 2

≤k¢3 0
0 2

≤k�1

n � k � 1,

¢3 0
0 2

≤k�1

� ¢3k�1 0
0 2k�1≤.n � k � 1.

¢3 0
0 2

≤k

� ¢3k 0
0 2k≤

n � k,

n � 1.LHS � RHS,

 � ¢3 0
0 2

≤                   � ¢3 0
0 2

≤

 LHS � ¢3 0
0 2

≤1

                  RHS � ¢31 0
0 21≤

n � 1,
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Using the assumption.

1 For the matrix form a conjecture for Prove your conjecture

using mathematical induction.

2 Form a conjecture for the sum Prove
your conjecture using mathematical induction.

3 Form a conjecture for the series suggested by the initial values of 
Prove your conjecture by mathematical

induction.

4 With an unlimited supply of 4p and 7p stamps, make a conjecture about
what values >17 of postage it is possible to create. Prove your conjecture
using mathematical induction.

5 Make a conjecture about the sum of the first n odd numbers. Prove your 
conjecture using mathematical induction.

� 9 � 13 � 17 � p .�3 � 1 � 5

5 � 8 � 11 � 14 � p  � 13n � 2 2 .

D˛

n.D � ¢1 1
0 2

≤,

Exercise 3



12 Using mathematical induction, prove that for all

positive integers. [IB May 05 P2 Q4]

13 The function f is defined by where 

a Show that 

b Let denote the result of differentiating f(x) with respect to x, 

n times. Use mathematical induction to prove that

[IB May 05 P2 Q2]

14 For prove that 

using mathematical induction. [IB May 06 P2 Q5]

15 Consider the sequence where 

and for all integers 

Given the matrix, use the principle of mathematical induction

to prove that for all integers 

[IB Nov 01 P2 Q4]

16 The matrix M is defined as 

a Find and 

b i State a conjecture for i.e. express in terms of n, where 
ii Prove this conjecture using mathematical induction.

[IB Nov 02 P2 Q1]

n H ��.M˛

nM˛

n,

M˛

4.M˛

2, M˛

3

M � ¢2 �1
1 0

≤.

n � 2.Q˛

n � ¢a˛n�1 a˛n

a˛n a˛n�1
≤

Q � ¢1 1
1 0

≤
n � 2.a˛n�1 � a˛n � a˛n�1

a˛1 � a˛2 � 15a˛n6, 51, 1, 2, 3, 5, 8, 13, p 6

T˛ n � £
1�1 2n 2n � 1�1 2n 0

0 2n 0
0 0 s˛

n

≥, n H ��T � £
�1 3 0
0 2 0
0 0 s

≥,

f˛

1n2 1x 2 � p˛

n�1e˛

px1p˛1x � 1 2 � n 2 , n H ��.

f˛

1n2 1x 2

f'1x 2 � e˛

px1p˛1x � 1 2 � 1 2 .

p H �.f1x 2 � e˛

px
˛1x � 1 2 ,

a
n

r�1
1r � 1 22r�1 � n˛12n 2
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1 Prove that 

2 Prove that is divisible by 5, 

3 Prove that is divisible by 133.

4 Prove, using mathematical induction, that 

5 Prove, using mathematical induction, that for 

6 Prove, using mathematical induction, that 

7 Prove that 

8 Form a conjecture for the sum 
Prove your conjecture by mathematical induction.

9 Using mathematical induction, prove that for all

positive integer values of n. [IB May 01 P2 Q4]

10 a Prove using mathematical induction that for all
positive integer values of n.

b Determine whether or not this result is true for 

[IB May 02 P2 Q3]

11 Prove, using mathematical induction, that for a positive integer n,

where [IB May 03 P2 Q3]i˛

2 � �1.1cos u � i sin u 2n � cos nu � i sin nu

n � �1.

¢2 1
0 1

≤n

� ¢2n 2n � 1
0 1

≤

d˛

n

dx˛

n  1cos x 2 � cos˛¢x �
np
2
≤,

1 � 1! � 2 � 2! � 3 � 3! � p � n � n!.

sin u � sin 3u � p � sin12n � 1 2u �
sin2 nu
sin u

, ∀ n H ��.

�
12n 2!

n!
, ∀ n H ��.2 # 6 # 10 # 14 # p # 14n � 2 2

T˛ n � ¢ 2n 0
p˛12n � 1 2 1

≤, ∀ n H ��.

T � ¢2 0
p 1

≤,
∀ n H ��.

d˛

n

dx˛

n  1xe˛

px 2 � p˛

n�1e˛

px1px � 1 2 , 

∀ n H ��, 11n�1 � 122n�1

∀ n H ��.n˛

5 � n

a
n

r�1
r˛ 4 �

1
30

 n˛1n � 1 2 12n � 1 2 13n˛

2 � 3n � 1 2 , ∀n H ��.
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6 Find an expression for the nth term of the sequence 
Prove this result to be true using mathematical induction.

7 For the sequence below where each new pattern is made by adding a new
“layer”, make a conjecture for the number of dots in the nth term of the
pattern. Prove this result to be true using mathematical induction.

5, 10, 17, 26, 37, p .

5 8 13 20 29
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19.1 Frequency tables
Introduction
Statistics involves the collection, display and interpretation of data. This syllabus
concentrates on the interpretation of data. One of the most common tools used to
interpret data is the calculation of measures of central tendency. There are three
measures of central tendency (or averages) which are presumed knowledge for this
syllabus, the mean, median and mode.

The mean is the arithmetic average and is defined as  where n is the number

of pieces of data.

The median is in the middle of the data when the items are written in an ordered list.
For an odd number of data items in the data set, this will be a data item. For an even
number of data items, this will be the mean of the two middle data items. The median

is said to be the data item.

The mode is the most commonly occurring data item.

Definitions

When interpreting data, we are often interested in a particular group of people or
objects. This group is known as the population. If data are collected about all of these
people or objects, then we can make comments about the population. However, it is not
always possible to collect data about every object or person in the population.

A sample is part of a population. In statistical enquiry, data are collected about a
sample and often then used to make informed comment about that sample and the
population. For the comment to be valid about a population, the sample must be
representative of that population. This is why most samples that are used in statistics
are random samples. Most statistics quoted in the media, for example, are based on
samples.

Types of data

Data can be categorized into two basic types: discrete and continuous. The distinction
between these two types can be thought of as countables and uncountables.

Discrete data are data that can only take on exact values, for example shoe size,
number of cars, number of people.

Continuous data do not take on exact values but are measured to a degree of
accuracy. Examples of this type of data are height of children, weight of sugar.

The distinction between these two types of data is often also made in language. For
example, in English the distinction is made by using “fewer” or “less”. The sentence
“there are fewer trees in my garden than in David’s garden” is based on discrete data,
and the sentence “there is less grass in David’s garden than in my garden” is based on
continuous data.

It is important to understand and be aware of the distinction as it is not always
immediately obvious which type of data is being considered. For example, the weight of
bread is continuous data but the number of loaves of bread is discrete data.

One way of organizing and summarizing data is to use a frequency table. Frequency
tables take slightly different forms for discrete and continuous data. For discrete data, a
frequency table consists of the various data points and the frequency with which they
occur. For continuous data, the data points are grouped into intervals or “classes”.

n � 1
2

 th

x �
a x

n
,

19  Statistics

529528

One of the most famous quotes about
statistics, of disputed origin, is “Lies,
damned lies and statistics”.This joke
demonstrates the problem quite
succinctly:
Did you hear about the statistician who drowned
while crossing a stream that was, on average,
6 inches deep?

Statistics is concerned with displaying
and analysing data.Two early forms of
display are shown here.The first pie
chart was used in 1801 by William
Playfair.The pie chart shown was used
in 1805.

The first cumulative frequency curve,
a graph that we will use in this chapter, was used by Jean Baptiste Joseph Fourier in
1821 and is shown below.
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Frequency tables for discrete data
The three examples below demonstrate the different ways that frequency tables are
used with discrete data.
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Example

Ewan notes the colour of the first 20 cars passing him on a street corner.
Organize this data into a frequency table, stating the modal colour.

We use tallies to help
us enter data into a
frequency table.

Blue Black Silver Red Green

Silver Blue Blue Silver Black

Red Black Blue Silver Blue

Yellow Blue Silver Silver Black

The colour of cars noted by Ewan

Colour of car Tally Frequency

Black 4

Blue 6

Green 1

Red 2

Silver 6

Yellow 1

Total 20

�
���� �
��
�
���� �
����

From this frequency table, we can see that there are two modes: blue and silver.

As these data are not
numerical it is not
possible to calculate the
mean and median.

Example

Laura works in a men’s clothing shop and records the waist size (in inches) of
jeans sold one Saturday. Organize this data into a frequency table, giving the
mean, median and modal waist size.

30 28 34 36 38 36 34 32 32 34

34 32 40 32 28 34 30 32 38 34

30 28 30 38 34 36 32 32 34 34

These data are discrete and the frequency table is shown below.

Waist size (inches) Tally Frequency

28 3

30 4

32 7

34 9

36 3

38 3

40 1

Total 30

�
���
���
���� ����
���� ��
����
���

Waist size (inches) Tally Frequency Cumulative 
frequency

28 3 3

30 4 7

32 7 14

34 9 23

36 3 26

38 3 29

40 1 30

Total 30

�
���
���
���� ����
���� ��
����
���

It is immediately obvious that the data item with the highest frequency is 34
and so the modal waist size is 34 inches.
In order to find the median, we must consider its position. In 30 data items,
the median will be the mean of the 15th and 16th data items. In order to find
this, it is useful to add a cumulative frequency column to the table. Cumulative
frequency is another name for a running total.

From the cumulative frequency column, it can be seen that the 15th and 16th
data items are both 34 and so the median waist size is 34 inches.

In order to find the mean, it is useful to add a column of to
save repeated calculation.

data � frequency

Waist size (inches) Tally Frequency

28 3 84

30 4 120

32 7 224

34 9 306

36 3 108

38 3 114

40 1 40

Total 30 996

�
���
���
���� ����
���� ��
����
���

Size : frequency

The mean is given by So the mean waist size is

33.2 inches.

x �
a x

n
�

996
30

� 33.2.
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Discrete frequency tables can also make use of groupings as shown in the next example.

The groups are known as class intervals and the range of each class is known as its
class width. It is common for class widths for a particular distribution to be all the same
but this is not always the case.

The upper interval boundary and lower interval boundary are like the boundaries used in
sigma notation. So, for a class interval of 31–40, the lower interval boundary is 31 and
the upper interval boundary is 40.



So the mean is (to 1 decimal place).

Again, this value for the mean is only an estimate.

Frequency tables for continuous data
Frequency tables for continuous data are nearly always presented as grouped tables. It is
possible to round the data so much that it effectively becomes a discrete distribution,
but most continuous data are grouped.

The main difference for frequency tables for continuous data is in the way that the class
intervals are constructed. It is important to recognize the level of accuracy to which the
data have been given and the intervals should reflect this level of accuracy. The upper
class boundary of one interval will be the lower class boundary of the next interval. This
means that class intervals for continuous data are normally given as inequalities such as

etc.19.5 � x 6 24.5, 24.5 � x 6 29.5

x �
6155
110

� 56.0
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Finding averages from a grouped frequency table

The modal class interval is the one with the highest frequency. This does not determine
the mode exactly, but for large distributions it is really only the interval that is important.

Similarly, it is not possible to find an exact value for the median from a grouped
frequency table. However, it is possible to find the class interval in which the median lies.
In the above example, the total number of students was 110 and so the median lies
between the 55th and 56th data items. Adding a cumulative frequency column helps to
find these:

19  Statistics

532

Example

Alastair records the marks of a group of students in a test scored out of 80, as
shown in the table. What are the class widths? What is the modal class interval?

Mark Frequency

21–30 5

31–40 12

41–50 17

51–60 31

61–70 29

71–80 16

The class widths are all 10 marks. The modal class interval is the one with the
highest frequency and so is 51–60.

The modal class interval
only makes sense if the
class widths are all the
same.

Mark Frequency Cumulative frequency

21–30 5 5

31–40 12 17

41–50 17 34

51–60 31 65

61–70 29 94

71–80 16 110

From the cumulative frequency column, we can see that the median lies in the interval of
51–60. The exact value can be estimated by assuming that the data are equally
distributed throughout each class.

The median is the 55.5th data item which is the 21.5th data item in the 51–60 interval.

Dividing this by the frequency provides an estimate of how far through

the class the median would lie (if the data were equally distributed). Multiplying this

fraction by 10 (the class width) gives therefore an estimate for the median is

(to 1 decimal place).

Finding the mean from a grouped frequency table also involves assuming the data is
equally distributed. To perform the calculation, the mid-interval values are used. The
mid-interval value is the median of each interval.

50 � 6.93 p � 56.9

6.93 p ,

21.5
31

� 0.693 p

It is often sufficient just
to know which interval
contains the median.

Mark Mid-interval value Frequency

21–30 25.5 5 127.5

31–40 35.5 12 426

41–50 45.5 17 773.5

51–60 55.5 31 1720.5

61–70 65.5 29 1899.5

71–80 75.5 16 1208

Totals 110 6155

Mid-value : frequency

So for our example:

Example

A police speed camera records the speeds of cars passing in km/h, as shown in
the table. What was the mean speed? Should the police be happy with these
speeds in a 50 km/h zone?

Speed (km/h) Frequency

5

65

89

54

12

364.5 � x 6 79.5

59.5 � x 6 64.5

54.5 � x 6 59.5

49.5 � x 6 54.5

44.5 � x 6 49.5

39.5 � x 6 44.5

The interval widths are 5, 5, 5, 5, 5, 15. However, to find the mean, the method
is the same: we use the mid-interval value.
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Frequency distributions

Frequency distributions are very similar to frequency tables but tend to be presented

horizontally. The formula for the mean from a frequency distribution is written as

x �
a fx

a f
 but has the same meaning as x �

a x

n
.

So the estimated mean speed is (to 1 decimal place).

Using this figure alone does not say much about the speeds of the cars.
Although most of the cars were driving at acceptable speeds, the police
would be very concerned about the three cars driving at a speed in the range
64.5 � x 6 79.5 km>h.

x �
11 931

228
� 52.3 km>h

Speed Mid-interval value Frequency
frequency

42 5 210

47 65 3055

52 89 4628

57 54 3078

62 12 744

72 3 216

Totals 228 11931

64.5 � x 6 79.5

59.5 � x 6 64.5

54.5 � x 6 59.5

49.5 � x 6 54.5

44.5 � x 6 49.5

39.5 � x 6 44.5

Mid-value :

By choosing these class 
intervals with decimal values,
an integral mid-interval value
is created.

We will discuss how we work
with this mathematically later
in the chapter.

Example

Students at an international school were asked how many languages they could
speak fluently and the results are set out in a frequency distribution. Calculate
the mean number of languages spoken.

Number of languages, x 1 2 3 4

Frequency 31 57 42 19

So the mean for this distribution is given by

(to 2 d.p.)x �
1 � 31 � 2 � 57 � 3 � 42 � 4 � 19

31 � 57 � 42 � 19
�

347
149

� 2.33

Example

The time taken (in seconds) by students running 100 m was recorded and grouped
as shown.

What is the mean time?
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As the data are grouped, we use the mid-interval values to calculate the mean.

(to 1 d.p.) � 12.1

 �
736.75

61

 t �
10.75�5�11.25�11�11.75�12�12.25�15�12.75�8�13.25�10

5 � 11 � 12 � 15 � 8 � 10

Time, t Frequency

5

11

12

15

8

1013 � t 6 13.5

12.5 � t 6 13

12 � t 6 12.5

11.5 � t 6 12

11 � t 6 11.5

10.5 � t 6 11

1 State whether the data are discrete or continuous.

a Height of tomato plants b Number of girls with blue eyes
c Temperature at a weather station d Volume of helium in balloons

2 Mr Coffey collected the following information about the number of people in
his students’ households:

Exercise 1

4 2 6 7 3 3 2 4 4 4

5 5 4 5 4 3 4 3 5 6

Organize these data into a frequency table. Find the mean, median and
modal number of people in this class’s households.

3 Fiona did a survey of the colour of eyes of the students in her class and found
the following information:

Blue Blue Green Brown Brown Hazel Brown Green Blue Blue

Green Blue Blue Green Hazel Blue Brown Blue Brown Brown

Blue Brown Blue Brown Green Brown Blue Brown Blue Green

Construct a frequency table for this information and state the modal colour
of eyes for this class.

4 The IBO recorded the marks out of 120 for HL Mathematics and organized
the data into a frequency table as shown below:

Mark Frequency

0–20 104

21–40 230

41–50 506

51–60 602

61–70 749

71–80 1396

81–90 2067

91–100 1083

101–120 870

19  Statistics19  Statistics
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a Why do you think the frequency for is zero?

b Find the mean height.

1.30 � h 6 1.60

a What are the class widths?
b Using a cumulative frequency column, determine the median interval.
c What is the mean mark?

5 Ganesan is recording the lengths of earthworms for his Group 4 project. His
data are shown below.

Length of earthworm (cm) Frequency

3

12

26

45

11

224.5 � l 6 28.5

20.5 � l 6 24.5

16.5 � l 6 20.5

12.5 � l 6 16.5

8.5 � l 6 12.5

4.5 � l 6 8.5

What is the mean length of earthworms in Ganesan’s sample?

6 The heights of a group of students are recorded in the following frequency
table.

Height (m) Frequency

5

13

10

23

19

33

10

6

9

21.80 � h 6 2.10

1.75 � h 6 1.80

1.70 � h 6 1.75

1.65 � h 6 1.70

1.60 � h 6 1.65

1.55 � h 6 1.60

1.50 � h 6 1.55

1.45 � h 6 1.50

1.40 � h 6 1.45

1.35 � h 6 1.40

a Find the mean height of these students.

b Although these data are fairly detailed, why is the mean not a particularly
useful figure to draw conclusions from in this case?

7 Rosemary records how many musical instruments each child in the school
plays in a frequency distribution. Find the mean number of instruments
played.

Number of instruments, x 0 1 2 3 4

Frequency 55 49 23 8 2

8 A rollercoaster operator records the heights (in metres) of people who go on
his ride in a frequency distribution.

Height, h Frequency

0

101

237

91

151.96 � h 6 2.08

1.84 � h 6 1.96

1.72 � h 6 1.84

1.60 � h 6 1.72

1.30 � h 6 1.60

19.2 Frequency diagrams
A frequency table is a useful way of organizing data and allows for calculations to be
performed in an easier form. However, we sometimes want to display data in a readily
understandable form and this is where diagrams or graphs are used.

One of the most simple diagrams used to display data is a pie chart. This tends to be
used when there are only a few (2–8) distinct data items (or class intervals) with the
relative area of the sectors (or length of the arcs) signifying the frequencies. Pie charts
provide an immediate visual impact and so are often used in the media and in business
applications. However, they have been criticized in the scientific community as area is more
difficult to compare visually than length and so pie charts are not as easy to interpret as
some diagrams.

Histograms
A histogram is another commonly used frequency diagram. It is very similar to a bar
chart but with some crucial distinctions:

1 The bars must be adjacent with no spaces between the bars.
2 What is important about the bars is their area, not their height. In this curriculum,

we have equal class widths and so the height can be used to signify the frequency
but it should be remembered that it is the area of each bar that is proportional to
the frequency.

A histogram is a good visual representation of data that gives the reader a sense of the
central tendency and the spread of the data.

Example

Draw a bar chart to represent the information contained in the frequency table.

The colour of cars noted by Ewan

Colour of car Frequency

Black 4

Blue 6

Green 1

Red 2

Silver 6

Yellow 1

Total 20



Box and whisker plots
A box and whisker plot is another commonly used diagram that provides a quick and
accurate representation of a data set. A box and whisker plot notes five major features
of a data set: the maximum and minimum values and the quartiles.

The quartiles of a data set are the values that divide the data set into four equal parts.
So the lower quartile (denoted ) is the value that cuts off 25% of the data.

The second quartile, normally known as the median but also denoted cuts the data
in half.

The third or upper quartile cuts off the highest 25% of the data.

These quartiles are also known as the 25th, 50th and 75th percentiles respectively.

A simple way of viewing quartiles is that is the median of the lower half of the data,
and is the median of the upper half. Therefore the method for finding quartiles is
the same as for finding the median.

Q˛3

Q˛1

1Q˛3 2

Q˛2,

Q˛1
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Example

The distances thrown in a javelin competition were recorded in the frequency
table below. Draw a histogram to represent this information.

Distances thrown in a javelin competition (metres)

Distance Frequency

2

2

4

5

12

15

4

3

Total 37

79.5 � d 6 84.5

74.5 � d 6 79.5

69.5 � d 6 74.5

64.5 � d 6 69.5

59.5 � d 6 64.5

54.5 � d 6 59.5

49.5 � d 6 54.5

44.5 � d 6 49.5

16

12

14

10

8

6

4

2

Distance (m)

Fr
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ue
nc

y

44
.5

 �
d�

 4
9.

5

49
.5

 �
d�

 5
4.

5

54
.5

 �
d�

 5
9.

5

59
.5

 �
d�

 6
4.

5

64
.5

 �
d�

 6
9.

5

69
.5

 �
d�

 7
4.

5

74
.5

 �
d�

 7
9.

5

79
.5

 �
d�

 8
4.
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Example

Find the quartiles of this data set.

Age Frequency Cumulative 
frequency

14 3 3
15 4 7
16 8 15
17 5 20
18 6 26
19 3 29
20 1 30
Total 30

Here the median is the 15.5th piece of data (between the 15th and 16th)
which is 16.5.

Each half of the data set has 15 data items. The median of the lower half will
be the data item in the 8th position, which is 16. The median of the upper
half will be the data item in the 23rd position. This is 18.

So for this data set,

 Q˛3 � 18
 Q˛2 � 16.5
 Q˛1 � 16

15 � 8 �

There are a number of methods for determining the positions of the quartiles. As well as

the method above, the lower quartile is sometimes calculated to be the th data

item, and the upper quartile calculated to be the th data item.

A box and whisker plot is a representation of the three quartiles plus the maximum and
minimum values. The box represents the “middle” 50% of the data, that is the data

31n � 1 2

4

n � 1
4



Cumulative frequency diagrams
A cumulative frequency diagram, or ogive, is another diagram used to display frequency
data. Cumulative frequency goes on the y-axis and the data values go on the x-axis. The
points can be joined by straight lines or a smooth curve. The graph is always rising (as
cumulative frequency is always rising) and often has an S-shape.

541

between and The whiskers are the lowest 25% and the highest 25% of the
data. It is very important to remember that this is a graph and so a box and whisker plot
should be drawn with a scale.

For the above example, the box and whisker plot would be:

Q˛3.Q˛1
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13 14 15 16 17

Age

18 19 20 21

This is the simplest form of a box and whisker plot. Some statisticians calculate what are
known as outliers before drawing the plot but this is not part of the syllabus. Box and
whisker plots are often used for discrete data but can be used for grouped and
continuous data too. Box and whisker plots are particularly useful for comparing two
distributions, as shown in the next example.

Example

Thomas and Catherine compare the performance of two classes on a French
test, scored out of 90 (with only whole number marks available). Draw box and
whisker plots (on the same scale) to display this information. Comment on what
the plots show about the performance of the two classes.

Thomas’ class

Score out of 90 Frequency Cumulative
frequency

1 1
2 3
4 7
0 7
6 13
4 17
3 20
2 22
1 23

Total 23

81 � x � 90
71 � x � 80
61 � x � 70
51 � x � 60
41 � x � 50
31 � x � 40
21 � x � 30
11 � x � 20
0 � x � 10

Catherine’s class

Score out of 90 Frequency Cumulative
frequency

0 0
0 0
3 3
5 8
8 16
6 22
1 23
0 23
0 23

Total 23
81 � x � 90
71 � x � 80
61 � x � 70
51 � x � 60
41 � x � 50
31 � x � 40
21 � x � 30
11 � x � 20
0 � x � 10
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As the data are grouped, we use the mid-interval values to represent the
classes for calculations. For the quartiles will be the 6th, 12th and
18th data items.

The five-figure summaries for the two classes are:

Thomas Catherine

The box and whisker plots for the two classes are:

max � 65max � 85
Q˛3 � 55Q˛3 � 65
Q˛2 � 45Q˛2 � 45
Q˛1 � 35Q˛1 � 25
min � 25min � 5

n � 23,

10 20 30 40 50

Score out of 90

Thomas’ class

Catherine’s class

60 70 80 900 100

It can be seen that although the median mark is the same for both classes, there
is a much greater spread of marks in Thomas’ class than in Catherine’s class.

Example

Draw a cumulative frequency diagram for these data:

Age Frequency Cumulative
frequency

14 3 3
15 4 7
16 8 15
17 5 20
18 6 26
19 3 29
20 1 30
Total 30



Estimating quartiles and percentiles from a cumulative frequency
diagram

We know that the median is a measure of central tendency that divides the data set in
half. So the median can be considered to be the data item that is at half of the total
frequency. As previously seen, cumulative frequency helps to find this and for large data
sets, the median can be considered to be at 50% of the total cumulative frequency, the
lower quartile at 25% and the upper quartile at 75%.

These can be found easily from a cumulative frequency diagram by drawing a horizontal
line at the desired level of cumulative frequency (y-axis) to the curve and then finding the
relevant data item by drawing a vertical line to the x-axis.
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By plotting age on the x-axis and cumulative frequency on the y-axis, plotting
the points and then drawing lines between them, we obtain this diagram:

13
0

5

10

15

20
C

um
ul

at
iv

e 
fr

eq
ue

nc
y 25

30

14 15 16

Age (years)

17 18 19 20

Example

The IBO recorded the marks out of 120 for HL Mathematics and organized the
data into a frequency table:

Mark Frequency Cumulative
frequency

0–20 104 104
21–40 230 334
41–50 506 840
51–60 602 1442
61–70 749 2191
71–80 1396 3587
81–90 2067 5654
91–100 1083 6737

101–120 870 7607

Draw a cumulative frequency diagram for the data.

For grouped data like this, the upper class limit is plotted against the cumulative
frequency to create the cumulative frequency diagram:
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These diagrams are particularly useful for large samples (or populations).

When the quartiles are
being estimated for large
data sets, it is easier to use
these percentages than to

use etc.
n � 1

4

Example

The cumulative frequency diagram illustrates the data set obtained when the
numbers of paper clips in 80 boxes were counted. Estimate the quartiles from
the cumulative frequency diagram.
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46 47 48

Number of paper clips in a box

49 50 51 52

80

53

So for this data set,

 Q˛3 � 51
 Q˛2 � 50
 Q˛1 � 49.5

This can be extended to find any percentile. A percentile is the data item that is given by
that percentage of the cumulative frequency.

Example

The weights of babies born in December in a hospital were recorded in the
table. Draw a cumulative frequency diagram for this information and hence
find the median and the 10th and 90th percentiles.
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This is the cumulative frequency diagram:

Weight (kg) Frequency Cumulative frequency
1 1
4 5

15 20
28 58
45 103
15 118
2 1205.0 � x 6 5.5

4.5 � x 6 5.0
4.0 � x 6 4.5
3.5 � x 6 4.0
3.0 � x 6 3.5
2.5 � x 6 3.0
2.0 � x 6 2.5

2.0
0

20
12

40

60

80
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100
108
120

140

2.5 3.0 3.5

Weight (kg)

4.0 4.5 5.0 5.5

The 10th percentile is given by a cumulative frequency of 10% of 
The median is given by a cumulative frequency of 60 and the 90th percentile is
given by a cumulative frequency of 108.

Drawing the lines from these cumulative frequency levels as shown above gives:

90th 

10th percentile � 3.3
Median � 4.1

percentile � 4.7

120 � 12.

Exercise 2

1 The nationalities of students at an international school were recorded and
summarized in the frequency table. Draw a bar chart of the data.

Nationality Frequency
Swedish 85
British 43
American 58
Norwegian 18
Danish 11
Chinese 9
Polish 27
Other 32

Age Frequency

36

24

37

27

20

17

30

15

774 6 x � 82

66 6 x � 74

58 6 x � 66

50 6 x � 58

42 6 x � 50

34 6 x � 42

26 6 x � 34

18 6 x � 26

10 6 x � 18

28.4 29.2 28.7 29.0 27.1 28.6 30.8 29.9
30.3 30.7 27.6 28.8 29.0 28.1 27.7 30.1
29.4 29.9 31.4 28.9 30.9 29.1 27.8 29.3
28.5 27.9 30.0 29.1 31.2 30.8 29.2 31.1
29.0 29.8 30.9 29.2 29.4 28.7 29.7 30.2

Salary Frequency

25 000 8
32 000 12
40 000 26
45 000 14
58 000 6
65 000 1

2 The ages of members of a golf club are recorded in the table below. Draw a
histogram of this data set.

3 The contents of 40 bags of nuts were weighed and the results in grams are
shown below. Group the data using class intervals etc. and
draw a histogram.

27.5 � x 6 28.5

4 The salaries in US$ of teachers in an international school are shown in the
table below. Draw a box and whisker plot of the data.

16 14 12 27 29 21 19 19
15 22 26 29 22 11 12 30
19 20 30 8 25 30 23 21
18 23 27

a Draw a box and whisker plot of the data.
b Find the mean mark.

5 The stem and leaf diagram below shows the weights of a sample of eggs.
Draw a box and whisker plot of the data.

means 61 grams

6 The Spanish marks of a class in a test out of 30 are shown below.

n � 24   key: 6 � 1

4
5
6
7

 4  
4 4 6 7 8 9
0 1 2 4 4 7 8
1 1 3 6 8
0 0 2 2 3 4
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Age Frequency Cumulative 
frequency

11 8 8
12 7 15
13 15 30
14 14 44
15 6 50
16 4 54
17 1 55
Total 55

Age Frequency

7

26

54

38

21

12

338 � x 6 42

34 � x 6 38

30 � x 6 34

26 � x 6 30

22 � x 6 26

18 � x 6 22

14 � x 6 18

7 The heights of boys in a basketball club were recorded. Draw a box and
whisker plot of the data.

Height (cm) Frequency

3

3

9

16

12

7

2188 � x 6 196

180 � x 6 188

172 � x 6 180

164 � x 6 172

156 � x 6 164

148 � x 6 156

140 � x 6 148

Height (cm) Grade 7 frequency Grade 8 frequency

5 2

6 8

10 12

12 13

8 6

5 3

1 0166 � x 6 172

160 � x 6 166

154 � x 6 160

148 � x 6 154

142 � x 6 148

136 � x 6 142

130 � x 6 136

8 The heights of girls in grade 7 and grade 8 were recorded in the table. Draw
box and whisker plots of the data and comment on your findings.

9 The ages of children attending a drama workshop were recorded. Draw a
cumulative frequency diagram of the data. Find the median age.

10 The ages of mothers giving birth in a hospital in one month were recorded.
Draw a cumulative frequency diagram of the data. Estimate the median age
from your diagram.

11 A survey was conducted among girls in a school to find the number of pairs
of shoes they owned. A cumulative frequency diagram of the data is shown.
From this diagram, estimate the quartiles of this data set.
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12 The numbers of sweets in a particular brand’s packets are counted. The
information is illustrated in the cumulative frequency diagram. Estimate the
quartiles and the 10th percentile.

16
0

10

20

30

40

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

50

60

70

17 18 19

Number of sweets

20 21 22 23

80

90

100

110

13 There was a competition to see how far girls could throw a tennis ball. The
results are illustrated in the cumulative frequency diagram. From the diagram,
estimate the quartiles and the 95th and 35th percentiles.
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Standard deviation
The measures of spread met so far (range, interquartile range and semi-interquartile
range) are all connected to the median as the measure of central tendency. The measure
of dispersion connected with the mean is known as standard deviation.

Here we return to the concepts of population and sample which were discussed at the
beginning of this chapter. Most statistical calculations are based on a sample as data
about the whole population is not available.

There are different notations for measures related to population and sample.

549

19.3 Measures of dispersion
Consider the two sets of data below, presented as dot plots.
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43 44 45 46 47 4241 43 44 45 46 47 48 49

It is quickly obvious that both sets of data have a mean, median and mode of 45 but the
two sets are not the same. One of them is much more spread out than the other. This
brings us back to the joke at the start of the chapter: it is not only the average that is
important about a distribution. We also want to measure the spread of a distribution,
and there are a number of measures of spread used in this syllabus.

Diagrams can be useful for obtaining a sense of the spread of a distribution, for example
the dot plots above or a box and whisker plot.

There are three measures of dispersion that are associated with the data contained in a
box and whisker plot.

The range is the difference between the highest and lowest values in a distribution.

Range � maximum value � minimum value

IQ range � Q˛3 � Q˛1

Semi-IQ range �
Q˛3 � Q˛1

2

The interquartile range is the difference between the upper and lower quartiles.

The semi-interquartile range is half of the interquartile range. These measures of spread
are associated with the
median as the measure of
central tendency.

Example

Donald and his son, Andrew, played golf together every Saturday for 20 weeks
and recorded their scores.

Donald
81 78 77 78 82 79 80 80 78 79
77 79 79 80 81 78 80 79 78 78

Andrew
80 73 83 74 72 75 73 77 79 78
84 73 71 75 79 75 73 84 72 74

By ordering their scores, we can find the necessary information for the box
and whisker plots.

Donald
77 77 78 78 78 78 78 78 79 79 79 79 79 80 80 80 80 81 81 82

min max

Andrew
71 72 72 73 73 73 73 74 74 75 75 75 77 78 79 79 80 83 84 84

min max

The box and whisker plots are presented below:

Q˛3Q˛2Q˛1

ccccc

Q˛3Q˛2Q˛1

ccccc

Draw box and whisker plots of their golf scores, and calculate the interquartile
range for each player.

Comment on their scores.

548
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71 72 73 74 75 76 77 78 7970 80 81 82 83 84

Donald

Andrew

Donald

Andrew

From these statistics, we can conclude that Andrew is, on average, a better
player than Donald as his median score is 4 lower than Donald’s. However,
Donald is a more consistent player as his interquartile range is lower than
Andrew’s.

IQ range � 79 � 73 � 6

IQ range � 80 � 78 � 2

The population mean is denoted and the sample mean is denoted x.m

Commonly, the sample mean is used to estimate the population mean. This is known as
statistical inference. It is important that the sample size is reasonably large and representative
of the population. We say that when the estimate is unbiased, is equal to m.x
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Standard deviation provides a measure of the spread of the data and comparing
standard deviations for two sets of similar data is useful. For most sets of data, the
majority of the distribution lies within two standard deviations of the mean. For normal
distributions, covered in Chapter 22, approximately 95% of the data lies within two
standard deviations of the mean.
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The units of standard 
deviation are the same as
the units of the original
data.

Example

For the following sample, calculate the standard deviation.

5, 8, 11, 12, 12, 14, 15

It is useful to present this as a table to perform the calculation:

This is the deviation
from the mean.

The deviation is
then squared so
it is positive.

x
5 36
8 9

11 0 0
12 1 1
12 1 1
14 3 9
15 4 16

Total � 72Total � 77

�3
�6

1x � x 22x � x

From the table, 

So (to 2 d.p.)s �
B
a 1x � x 22

n
�
B

72
7

� 3.21

a 1x � x 22 � 72

x �
77
7

� 11

Although the formula above for sample standard deviation is the one most commonly
used, there are other forms including this one:

Example

For the following sample, find the standard deviation.

6, 8, 9, 11, 13, 15, 17

x
6 36
8 64
9 81

11 121
13 169
15 225
17 289

a x˛

2 � 985a x � 79

x2

The standard deviation of a sample is defined to be where n is

the sample size.

s �
B
a 1x � x 22

n
,

So (to 2 d.p.)s �
B
a x˛

2

n
� 1x 22 �

C

985
7

� ¢79
7
≤2

� 3.65

It is clear that the first method is simpler for calculations without the aid of a calculator.

These formulae for standard deviation are normally applied to a sample. The standard
deviation of a population is generally not known and so the sample standard deviation
is used to find an estimate.

s �
B
a x˛

2

n
� 1x 22

s �
B

n
n � 1

� s

s2 �
n

n � 1
 s˛

2

The notation for the standard deviation of a population is s.

The standard deviation of a population can be estimated using this formula:

Variance
Variance is another measure of spread and is defined to be the square of the standard
deviation.

So the variance of a sample is and of a population is The formula connecting the

standard deviation of a sample and a population provides a similar result for variance:

s2.s˛

2
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Example

For the following sample, find the standard deviation. Hence estimate the variance
for the population.

8, 10, 12, 13, 13, 16

x
8 16

10 4
12 0 0
13 1 1
13 1 1
16 4 16

Total � 38Total � 72

�2
�4

1x � x 22x � x

So (to 2 d.p.)

The variance of the sample is and so the estimate of the variance of the

population is 
6
5

�
38
6

�
38
5

� 7.6.

38
6

s �
B
a 1x � x 22

n
�
B

38
6

� 2.52

x �
72
6

� 12

For large samples, with repeated values, it is useful to calculate standard deviation by

considering the formula as s �
S

a
k

i�1
f˛i1x˛i � x 22

n
.

Example

Find the standard deviation for this sample and find an estimate for the population
from which it comes.

Age Frequency
16 12
17 18
18 26
19 32
20 17
21 13

1 For these sets of data, calculate the median and interquartile range.

a 5, 7, 9, 10, 13, 15, 17
b 54, 55, 58, 59, 60, 62, 64, 69
c 23, 34, 45, 56, 66, 68, 78, 84, 92, 94
d 103, 107, 123, 134, 176, 181, 201, 207, 252
e

Age, x Frequency, f

16 12 6.25 75

17 18 2.25 40.5

18 26 0.25 6.5
19 32 0.5 0.25 8
20 17 1.5 2.25 38.25
21 13 2.5 6.25 81.25
Totals 118 249.5

�0.5

�1.5

�2.5

f : 1x � x 221x � x 22x � x

Here 

We can still use the table by adding columns.

x � 18.5

and 

So 

s �
B

118
117

� 1.45 p � 1.46

s �
S

a
k

i�1
f˛i1x˛i � x 22

n
�
B

249.5
118

� 1.45 p

n � a f � 118a
k

i�1
f˛i1x˛i � x 22 � 249.5
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Exercise 3

Shoe size Frequency
37 8
38 14
39 19
40 12
41 24
42 9

2 Compare these two sets of data by calculating the medians and interquartile
ranges.

3 University students were asked to rate the quality of lecturing on a scale ranging
from 1 (very good) to 5 (very poor). Compare the results for medicine and law
students, by drawing box and whisker plots and calculating the interquartile
range for each set of students.

Age Set A: Frequency Set B: Frequency
16 0 36
17 0 25
18 37 28
19 34 17
20 23 16
21 17 12
22 12 3
23 9 2
24 6 1

Rating Medicine Law
1 21 25
2 67 70
3 56 119
4 20 98
5 6 45



19.4 Using a calculator to perform statistical
calculations

Calculators can perform statistical calculations and draw statistical diagrams, normally
by entering the data as a list. Be aware of the notation that is used to ensure the correct
standard deviation (population or sample) is being calculated.
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Age Frequency
14 6
15 14
16 18
17 22
18 12
19 8
20 4
21 6
36 3
37 3
38 4

4 For these samples, calculate the standard deviation.
a 5, 6, 8, 10, 11
b 12, 15, 16, 16, 19, 24
c 120, 142, 156, 170, 184, 203, 209, 224
d 15, 17, 22, 25, 28, 29, 30
e 16, 16, 16, 18, 19, 23, 37, 40

5 Calculate the mean and standard deviation for this sample of ages of the
audience at a concert. Estimate the standard deviation of the audience.

6 The contents of milk containers labelled as 500 ml were measured.
Find the mean and variance of the sample.

Volume (ml) Frequency
498 4
499 6
500 28
501 25
502 16
503 12
504 8
505 3

115 120 118 93 160 117 116 125 98 93
156 114 112 123 100 99 105 119 100 102
134 101 96 92 88 102 114 112 122 100
104 107 109 110 96 91 90 106 111 100
112 103 100 95 92 105 112 126 104 149
125 103 105 100 96 105 177 130 102 100
103 99 123 116 109 114 113 97 104 112

7 The lengths of all films (in minutes) shown at a cinema over the period of a
year were recorded in the table below. For this data, find:

a the median and interquartile range
b the mean and standard deviation.

Example

Draw a box and whisker plot of the following data set, and state the median.

16.4 15.3 19.1 18.7 20.4
15.7 19.1 14.5 17.2 12.6
15.9 19.4 18.5 17.3 13.9

Median � 17.2

Example

Find the mean and standard deviation for this sample of best times (in seconds) for
the 200 m at an athletics event. Estimate the standard deviation of the population.

20.51 22.45 23.63 21.91 24.03 23.80 21.98
19.98 20.97 24.19 22.54 22.98 21.84 22.96
20.46 23.86 21.76 23.01 22.74 23.51 20.02

It is important to be careful when using a calculator for standard deviation as the

notation used is different to that used in this curriculum. The standard deviation

that is given by the formula is on the calculator and so

seconds and An estimate for the population standard

deviation is given by Sx on the calculator and hence s � 1.34.

s � 1.31.x � 22.3

ss �
B
a 1x � x 22

n
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Transformations of statistical data
We need to consider the effect of these transformations:

• Adding on a constant c to each data item
• Multiplying each data item by a constant k.

Adding on a constant c to each data item

The mean is the original mean 

The standard deviation is unaltered.

Multiplying each data item by a constant k

The mean is multiplied by k.

The standard deviation is multiplied by k.

� c.
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Example

The salaries of a sample group of oil workers (in US $) are given below:

42 000 55 120 48 650 67 400 63 000
54 000 89 000 76 000 63 000 72 750
71 500 49 500 98 650 74 000 52 500

a What is the mean salary and the standard deviation?
The workers are offered a $2500 salary rise or a rise of 4%.

b What would be the effect of each rise on the mean salary and the
standard deviation?

c Which would you advise them to accept?

a So the mean salary is $65 100 and the standard deviation is $15 100.

b For a $2500 rise, the mean salary would become $67 600 and the
standard deviation would remain at $15 100.
For a 4% rise, this is equivalent to each salary being multiplied by 1.04.
So the mean salary would be $67 700 and the standard deviation
would be $15 700.

c The $2500 rise would benefit those with salaries below the mean (8 out
of 15 workers) while the 4% rise would benefit those with higher
salaries. The percentage rise would increase the gap between the
salaries of these workers. As more workers would benefit from the
$2500 rise, this one should be recommended.

Exercise 4

1 For these samples, find
i the quartiles ii the mean and standard deviation.

a 9.9, 6.7, 10.5, 11.9, 12.1, 9.2, 8.3
b 183, 129, 312, 298, 267, 204, 301, 200, 169, 294, 263

c 29 000, 43 000, 63 000, 19 500, 52 000, 48 000, 39 000, 62 500

d 0.98, 0.54, 0.76, 0.81, 0.62, 0.75, 0.85, 0.75, 0.24, 0.84, 0.98, 0.84, 0.62,
0.52, 0.39, 0.91, 0.63, 0.81, 0.92, 0.72

2 Using a calculator, draw a box and whisker plot of this data set and calculate
the interquartile range.

x Frequency

17 8
18 19
19 26
21 15
30 7

185 202 186 254 253 212 109 186 276 164
112 243 200 165 172 199 166 231 210 175
163 189 182 120 204 225 185 174 144 122

240 176 187 199 169 201 205 210 195 190
210 213 226 223 218 205 187 182 181 169
172 174 200 198 183 192 190 201 200 211

64 0 102 8 83 52
1 44 64 0 73 26

50 24 40 44 36 12

3 Daniel and Paul regularly play ten-pin bowling and record their scores.

Using a calculator, draw box and whisker plots to compare their scores, and
calculate the median and range of each.

Daniel

4 Karthik has recorded the scores this season for his innings for the local cricket
team.

a Calculate his mean score and his standard deviation.

Paul

b Karthik is considering buying a new bat which claims to improve batting
scores by 15%. What would his new mean and standard deviation be?

Age Frequency
12 8
13 15
14 17
15 22
16 19
17 8

5 Mhairi records the ages of the members of her chess club in a frequency table.
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If the membership remains the same, what will be the mean age and standard
deviation in two years’ time?

1 State whether the data is discrete or continuous.

a Height of girls b Number of boys playing different sports
c Sizes of shoes stocked in a store d Mass of bicycles

2 Jenni did a survey of the colours of cars owned by the students in her class and
found the following information:

Review exercise

Construct a frequency table for this information and state the modal colour of
car for this class.

3 Katie has recorded the lengths of snakes for her Group 4 project.

Blue Black Silver Red Red Silver Black White White Black
Green Red Blue Red Silver Yellow Black White Blue Red
Blue Silver Blue Red Silver Black Red White Red Silver

Length of snake (cm) Frequency

2

8

22

24

10

3105 � l 6 120

90 � l 6 105

75 � l 6 90

60 � l 6 75

45 � l 6 60

30 � l 6 45

Number of clubs, x 0 1 2 3 4
Frequency 40 64 36 28 12

Height Frequency

18

45

62

86

37

191.70 � h 6 1.80

1.60 � h 6 1.70

1.50 � h 6 1.60

1.40 � h 6 1.50

1.30 � h 6 1.40

1.20 � h 6 1.30

58 34 60 21 45 44 29 55
34 48 41 40 36 38 39 29
59 36 37 45 49 51 27 12
57 51 52 32 37 51 33 30

What is the mean length of snakes in Katie sample? What is the standard de-
viation?

4 Nancy records how many clubs each child in the school attends in a frequency
distribution. Find the mean number of clubs attended.

5 The heights of students at an international school are shown in the frequency
table. Draw a histogram of this data.

6 A class’s marks out of 60 in a history test are shown below.

a Draw a box plot of this data.
b Calculate the interquartile range.
c Find the mean mark.

7 A survey was conducted among students in a school to find the number of
hours they spent on the internet each week. A cumulative frequency diagram
of the data is shown. From this diagram, estimate the quartiles of the data set.
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nc
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180

4 8 12

Hours spent on the internet

16 20 24 28 32 36 40

8 The number of goals scored by a football team in each match is shown
below. For this data, find
a the median and interquartile range
b the mean and standard deviation.

0 3 2 1 1 0 3 4 2 2
0 2 1 1 0 1 3 1 2 0
7 2 1 0 5 1 1 0 4 3
1 2 1 0 0 1 2 3 1 1

208 220 220 265 208 284 312 296 284
220 364 300 285 240 220 290 275 264

9 The weekly wages of a group of employees in a factory (in £) are shown
below.

a Find the mean wage, and the standard deviation.
The following week, they all receive a 12% bonus for meeting their target.
b What is the mean wage and standard deviation as a result?
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Weight (g) 29.6 29.7 29.8 29.9 30.0 30.1 30.2 30.3
Frequency 2 3 4 5 7 5 3 1

10 A machine produces packets of sugar. The weights in grams of 30 packets
chosen at random are shown below.

Find unbiased estimates of
a the mean of the population from which this sample is taken
b the standard deviation of the population from which this sample is taken.

[IB May 01 P1 Q6]
11 The 80 applicants for a sports science course were required to run 800 metres

and their times were recorded. The results were used to produce the following
cumulative frequency graph.

Estimate
a the median
b the interquartile range. [IB May 02 P1 Q14]

12 A teacher drives to school. She records the time taken on each of 20 randomly
chosen days. She finds that,

where denotes the time, in minutes, taken on the ith day.
Calculate an unbiased estimate of

a the mean time taken to drive to school
b the variance of the time taken to drive to school. [IB May 03 P1 Q19]

13 The cumulative frequency curve below indicates the amount of time 250
students spend eating lunch.

x˛i

a
20

i�1
x˛i � 626 and a

20

i�1
x˛i

  2 � 1970.8
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a Estimate the number of students who spend between 20 and 40 minutes
eating lunch.

b If 20% of the students spend more than x minutes eating lunch, estimate
the value of x. [IB Nov 03 P1 Q2]
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Have you ever asked around a group of your classmates and been surprised to find
that two of them share the same birthday? At first thought it seems likely that for two
people in the room to share a birthday there will need to be a lot of people in the
room. However, this is not actually the case. If we want to have more than a 50%
chance of two people in the room having the same birthday then we can calculate,
using probability, that the number required is 23 or more. However, if we change the
problem to having 50% chance of finding someone in the room with the same
birthday as you, then the number required increases dramatically – approximately
254 people are needed. Hence it should come as no surprise that two presidents of
the United States of America have shared the same birthday and three presidents have
died on the same day!
The way in which we can investigate problems like this is by using probability, but we
will begin with much simpler problems.

20.1 Introduction to probability
In the presumed knowledge section (Chapter 0 – see accompanying CD) we considered
the idea that when we look at an experimental situation we find answers that indicate
that a theoretical application is appropriate. This theoretical approach is called
probability and is what we will explore in this chapter. Consider a number of equally
likely outcomes of an event. What is the probability of one specific outcome of that
event? For example, if we have a cubical die what is the probability of throwing a six?
Since there are six equally likely outcomes and only one of them is throwing a six, then

the probability of throwing a six is 1 in 6. We would normally write this as a fraction 

or as a decimal or a percentage. Since probability is a theoretical concept, it does not
mean that if we throw a die six times we will definitely get a six on one of the throws.

However, as the number of trials increases, the number of sixes becomes closer to of
the total.
Generally, if the probability space S consists of a finite number of equally likely outcomes,
then the probability of an event E, written P(E ) is defined as:

1
6

1
6

20 Probability

where n(E ) is the number of occurrences of the event E and n(S) is the

total number of possible outcomes.

P1E 2 �
n1E 2

n1S 2

Hence in a room of fifteen people, if seven of them have blue eyes, then the probability

that a person picked at random will have blue eyes is 
7
15

.



In this case the two intersecting sets A and B represent the events A and B and the
universal set represents the sample space S. This is shown in the Venn diagram. Venn
diagrams and set notation are introduced in the presumed knowledge chapter
(Chapter 0 – see accompanying CD).
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Important results
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0 � P1A 2 � 1

If an event A can never happen, the probability is 0, and if it will certainly happen, the

probability is 1. This can be seen from the fact that since if the event can

never happen then and if the event is certain to happen then 
Since n(S) is always greater than or equal to n(A), a probability can never be greater than 1.

n1A 2 � n1S 2 .n1A 2 � 0

P1A 2 �
n1A 2

n1S 2

Example

A bag contains a large number of tiles. The probability that a tile drawn from

the bag shows the letter A is the probability that a tile drawn from the bag

shows the letter B is and the probability that a tile drawn from the bag

shows the letter C is 

What is the probability that a tile drawn at random from the bag

a shows the letter A or B
b does not show the letter C?

a Since the probability of showing the letter A is and the probability of

showing the letter B is the probability of showing the letter A or B is

b The probability of not showing the letter C can be done in two ways. We

can use the complement and state that 

Alternatively, we can see that this is the same as showing a letter A or B
and hence is the same as the answer to part a.

1 �
2
10

�
4
5

.� 1 � P˛1C 2 �P1 C¿ 2P1not C 2 �

3
10

�
5
10

�
8
10

�
4
5

.

5
10

,

3
10

2
10

.

5
10

,

3
10

,

where is the probability that the event A does not occur.P˛1A¿ 2P1A 2 � P1A¿ 2 � 1

or using set notation: P1A ´ B 2 � P1A 2 � P1B 2 � P1A ¨ B 2
P1A or B 2 � P1A 2 � P1B 2 � P1A and B 2

A B

S

m

p � r q � rr

Proof

If and then

 � P1A 2 � P1B 2 � P1A ¨ B 2

 �
p

m
�

q

m
�

r
m

 �
1p � r 2 � r � 1q � r 2

m

 P1A ´ B 2 �
n1A ´ B 2

n1S 2

n1A ¨ B 2 � rn1S 2 � m, n1A 2 � p, n1B 2 � q

Example

A tetrahedral die and a cubical die are thrown. What is the probability of throwing
a five on the cubical die or a four on the tetrahedral die?

We could use the formula above directly, but we will demonstrate what is happening
here by using a possibility space diagram that shows all the possible outcomes of
the event “throwing a cubical die and a tetrahedral die”.

From the diagram we see that the probability of throwing a five on the cubical

die is 

The probability of throwing a four on the tetrahedral die is 
6
24

.

4
24

.

4

3

2

1

654321

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

is known as the
complement of A.
A¿



1 An unbiased tetrahedral die is thrown. What is the probability of throwing
a a three
b an even number
c a prime number?

2 A spinner has the numbers 1 to 10 written on it. When spun, it is equally
likely to stop on any of the ten numbers. What is the probability that it will
stop on
a a three
b an odd number
c a multiple of 3
d a prime number?

3 A bag contains 5 black balls, 6 white balls, 7 pink balls and 2 blue balls.
What is the probability that a ball drawn randomly from the bag will
a be a black ball
b be either a white or a pink ball
c not be a blue ball
d be either a black, white or blue ball
e be a red ball?

4 Sheila is picking books off her shelf. The shelf only contains mathematics
books and novels. The probability that she picks a novel is 0.48 and the 
probability that she picks a mathematics book is 0.52.
a What is the probability that she does not pick a mathematics book?
b Explain why these events are exhaustive.

5 If and are A and B exhaustive events?

6 The probability that Hanine goes to the local shop is The probability that 

she does not cycle is The probability that she goes to the shop and cycles 

is 

a What is the probability that she cycles?
b What is the probability that she cycles or goes to the shop?

4
15

.

4
11

.

3
7

.

P1A ¨ B 2 �
4
15

,P1A 2 �
1
5

, P1B 2 �
2
3
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We can see this from the Venn diagram, where there is no overlap between the sets.

564

Hence at first it may appear that the probability of throwing a five on the cubical

die or a four on the tetrahedral die is However, from the diagram

we notice that the occurrence four on the tetrahedral die and five on the cubical
die appears in both calculations. Hence we need to subtract this probability.
Therefore the probability of throwing a five on the cubical die or a four on the

tetrahedral die is 
6
24

�
4
24

�
1
24

�
9
24

.

6
24

�
4
24

.
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Example

In a group of 20 students, there are 12 girls and 8 boys. Two of the boys and
three of the girls wear red shirts. What is the probability that a person chosen
randomly from the group is either a boy or someone who wears a red shirt?

Let A be the event “being a boy” and B be the event “wearing a red shirt”.

Hence and 

Now

 1 P˛1A ´ B 2 �
8
20

�
5
20

�
2
20

�
11
20

 P1A ´ B 2 � P1A 2 � P1B 2 � P1A ¨ B 2

P1A ¨ B 2 �
2
20

.P1A 2 �
8
20

, P1B 2 �
5
20

If an event A can occur or an event B can occur but A and B cannot both occur, then
the two events A and B are said to be mutually exclusive.
In this case P1A and B 2 � P1A ¨ B 2 � 0.

A B

S

For mutually exclusive events P1A ´ B 2 � P1A 2 � P1B 2 .

Example

A bag contains 3 red balls, 4 black balls and 3 yellow balls. What is the probability
of drawing either a red ball or a black ball from the bag?

Let the event “drawing a red ball” be A and the event “drawing a black ball” be B.

Since these are mutually exclusive events

 1 P1A ´ B 2 �
3
10

�
4
10

�
7
10

 P1A ´ B 2 � P1A 2 � P1B 2

P1A 2 �
3
10

 and P1B 2 �
4

10

If two events A and B are such that where S is the total probability
space, then and the events A and B are said to be exhaustive.P1A ´ B 2 � 1

A ´ B � S,

Example

The events A and B are exhaustive. If and find

We know that 
Since the events are exhaustive 

 1 P1A ¨ B 2 � 0.09
 1 1 � 0.65 � 0.44 � P1A ¨ B 2

P1A ´ B 2 � 1
P1A ´ B 2 � P1A 2 � P1B 2 � P1A ¨ B 2 .

P1A ¨ B 2 .
P1B 2 � 0.44,P1A 2 � 0.65

Exercise 1



e less than 4 or one die shows a 5?
f Explain why the events in part e are mutually exclusive.

16 A class contains 15 boys and 17 girls. Of these 10 boys and 8 girls have
blonde hair. Find the probability that a student chosen at random is a boy or
has blonde hair.

17 Two tetrahedral dice are thrown. What is the probability that the sum of the
scores is
a even
b prime
c even or prime?
d Explain why these two events are mutually exclusive.

18 When David goes fishing the probability of him catching a fish of type A is
0.45, catching a fish of type B is 0.75 and catching a fish of type C is 0.2.
David catches four fish. 
If the event X is David catching two fish of type A and two other fish, the
event Y is David catching two fish of type A and two of type B and the event
Z is David catching at least one fish of type C, for each of the pairs of X, Y
and Z state whether the two events are mutually exclusive, giving a reason.

19 If A and B are exhaustive events, and and find

20 A whole number is chosen from the numbers 1 to 500. Find the probability
that the whole number is
a a multiple of 6
b a multiple of both 6 and 8.

P1A ¨ B 2 .
P1B 2 � 0.37,P1A 2 � 0.78
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7 It is given that for two events A and B, and

Find P(B).

8 In a class, 6 students have brown eyes, 3 students have blue eyes, 4 students
have grey eyes and 2 students have hazel eyes. A student is chosen at 
random. Find the probability that
a a student with blue eyes is chosen
b a student with either blue or brown eyes is chosen
c a student who does not have hazel eyes is chosen
d a student with blue, brown or grey eyes is chosen
e a student with grey or brown eyes is chosen.

9 Two tetrahedral dice are thrown. What is the probability that
a the sum of the two scores is 5
b the sum of the two scores is greater than 4
c the difference between the two scores is 3
d the difference between the two scores is less than 4
e the product of the two scores is an even number
f the product of the two scores is greater than or equal to 6
g one die shows a 3 and the other die shows a number greater than 4?

10 Two cubical dice are thrown. What is the probability that
a the sum of the two scores is 9
b the sum of the two scores is greater than 4
c the difference between the two scores is 3
d the difference between the two scores is at least 4
e the product of the two scores is 12
f the product of the two scores is an odd number
g one die shows an even number or the other die shows a multiple of 3?

11 The probability that John passes his mathematics examination is 0.9, and
the probability that he passes his history examination is 0.6. These events
are exhaustive. What is the probability that
a he does not pass his mathematics examination
b he passes his history examination or his mathematics examination
c he passes his mathematics examination and his history examination?

12 In a school’s IB diploma programme, 30 students take at least one science. If
15 students take physics and 18 students take chemistry, find the probability
that a student chosen at random studies both physics and chemistry.

13 There are 20 students in a class. In a class survey on pets, it is found that 12
students have a dog, 5 students have a dog and a rabbit and 3 students do
not have a dog or a rabbit. Find the probability that a student chosen at
random will have a rabbit.

14 In a survey of people living in a village, all respondents either shop at 
supermarket A, supermarket B or both. It is found that the probability that a
person will shop at supermarket A is 0.65 and the probability that he/she will
shop at supermarket B is 0.63. If the probability that a person shops at both
supermarkets is 0.28, find the probability that a person from the village 
chosen at random will shop at supermarket A or supermarket B, but not both.

15 Two cubical dice are thrown. What is the probability that the sum of the two
scores is
a a multiple of 3
b greater than 5
c a multiple of 3 and greater than 5
d a multiple of 3 or greater than 5

P1A ¨ B 2 �
3
16

.

P1A 2 �
3
8

, P1A ´ B 2 �
11
16
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20.2 Conditional probability
If A and B are two events, then the probability of A given that B has already occurred is
written as This is known as conditional probability.P1A � B 2 .

On the Venn diagram below the possibility space is the set B as this has already
occurred.

P1A � B 2 �
P1A ¨ B 2

P1B 2

A B

S

Hence 

If all the possible events are represented by the universal set S, then

 1 P˛1A � B 2 �
P˛1A ¨ B 2

P˛1B 2

 P1A � B 2 �

n1A ¨ B 2

n1S 2
n1B 2

n1S 2

P1A � B 2 �
n1A ¨ B 2

n1B 2



c given that at least one of the dice shows a 3, the difference between the
scores on the dice is 2

d given that the difference between the scores on the dice is 2, the product of
the scores on the dice is 8.

4 In a game of Scrabble, Dalene has the seven letters A, D, E, K, O, Q and S.
She picks two of these letters at random.
a What is the probability that one is a vowel and the other is the letter D?

b If the first letter she picks is a consonant, what is the probability that the
second letter is the E?

c Given that she picks the letter Q first, what is the probability that she picks
the letter D or the letter K second?

5 There are ten discs in a bag. Each disc has a number on it between 0 and 9.
Each number only appears once. Hamish picks two discs at random. Given
that the first disc drawn shows a multiple of 4, what is the probability that
a the sum of the numbers on the two discs is less than10

b the sum of the numbers on the two discs is even

c the difference between the two numbers on the discs is less than 3?
6 On any given day in June the probability of it raining is 0.24. The probability

of Suzanne cycling to work given that it is raining is 0.32. Find the probability
that Suzanne cycles to work and it is raining.

7 Events A and B are such that and The conditional

probability 

a Find 

b Are A and B exhaustive events? Give a reason for the answer.
8 The probability of Nick gaining a first class degree at university given that he

does 25 hours revision per week is 0.7. The probability that he gains a first
class degree and does 25 hours revision per week is 0.85. Find the probability
that he does 25 hours revision.

9 A team of two is to be picked from Alan, Bruce, Charlie and Danni.
a Draw a possibility space diagram to show the possible teams of two.
b What is the probability that if Danni is chosen, either Alan or Bruce will be

her partner?
c Given that Alan or Bruce are chosen, what is the probability that Danni will

be the other person?

P1A ´ B 2 .

P1A � B 2 � 0.

P1B 2 �
9
16

.P1A 2 �
4
13
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Alternatively, we could write the result as P1A ¨ B 2 � P1A � B 2 � P1B 2 .
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Example

A card is picked at random from a pack of 20 cards numbered 1, 2, 3, 
20. Given that the card shows an even number, find the probability that it is a
multiple of 4.

Let the event A be “picking a card showing a multiple of 4” and let the event B
be “picking a card showing an even number”.

Hence we require 

In this case and 

1 P1A � B 2 �

5
20
10
20

�
1
2

P1B 2 �
10
20

P1A ¨ B 2 �
5
20

P1A � B 2 �
P1A ¨ B 2

P1B 2

p ,

Example

Two tetrahedral dice are thrown; one is red and the other is blue. The faces are
marked 1, 2, 3, 4. Given that the red die lands on an odd number, the probability

that the sum of the scores on the dice is 6 is Find the probability that the

sum of the scores on the dice is 6 and the red die lands on an odd number.

Let A be the event “the sum of the scores is 6” and let B be the event “the red
die lands on an odd number”.

We know and 

Hence P1A ¨ B 2 � P1A � B 2 � P1B 2 �
1
8

�
1
2

�
1
16

P1B 2 �
1
2

P1A � B 2 �
1
8

1
8

.

If A and B are mutually exclusive events then since and it
follows that P1A � B 2 � 0.

P1B 2 � 0,P1A ¨ B 2 � 0

1 For two events A and B it is given that and

Find

a b
2 A bag contains 6 balls, each with a number between 4 and 9 written on it.

Each ball has a different number written on it. Find the probability that if two
balls are drawn
a the sum of the scores is greater than 12

b the second ball shows a 7, given that the sum of the scores is greater than 12

c the first ball is even, given that the difference between the numbers is 3.
3 Two tetrahedral dice are thrown. Find the probability that

a at least one of the dice shows a 3
b the difference between the scores on the two dice is 2

P1B � A 2P1A ¨ B 2

P1A � B 2 �
3
14

.

P1A 2 �
5

18
, P1B 2 �

5
9

Exercise 2

20.3 Independent events
If the occurrence or non-occurrence of an event A does not influence in any way the
probability of an event B then the event B is said to be independent of event A.

In this case 

Now we know that 

1 P˛1A ¨ B 2 � P˛1B 2 � P˛1A 2 � P˛1A 2 � P˛1B 2

P1A ¨ B 2 � P1B � A 2P1A 2

P1B � A 2 � P1B 2 .

For independent events, P1A and B 2 � P1A 2 � P1B 2 .

This is only true if A and
B are independent
events.

To tackle questions on independent events we sometimes use a possibility space diagram
but a more powerful tool is a tree diagram.



This is an example of sampling with replacement, which means that the probabilities do
not change from one event to the subsequent event. Below is an example of sampling
with replacement where they do change.
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Example

A man visits his local supermarket twice in a week. The probability that he pays
by credit card is 0.4 and the probability that he pays with cash is 0.6. Find the
probability that

a he pays cash on both visits
b he pays cash on the first visit and by credit card on the second visit.

We will use A to mean paying by cash and B to mean paying with a credit card.
The tree diagram is shown below.

AAA *

Second visit

0.36

Outcome ProbabilityFirst visit

A

B

0.6

0.4
0.6

0.6

0.4

0.4
ABB � 0.24

BAA 0.24

BBB 0.16

The probabilities of his method of payment are written on the branches.
By multiplying the probabilities along one branch we find the probability of one
outcome. Hence in this situation there are four possible outcomes. If we add all
the probabilities of the outcomes together, the answer will be 1.

a In this case we need the branch marked 

b In this case we need the branch marked .
P1AB 2 � 0.6 � 0.4 � 0.24

�

P1AA 2 � 0.6 � 0.6 � 0.36
*.

P(AA) means paying by
cash on the first visit
and on the second visit.

Example

A bag contains 3 red sticks, 5 white sticks and 2 blue sticks. A stick is taken from
the bag, the colour noted then replaced in the bag. Another stick is then taken.
Find the probability that

a both sticks are red
b a blue stick is drawn first and then a white stick
c one blue stick and one white stick are taken
d at least one stick is blue.

We will use R to mean taking a red stick, W to mean taking a white stick and B
to mean taking a blue stick. The tree diagram is shown below.

RR

RW

RB

Second selection Outcome ProbabilityFirst selection

R

W

B

3
10

3
10

5
10

5
10

2
10

2
10

3
10

5
10
2
10

3
10

5
10
2
10

9
100

15
100

15
100

25
100

10
100

10
100

6
100

4
100

6
100B

W

R *

B

W

R

B

W �

R

WR

WW

WB

BR

BW

BB

The probability of taking a certain colour of stick is written on the appropriate
branch.
By multiplying the probabilities along one branch we find the probability of one
outcome. Hence there are nine possible outcomes. If we add all the probabilities
of the outcomes together, the answer will be 1.

a We need the branch marked

b We need the branch marked .

c The order in which we take the blue stick and the white stick does not
matter. Thus we require the probability of taking a blue stick followed by a
white stick and the probability of taking a white stick followed by a blue
stick. Hence we use two separate branches and then add the answers. The
two branches required are marked and 

d We could add all the branches that contain an event B. Since we know the
total probability is 1, it is actually easier to subtract the probabilities of those
branches that do not contain an event B from 1. These are marked 

 1 P1at least one blue 2 �
26

100
�

13
50

� ¢ 5
10

�
3
10
≤r

¢ 3
10

�
5

10
≤ 1 P1at least one blue 2 � 1 � b¢ 3

10
�

3
10
≤ � ¢ 5

10
�

5
10
≤ �

 P1at least one blue 2      � 1 � 5P1RR 2 � P1WW 2 � P1RW 2 � P1WR 2 6

�.

P1BW 2 � P1WB 2 � ¢ 2
10

�
5
10
≤ � ¢ 5

10
�

2
10
≤ �

20
100

�
1
5

�.�

P1BW 2 �
2
10

�
5
10

�
10
100

�
1
10

�

P1RR 2 �
3
10

�
3
10

�
9

100

*. P(RR) means the
probability of taking a
red stick and then
taking another red
stick.

Example

A box contains 3 red balls, 5 blue balls and 4 yellow balls. Keith draws a ball
from the box, notes its colour and discards it. He then draws another ball from
the box and again notes the colour. Find the probability that

a both balls are yellow
b Keith draws a blue ball the first time and a yellow ball the second time
c Keith draws a red ball and a blue ball.

We will use R to mean drawing a red ball, B to mean drawing a blue ball and Y
to mean drawing a yellow ball. The tree diagram is shown below.



1 In a mathematics test the probability that Aly scores more than 70% is 0.6. In
a physics test the probability that he scores more than 70% is 0.5. What is
the probability that
a he scores more than 70% in both tests
b he scores more than 70% in only one test?

2 A cubical die is thrown twice.
a Draw a tree diagram to show the outcomes “throwing a three” and “not

throwing a three”.
b What is the probability that both dice show a three?
c What is the probability that neither dice shows a three?
d Draw a tree diagram to show the outcomes “throwing a number less than

four” and “throwing a number greater than or equal to four”.
e What is the probability that only one die shows a number less than four?
f What is the probability that at least one die shows a number less than four?

3 On any particular day, the probability that it rains is 0.2. The probability that a
soccer team will win is 0.6 if it is raining and 0.7 if it is not raining. The team
plays once in a week.
a Draw a tree diagram to show these events and their outcomes.
b What is the probability that it will rain and the team will win?
c What is the probability that the team will lose?
d Given that it is not raining, what is the probability that they will lose?
e Given that they win, what is the probability that it was raining?

4 Three fair coins are tossed. Each coin can either land on a head or a tail.
What is the probability of gaining
a three heads
b two heads and a tail
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We can also use tree diagrams to help us with conditional probability.
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a We need the branch marked 

b We need the branch marked .

c The order in which Keith takes the red ball and the blue ball does not
matter. We require the probability of taking a red ball followed by a blue
ball and the probability of taking a blue ball followed by a red. Hence we
use two separate branches and then add the answers. The two branches
required are marked and 

P1RB 2 � P1BR 2 � ¢ 3
12

�
5
11
≤ � ¢ 5

12
�

3
11
≤ �

30
132

�
5
22

�.�

P1BY 2 �
5
12

�
4
11

�
20
132

�
5
33

�

P1YY 2 �
4
12

�
3
11

�
1
11

*.

RR

RB

RY

Second selection Outcome ProbabilityFirst selection

R

B

Y

3
12

2
11

5
12

5
11

4
12

4
11

3
11

5
11
3
11

3
11

4
11
4
11

6
132

15
132

15
132

12
132

20
132

20
132

20
132

12
132

12
132

Y

B

R

*

Y

B

R

Y

B

�

R

BR

BB

BY

YR

YB

YY

Example

In the school canteen 60% of students have salad as a starter. Of the students
who have salad as a starter, 30% will have cheesecake as dessert. Of those who
do not have salad as a starter, 70% will have cheesecake as dessert.

a Show this information on a tree diagram.
b Given that Levi chooses to have salad as a starter, what is the probability

that he will choose cheesecake as dessert?
c Given that Levi does not have cheesecake as dessert, what is the probability

that he chose salad as a starter?

a We will use S to mean having salad and C to mean having cheesecake.

b We want to find We could use the formula here, but it can be

seen directly from the tree diagram that 
By the formula

c Here we want and in this situation it is easier to use the formula.

 �
0.6 � 0.3

10.6 � 0.3 2 � 10.4 � 0.7 2
�

9
23

 P1S � C 2 �
P1S ¨ C 2

P1C 2

P1S � C 2

 �
0.6 � 0.3

0.6
� 0.3

 P1C � S 2 �
P1C ¨ S 2

P1S 2
�

P1S ¨ C 2

P1S 2

P1C � S 2 � 0.3.

P1C � S 2 .

C

S

S

0.6

0.4
0.7

0.3

0.3

0.7

C

C

C

Exercise 3



12 Jane and John are playing a game with a biased cubical die. The probability
that the die lands on any even number is twice that of the die landing on
any odd number. The probability that the die lands on an even number is 

If the die shows a 1, 2, 3 or 4 the player who threw the die wins the 

game. If the die shows a 5 or a 6 the other player has the next throw. Jane 

plays first and the game continues until there is a winner.

a What is the probability that Jane wins on her first throw?
b What is the probability that John wins on his first throw?
c Calculate the probability that Jane wins the game.

13 The events A and B are independent. If and find
a P(B)
b the probability that A occurs or B occurs, but not both A and B.

14 Janet has gone shopping to buy a new dress. To keep herself entertained
whilst shopping she is listening to her iPod, which she takes off when she
tries on a new dress. The probability that she leaves her iPod in the shop is
0.08. After visiting two shops in succession she finds she has left her iPod in
one of them. What is the probability that she left her iPod in the first shop?

15 A school selects three students at random from a shortlist of ten students to
be prefects. There are six boys and four girls.
a What is the probability that no girl is selected?
b Find the probability that two boys and one girl are selected.

16 A and B are two independent events. and Find
a b c d

17 A soccer player finds that when the weather is calm, the probability of him
striking his target is 0.95. When the weather is windy, the probability of him
striking his target is 0.65. According to the local weather forecast, the 
probability that any particular day is windy is 0.45.
a Find the probability of him hitting the target on any randomly chosen day.
b Given that he fails to hit the target, what is the probability that the day is

calm?

P1B � A 2P1A � B 2P1A ´ B 2P1A ¨ B 2
P1B 2 � 0.12.P1A 2 � 0.25

P1B � A 2 � 0.2,P1A 2 � 0.4

2
9

.
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c a tail on the first toss followed by a head or a tail in either order on the second
toss

d at least one tail?
5 Two fair coins are tossed. Each coin can either land on a head or a tail.

a Show the possible outcomes on a tree diagram.
b What is the probability of getting at least one head?
A third coin is now tossed which is twice as likely to show heads as tails.
c Add an extra set of branches to the tree diagram to show the possible

outcomes.
d What is the probability of getting two heads and a tail?
e What is the probability of getting two tails and a head, given that the third

coin lands on tails?
6 The letters of the word PROBABILITY are placed in a bag. A letter is 

selected, it is noted whether it is a vowel or a consonant, and returned to
the bag. A second letter is then selected and the same distinction is noted.
a Draw a tree diagram to show the possible outcomes.
b What is the probability of noting two consonants?
c What is the probability of noting a vowel and a consonant?

7 A box contains 4 blue balls, 3 red balls and 5 green balls. Three balls are
drawn from the box without replacement. What is the probability that
a all three balls are green
b one ball of each colour is drawn
c at least one blue ball is drawn
d a pink ball is drawn
e no red balls are drawn?
f Given that the second ball is blue, what is the probability that the other

two are either both red, both green, or one each of red or green?
8 Bag A contains 6 blue counters and 4 green counters. Bag B contains 9 blue

counters and 5 green counters. A counter is drawn at random from bag A
and two counters are drawn at random from bag B. The counters are not
replaced.
a Find the probability that the counters are all blue.
b Find the probability that the counters are all the same colour.
c Given that there are two blue counters and one green counter, what is the

probability that the green counter was drawn from bag B?

9 Events A and B are such that and 

a Find 
b Find P(A).
c Show that A and B are not independent.

10 Six cards a placed face down on a table. Each card has a single letter on it.
The six letters on the cards are B, H, K, O, T and U. Cards are taken from the
table and not replaced. Given that the first card drawn shows a vowel, what
is the probability that the second card shows
a the letter B
b one of the first ten letters of the alphabet
c the letter T or the letter K?

11 Zahra catches the train to school every day from Monday to Friday. The
probability that the train is late on a Monday is 0.35. The probability that it
is late on any other day is 0.42. A day is chosen at random. Given that the
train is late that day, what is the probability that the day is Monday?

P1A ¨ B 2 .

P1A ´ B 2 �
4
5

.P1B 2 �
2
5

, P1A � B 2 �
1
3

20  Probability

574

20.4 Bayes’ theorem
We begin with the result

P1B � A 2 �
P1A � B 2 � P1B 2

P1A 2

Proof

We know 

and 

So 

This result can be written in a different form.

1 P1B � A 2 �
P1A � B 2 � P1B 2

P1A 2

P1A � B 2P1B 2 � P1B � A 2P1A 2

P1B � A 2 �
P1B ¨ A 2

P1A 2
�

P1A ¨ B 2

P1A 2
1 P1A ¨ B 2 � P1B � A 2P1A 2

P1A � B 2 �
P1A ¨ B 2

P1B 2
1 P1A ¨ B 2 � P1A � B 2P1B 2



We will now look at two examples that bring together a number of these results.
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From the Venn diagram we see that

Substituting into the formula for gives:P1B � A 2

 � P1B 2P1A � B 2 � P1B¿ 2P1A � B¿ 2

 � P1B 2  
P1A ¨ B 2

P1B 2
� P1B¿ 2  

P1A ¨ B¿ 2

P1B¿ 2

 P1A 2 � P1A ¨ B 2 � P1A ¨ B¿ 2
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A B

A�BA�B	

This is also a useful
result to remember.

P1B � A 2 �
P1A � B 2 � P1B 2

P1B 2P1A � B 2 � P1B¿ 2P1A � B¿ 2

This is known as Bayes’ theorem for two events and is used if we are given 
and need P1B � A 2 .

P1A � B 2

This question could have
been done using a tree
diagram and conditional
probability.

Example

A town has only two bus routes. Route A has twice as many buses as route B.

The probability of a bus running late on route A is and the probability of it

running late on route B is At a certain point on the route the buses run

down the same road. If a passenger standing at the bus stop sees a bus running
late, use Bayes’ theorem to find the probability that it is a route B bus.

Let the probability of a route B bus be P(B) and the probability of a bus being
late be P(L).
Since there are only two bus routes the probability of a route A bus is 

Bayes’ theorem states 

We are given that and 

1 P1B � L 2 �

1
10

�
1
3

¢1
3

�
1
10
≤ � ¢2

3
�

1
8
≤

�
2
7

P1L � B¿ 2 �
1
8

.P1B 2 �
1
3

, P1B¿ 2 �
2
3

, P1L � B 2 �
1
10

P1B � L 2 �
P1L � B 2 � P1B 2

P1B 2P1L � B 2 � P1B¿ 2P1L � B¿ 2
.

P1B¿ 2 .

1
10

.

1
8

“At least” problems
We have already met the idea of the total probability being one and that sometimes it is
easier to find a probability by subtracting the answer from one. In some situations we do
not have a choice in this, as shown in the example below.

Example

A student is practising her goal scoring for soccer. The probability that the ball
hits the net on any particular attempt is 0.7 and she does not improve with
practice.

a Find how many balls should be kicked so that the probability that she hits
the net at least once is greater than 0.995.

b Find how many balls should be kicked so that the probability that she does
not hit the net is less than 0.001.

We begin by drawing part of the tree diagram. Because we do not know how
many times she kicks the ball, the diagram potentially has an infinite number of
branches.

a From the tree diagram we can see that the only branch of the tree where
she never hits the net is the one marked
Thus

b In this case the branch of the tree diagram that we are interested in is
again the one marked 
We want

 1 n � 6

 1 n 7 5.73 p

 1 n 7

log 0.001

log 0.3

 1 n log 0.3 6 log 0.001

 1  log 0.3n
6 log 0.001

 0.3n
6 0.001

*.

 1 n � 5 since n H �

 1 n 7 4.40 p

 1 n 7

log 0.005

log 0.3

 1 n log 0.3 6 log 0.005

 1  log 0.3n
6 log 0.005

 1 0.3n
6 0.005

 1 � 10.3 2n 7 0.995

*.

H

H

H

0.7

0.3
0.7

0.7

0.3

0.3

0.3

0.3

0.3

H

H

H

H

H

H

*

Taking logs of both
sides

Using the laws of logs
from Chapter 5

The inequality changes
because log 0.3 is 
negative.
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Example

The results of a traffic survey on cars are shown below.

a What is the probability that a car is less than 3 years old?
b What is the probability that a car is grey or black?
c Are these independent events?
d Given that a car is grey, what is the probability that it is less than 3 years old?
e Given that a car is more than 6 years old, what is the probability that it is white?

a Since there are 300 cars in the survey, the probability that a car is less than
3 years old is

b Since these are mutually exclusive events, the probability that it is grey or
black is the probability that it is grey the probability that it is black

c We define the probability that a car is grey as P(G), the probability that a
car is black as P(B) and the probability that it is less than 3 years old as P(X ).
If these events are independent then 

Since this is not the same as the events are not independent.

d We require

e We begin by defining the probability that a car is white as P(W ) and the
probability that it is more than 6 years old as P(Y ).

We require 

 �

31
300
68
300

�
31
68

 P1W � Y 2 �
P1W ¨ Y 2

P1Y 2

 �

30
300
95
300

�
30
95

�
6
19

 P1X � G 2 �
P1X ¨ G 2

P1G 2

63
100

�

70
30
120
300

�
7
12

P 3 1B ´ G 2  � X 4 �
P 3 1B ´ G 2  ¨ X 4

P1X 2

P 3 1B ´ G 2  � X 4 � P1B ´ G 2 .

�
30 � 45 � 20

300
�

40 � 37 � 17
300

�
189
300

�
63
100

�

30 � 40 � 50
300

�
2
5

Less than Between 3 and More than
3 years old 6 years old 6 years old

Grey 30 45 20
Black 40 37 17
White 50 30 31

Example

Mike and Belinda are both keen cyclists and want to see who is the best cyclist.
They do this by competing in a series of independent races, and decide that the
best cyclist will be the one to win three races. These races only have the two of
them as contestants. However, the probability of either of them winning a race is
dependent on the weather. In the rain the probability that Mike will win is 0.8,
but when it is dry the probability that Mike will win is 0.3. In every race the
weather is either defined as rainy or dry. The probability that on the day of a race
the weather is rainy is 0.3.

a Find the probability that Mike wins the first race.
b Given that Mike wins the first race, what is the probability that the weather

is rainy?
c Given that Mike wins the first race, what is the probability that Mike is the

best cyclist?

Let the probability that Mike wins a race be P(M), the probability that Belinda
wins a race be P(B), and the probability that it rains be P(R).

a We begin by drawing a tree diagram.

b We require 

c We now draw a tree diagram showing the different ways that Mike and Belinda
can win three races. We now know that and from
part a.

P1B 2 � 0.55P1M 2 � 0.45

P1R ¨ M 2

P1M 2
�

0.3 � 0.8
0.45

�
8

15

P1M 2 � 0.3 � 0.8 � 0.7 � 0.3 � 0.45

M

R

R

0.3

0.7
0.3

0.8

0.7

0.2

B

B

M

0.45

0.45

0.55

0.55

B

M

B

M

M

B

M

M

M

M

0.45

0.55

B

M

0.45 M

B

0.55

0.45

0.55

0.45
0.45

0.45

0.45 M

Since it is given that Mike has won the first race we can ignore this part of
the tree diagram.



9 Bill and David decide to go out for the day. They will either go to the beach
or go to the mountains. The probability that they will go to the beach is 0.4.
If they go to the beach the probability that they will forget the sunscreen 
is 0.1 and if they go to the mountains the probability they will forget the
sunscreen is 0.35. They forget the sunscreen. Use Bayes’ theorem to 
determine the probability that they go to the mountains.

10 Jerry and William play squash every week. In a certain week the probability
that Jerry will win is 0.6. In subsequent weeks the probabilities change 
depending on the score the week before. For the winner, the probability of
winning the following week increases by a factor of 1.05. For the loser, the
probability of winning the following week remains unchanged.
a What is the probability that Jerry wins the first week and loses the second

week?
b What is the probability that William wins for three consecutive weeks?
c Given that Jerry wins the first week, what is the probability that William

wins for the following two weeks?
d How many games must William play to have less than a 1% chance of

always winning?
11 In a class of students, there are five students with blue eyes, seven students

with brown eyes, four students with hazel eyes and four students with
green eyes. It is found in this class that it is only boys who have either blue
or green eyes and only girls who have brown or hazel eyes. Three students
are chosen at random.
a What is the probability that all three have blue eyes?
b What is the probability that exactly one student with brown eyes is

chosen?
c What is the probability that two girls are chosen given that exactly one

blue-eyed boy is chosen?
d What is the probability that the group contains exactly one hazel-eyed girl

or exactly one green-eyed boy or both?
12 Arnie, Ben and Carl are going out for the night and decide to meet in town.

However, they cannot remember where they decided to meet. Arnie cannot re-
member whether they were meeting in the square or outside the cinema. To
make a decision he flips an unbiased coin. Ben cannot remember whether they
were meeting outside the cinema or outside the theatre. He also flips a coin, but
the coin is biased. The probability that it will land on a head is 0.6. If it lands on
a head he will go to the cinema, but if it lands on a tail he will go to the theatre.
Carl knows they are meeting either in the square, outside the cinema or outside
the theatre. He flips an unbiased coin. If it lands on heads he goes to the the-
atre, but if it lands on tails he flips again. On the second flip, if it lands on heads
he goes to the square and if it lands on tails he goes to the theatre.
a What is the probability that Arnie and Ben meet?
b What is the probability that Ben and Carl meet?
c What is the probability that all three meet?
d Given that Carl goes to the cinema, what is the probability that all three

will meet?
13 To promote the sale of biscuits, a manufacturer puts cards showing pictures

of celebrities in the packets. There are four different celebrities on the cards.
Equal numbers of cards showing each celebrity are randomly distributed in
the packets and each packet has one card.
a If Ellen buys three packets of biscuits, what is the probability that she gets

a picture of the same celebrity in each packet?
b If she buys four packets and the first packet she opens has a card with a

picture of celebrity A, what is the probability that the following three
packets will contain cards with celebrity B on them?

20  Probability

581

1 Shonil is practising playing darts. The probability that he hits the dartboard is 0.6.
a Find the probability that he hits the dartboard at least once in four throws.
b How many darts must he throw in order that the probability that he hits the

dartboard at least once is greater that 0.99?
c How many darts must Shonil throw in order that the probability that the

dartboard is not hit is less than 0.01?
2 A die is biased such that the probability of throwing a six is 0.2.

a Find the probability of throwing at least one six in the first eight throws.
b How many times must the die be thrown in order that the probability of

getting at least one six is greater than 0.995?
3 To proceed to the second round in a mathematics competition, Katie must

get at least one of the four questions in the first round completely correct.
The probability that she gets a question completely correct is 0.65. What is
the probability that she proceeds to the second round?

4 Terri and Robyn are playing a game with a tetrahedral die. Terri goes first and
they take turns at throwing the die. The first person to throw a one is the
winner. What is the probability that Robyn wins?

5 Ayesha cycles to school. She has a choice of two routes, route A and route B.
She is three times more likely to travel by route A than route B. If she travels
by route A the probability that she will be late is 0.1 and if she travels by
route B the probability that she will be late is 0.15. On a particular Monday
Ayesha is late for school. Use Bayes’ theorem to find the probability that she
travelled by route A.

6 Ali should take two examinations, one in mathematics and one in English. On
the day of the examinations, he takes only one. He is five times more likely to
take mathematics than English. If he takes mathematics the probability that
he passes is 0.9 and if he takes English the probability that he passes is 0.8.
Ali passes the examination. Use Bayes’ theorem to find the probability that he
took mathematics.

7 Nicolle goes shopping to buy a present for her partner Ian. She has the
choice of buying him a book or a DVD. She is four times more likely to buy
him a book than a DVD. If she buys a book the probability that she pays with
cash is 0.4 and if she buys a DVD the probability that she pays cash is 0.65.
She pays cash for the present. Use Bayes’ theorem to find the probability that
Nicolle bought Ian a book.

8 In class 12A there are 30 students. 12 of the students hope to go to university
A, 8 students hope to go to university B, 4 students hope to go to university C
and 6 students hope to go to university D.
a Four students are picked at random.

i What is the probability that all four hope to go to university A?
ii What is the probability that all four hope to go to the same university?
iii Given that the first person picked hopes to go to university A, what is

the probability that the other three hope to go to university B?
b Find the probability that exactly four students will be selected before a

student who hopes to go to university C is selected.
580

Hence the probability that Mike is the best cyclist

 � 0.609

� 10.55 � 0.55 � 0.45 � 0.45 2

� 0.45 2 � 10.55 � 0.45 � 0.45 2  � 10.55 � 0.45 � 0.55 � 0.45 2

10.45 � 0.55 � 0.55 � 10.45 � 0.45 2 � 10.45 � 0.55 � 0.45 2 �
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c Ellen’s favourite celebrity is celebrity B. How many packets must she buy to
have at least a 99.5% chance of having at least one picture of celebrity B?

14 At the ninth hole on Sam’s local golf course he has to tee off over a small
lake. If he uses a three wood, the probability that the ball lands in the lake is
0.15. If he uses a five wood, the probability that the ball lands in the lake 
is 0.20. If he uses a three iron, the probability that the ball lands in the lake
is 0.18. If he tees off and the shot lands in the lake, he has to tee off again.
a What is the probability that if he tees off with a three wood, he needs

three shots to get over the lake?
b Sam decides that if his shot lands in the lake on the first tee off, on the

next tee off he will use a different club. He uses the three wood for the
first shot, the five wood for the second, the three iron for the third and
then returns to the three wood for the fourth and continues in that order.
i What is the probability that he successfully tees off over the lake on his

second use of the three wood?
ii Given that he uses a three wood twice, what is the probability that he

successfully hits over the lake on his sixth shot?

15 An author is writing a new textbook. The probability that there will be a

mistake on a page is if he is writing in the evening and if he is 

writing in the morning.

a What is the probability that if he is writing in the morning there is one
mistake on each of three consecutive pages?

b How many pages must he write in the evening for there to be a greater
than 99% chance of at least one error?

c He writes page 200 of the book in the morning, page 201 in the evening and
page 202 in the morning. Given that page 201 has no mistakes on it, what is
the probability that both pages 200 and 202 have a mistake on them?

1
30

1
20
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20.5 Permutations and combinations
We met the idea of permutations and combinations in Chapter 6. A combination of a
given number of articles is a set or group of articles selected from those given where the
order of the articles in the set or group is not taken into account. A permutation of a
given number of articles is a set or group of articles selected from those given where the
order of the articles in the set or group is taken into account. At that point we looked at
straightforward questions and often used the formulae to calculate the number of
permutations or combinations. We will now look at some more complicated examples
where the formulae do not work directly.

Permutations

Example

How many arrangements can be made of three letters chosen from the word
PLANTER if the first letter is a vowel and each arrangement contains three
different letters?

We split this into two separate calculations.
Assume we begin with the letter A. Hence the other two letters can be chosen
in 
If we begin with the letter E, then the other two letters can also be chosen in 30
ways.
Since these are the only two possibilities for beginning with a vowel, there are

possible permutations.30 � 30 � 60

6 � 5 ways � 30 ways.

Example

How many three-digit numbers can be made from the set of integers
if

a the three digits are all different
b the three digits are all the same
c the number is greater than 600
d the number is even and each digit can only be used once?

a The first digit can be chosen in nine ways.
The second digit can be chosen in eight ways.
The third digit can be chosen in seven ways.

b If the three digits are all the same then there are nine possible three-digit
numbers, since the only possibilities are 111, 222, 333, 444, 555, 666,
777, 888 and 999.

c If the number is greater than 600 then there are only four choices for the
first digit: 6, 7, 8 or 9.
The second and third digits can each be chosen in nine ways.

d In this case we start with the last digit as this is the one with the restriction.
The last digit can be chosen in four ways.
The other two digits can be chosen in eight ways and seven ways
respectively.

1 Total number of three-digit numbers � 4 � 8 � 7 � 224

1 Total number of three-digit numbers � 4 � 9 � 9 � 324

� 9�8 �7�504

1 Total   number  of  three-digit  numbers  that  are  all  different

51, 2, 3, 4, 5, 6, 7, 8, 96

Example

Find the number of two- and three-digit numbers greater than 20 that can be
made from 1, 2 and 3, assuming each digit is only picked once.

We split this into the two separate problems of finding the two-digit numbers
and the three-digit numbers.
For the two-digit numbers, the first digit must be either a 2 or a 3. Hence there
are two ways of picking the first digit. The second digit can also be picked in
two ways as we can choose either of the two left.

For the three-digit number, this is just the number of permutations, which is

1Total number of two- and three-digit numbers greater than 20�4�6 � 10
3! � 6.

1 Total number of two-digit numbers � 2 � 2 � 4

Example

In how many ways can six people be sat around a circular dining table?

At first this appears to be a simple permutation, where the answer is 6! However,
if we look at the two situations below, where the chairs are labelled from 1 to 6
and the people from A to F, we can see that they appear as different permutations,
but are actually the same.
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Hence for every permutation of people sat around the table, there are five more
permutations which are the same and hence the answer is six times too big.
These are shown in the diagram below.

For any situation like
this the answer can be
generalised to 1n � 1 2!

A
1

4

26

35

B

CE

F

D

F
1

4

26

35

A

BD

E

C

A

D

BF

CE

F

C

AE

BD

E

B

FD

AC

D

A

EC

FB

C

F

DB

EA

B

E

CA

DF

Therefore the number of ways that six people can be sat around a circular dining

table is 
6!
6

� 5! � 120.

Example

Jenny is making a necklace. In how many ways can 4 beads chosen from 12
beads be threaded on a string?

This is similar to the example above. As with the example above the answer
needs to be divided by 4 because of the repetitions caused

by the fact that it is on a circle. However in this situation there is another 
constraint because the necklace can be turned over giving an equivalent answer.
In the diagrams below, these two situations are actually the same, but appear as
two separate permutations of the answer.

12 � 11 � 10 � 9

BA

CD

AB

DC

Hence we need to divide the answer by 2.

Therefore the number of permutations is 
12 � 11 � 10 � 9

4 � 2
� 1485

Example

a Find the number of arrangements of the letters of the word LITTER.
b Find the number of arrangements where the T’s are together.
c Find the number of arrangements where the T’s are separated.

a In this question we treat it as a simple permutation and hence the answer
would appear to be 6! However, the two T’s are indistinguishable and hence

and are actually the same arrangement but appear as two
separate permutations. As this happens in every single case the number of

arrangements is 

b With the T’s together we treat the two T’s as one letter. If we give TT the symbol
then we are finding the permutations of LI ER, which are 

arrangements.
c For the T’s separated, we remove the T’s initially and find the number of permutations

of LIER which is 4!
If we now consider the specific permutation REIL, then the two T’s can be
placed in two of five positions. This is shown in the diagram below.

5! � 120™™,

6!
2!

� 360.

LIT2T1LELIT1T2LE

Hence for the permutation REIL there are ways of positioning the

T’s. As this can happen with each of the 4! permutations of the four letters,

then the total number of permutations is arrangements.
We could also think about this another way. As we know the total number of
arrangements is 360 and the T’s either have to be together or separated then
the number of arrangements where they are separated is 360 minus the
number of arrangements where they are together.
This gives arrangements.360 � 120 � 240

4! � 10 � 240

5C˛2 � 10

R

1 2 3 4 5

E I L

Example

Find the number of arrangements of the letters in the word REFERENCE where
the E’s are separated.

We begin by considering RFRNC. The number of arrangements of these letters

is since the two R’s are indistinguishable. 

Again considering one possible arrangement of the letters, say RFNRC, the
positions that the three E’s can take are shown below.

5!
2!

R

1 2 3 4 5

F R N

6

C

We need to find the number of combinations of four from six positions, which

is 

Hence the number of arrangements where the E’s are separated is
5!
2!

� 15 � 900.

6C˛4 � 15.
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Because of the actual situation, every person has the same people on either side
in both cases. If the chairs had been distinguishable, then this would no longer
be the case.



1 In how many ways can six different files be arranged in a row on a desk?
2 In how many ways can two boys and two girls be chosen from a group of

15 boys and 18 girls?
3 In how many ways can four different letters be put in four different

envelopes?
4 In how many ways can three different coats be arranged on five hooks in a

row?
5 Giulia has ten different mathematics books and four different chemistry

books. In how many ways can she arrange seven of the mathematics books
and one chemistry book on a shelf if the chemistry book must always be at
one end?

6 In how many ways can the letters of the word PHOTOGRAPH be arranged?
7 Two sets of books contain seven different novels and four different

autobiographies. In how many ways can the books be arranged on a shelf 
if the novels and the autobiographies are not mixed up?

8 I now many ways can ten different examinations be arranged so that the
two mathematics examinations are not consecutive and the two French
examinations are not consecutive?

9 Given that each digit can be used more than once, how many two-digit
numbers can be made from the set if
a any two digits can be used
b the two digits must be the same
c the number must be odd
d the number must be greater than 60?

10 A quiz team of five students is to be chosen from nine students. The two
oldest students cannot both be chosen. In how many ways can the quiz
team be chosen?

11 Consider the letters of the word DIFFICULT.
a How many different arrangements of the letters can be found?
b How many of these arrangements have the two I’s together and the two

F’s together?
c How many of the arrangements begin and end with the letter F?

12 Margaret wants to put eight new plants in her garden. They are all
different.
a She first of all decides to plant them in a row. In how many ways can she

do this?
b She then decides that they would look better in a circle. In how many

ways can she do this?
c She now realizes that two of the plants are identical. How many

arrangements are there for planting them in a row and for planting them in
a circle?

13 a How many different arrangements of the word ARRANGEMENT can be
made?

b How many arrangements are there which start with a consonant and end
with a vowel?

52, 4, 6, 7, 8, 96
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Combinations

20  Probability

586

Example

A team of 4 children is to be selected from a class of 20 children, to compete in
a quiz game. In how many ways can the team be chosen if

a any four can be chosen
b the four chosen must include the oldest in the class?

a This is a straightforward combination with an answer of 

b In this situation we remove the oldest in the class since this child has to

be part of every group. Hence the problem is actually to find how many

teams of 3 children can be found from 19. Therefore the number of

teams is 19C˛3 � 969.

20C˛4 � 4845.

Example

Ten students in a class are divided into two groups of five to play in a five-a-side
soccer tournament. In how many ways can the two teams of five be selected?

This appears to be very similar to the example above, but there is a subtle 
difference. The number of ways of selecting a team of five is Let
us imagine that the chosen team is ABCDE. Hence the other team would 
automatically be FGHIJ. However another possible combination of a team of
five would be FGHIJ and this would then automatically select the other team as
ABCDE. In other words the calculation picks each pair of teams twice. Hence

the actual number of teams is
10C˛5

2
� 126.

10C˛5 � 252.

Example

Anisa goes into her local supermarket and finds that there are 20 different types
of chocolate on offer and 15 different types of soft drink. She wants to buy
seven different bars of chocolate and four different cans of soft drink for herself
and her friends. Find the number of different ways in which she can do this.

The number of ways she can choose seven bars of chocolate is 

The number of ways she can choose four cans of soft drink is 
Since with any particular combination of chocolate bars she can put all the
particular combinations of cans of soft drink, the total number of choices is
77 520 � 1365 � 105 814 800.

15C˛4 � 1365.

20C˛7 � 77 520.

Example

A box contains four red, two blue, one yellow and one pink ball. How many 
different selections of three balls may be made?

All three the same: The only possibility here is three red balls and hence there is
only one way of doing this.
Two the same, one different: There are two possibilities for two the same, red
and blue. The third ball can then be chosen from any of the others, so there are

three possibilities because we cannot choose the same colour again. Therefore
the total number of ways is 

All three different: Since there are four different colours of ball this is 
Hence the number of different selections that can be made is 1 � 6 � 4 � 11.

4C˛3 � 4.

2 � 3 � 6.
Unlike the previous 
example, we added the
combinations here as
opposed to multiplying
them.

Exercise 5



a husband and wife cannot both be in the team, in how many ways can the
team be formed?

27 Nick goes to the shop to buy seven different packets of snacks and four
bottles of drink. At the shop he find he has to choose from 15 different
packets of snacks and 12 different bottles of drink. In how many different
ways can he make his selection?

28 In how many ways can three letters from the word BOOKS be arranged in a
row if at least one of the letters is O?
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14 Jim is having a dinner party for four couples.
a In how many ways can the eight people be seated at Jim’s circular dining

table?
b John and Robin are a couple, but do not want to sit next to each other at

the dinner party. In how many ways can the eight people now be seated?
c Jim decides that the two oldest guests should sit next to each other. In

how many ways can the eight people now be seated?

15 a How many numbers greater than 300 can be made from the set
if each integer can be used only once?

b How many of these numbers are even?
16 a A local telephone number has seven digits and cannot start with zero.

How many local numbers are there?
b The telephone company realizes that they do not have enough numbers. It

decides to add an eighth digit to each number, but insists that all the eight-
digit numbers start with an odd number and end with an even number. The
number still cannot start with a zero. Does this increase or decrease the
number of possible telephone numbers and if so by how many?

17 a How many different arrangements are there of the letters of the word
INQUISITION?

b How many arrangements are there where the four I’s are separate?
c How many arrangements are there where the S and the T are together?

18 Five different letters are written and five different envelopes are addressed.
In how many ways can at least one letter be placed in the wrong envelope?

19 On an examination paper of 20 questions a student obtained either 6 or 7
marks for each question. If his total mark is 126, in how many different
ways could he have obtained this total?

20 Four boxes each contain six identical coloured counters. In the first box the
counters are red, in the second box the counters are orange, in the third
box the counters are green and in the fourth box the counters are purple. In
how many ways can four counters be arranged in a row if
a they are all the same
b three are the same and one is different
c they are all different
d there is no restriction on the colours of the counters?

21 a In how many ways can six different coloured beads be arranged on a
ring?

b If two beads are the same colour, how many ways are there now?
22 a How many different combinations of six numbers can be chosen from the

digits 1, 2, 3, 4, 5, 6, 7, 8 if each digit is only chosen once?
b In how many ways can the digits be divided into a group of six digits and

a group of two digits?
c In how many ways can the digits be divided into two groups of four digits?

23 A shop stocks ten different types of shampoo. In how many ways can a
shopper buy three types of shampoo if
a each bottle is a different type
b two bottles are the same type and the third is different?

24 A mixed team of 10 players is chosen from a class of 25 students. 
15 students are boys and 10 students are girls. In how many ways can this
be done if the team has five boys and five girls?

25 Find the number of ways in which ten people playing five-a-side football
can be divided into two teams of five if Alex and Bjorn must be in different
teams.

26 A tennis team of four is chosen from seven married couples to represent a
club at a match. If the team must consist of two men and two women and

51, 2, 5, 76
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20.6 Probability involving permutations and
combinations

Sometimes we can use the idea of permutations and combinations when solving questions
about probability.

Example

From a group of 12 people, 8 are chosen to serve on a committee.
a In how many different ways can the committee be chosen?
b One of the 12 people is called Sameer. What is the probability that he will

be on the committee?
c Among the 12 people there is one married couple. Find the probability that

both partners will be chosen.
d Find the probability that the three oldest people will be chosen.

a This is the combination which acts as the total possibility

space.
b Since Sameer must be on the committee, we need to choose 7 people

from 11. This can be done in ways. Hence the probability that

Sameer will be on the committee is 

c As in part b, we know that the married couple will be on the committee and

need to choose six people from ten. This can be done in ways.

Hence the probability that the married couple will be on the committee is

d Since the three oldest people have been chosen, we now choose the other

five people from the nine remaining. This can be done in ways.

Hence the probability that the three oldest people will be on the committee

is 
126
495

�
14
55

.

9C˛5 � 126

210
495

�
14
33

.

10C˛6 � 210

330
495

�
2
3

.

11C˛7 � 330

12C˛8 � 495,

Example

Four letters are picked from the word EXAMPLES.
a How many different arrangements are there of the four letters?
b What is the probability that the arrangement of four letters will not contain

a letter E?
c What is the probability that the arrangement will contain both of the letter E’s?



c The ten people consist of five men and five women. What is the probability
that no two men and no two women are sat next to each other?

3 Allen is predicting the results of six soccer matches.
a In how many ways can he predict exactly four correct results?
b His favourite team is A and they are playing in one of the six matches. Given

that he predicts exactly four correct results, what is the probability that he
will predict correctly the result of the match in which team A are playing?

4 Consider the letters of the word EATING.
a How many different arrangements of four letters can be formed?
b What is the probability that the four-letter arrangement contains the letter A?
c What is the probability that the four-letter arrangement contains either the

letter T or the letter G, but not both?
5 At a local squash club there are 40 members. League A consists of six people.

a If league A is made up randomly from the 40 members, in how many
different ways can league A be made?

b What is the probability that league A will contain the oldest member of
the club?

c Given that league A contains the oldest member of the club, what is the
probability that it also contains the youngest?

6 Six letters are picked from the word CULTURES.
a How many different arrangements of six letters can be formed?
b What is the probability that an arrangement contains exactly one U?
c Given that the arrangement contains both U’s, what is the probability that

both U’s are together at the start of the arrangement?
7 a How many even numbers less than 500 can be formed from the digits 2, 4,

5, 7 and 9?
b An even number is picked at random.

i What is the probability that it is a two-digit number?
ii What is the probability that it is greater than 500?
iii What is the probability that it is a three-digit number beginning with 4?

8 Laura has ten plants to put in a row along the fence of her garden. There are
four identical roses, four identical clematis and two identical honeysuckle.
a In how many different ways can she plant them along the fence?
b What is the probability that the four roses are all together?
c What is the probability that there is a honeysuckle at each end of the row?
d What is the probability that no clematis is next to another clematis?

9 A committee meeting takes place around a rectangular table. There are six
members of the committee and six chairs. Each position at the table has
different papers at that position.
a How many different arrangements are there of the six committee members

sitting at the table?
b Two friends Nikita and Fatima are part of the committee. What is the

probability that either of them sit at the table with papers A and B in front
of them?

c The only two men on the committee are Steve and Martin. What is the
probability that they sit in positions C and F respectively?

10 Jim is trying to arrange his DVD collection on the shelf. He has ten DVDs,
three titles starting with the letter A, four titles starting with the letter C and
three titles starting with the letter S. Even though they start with the same
letter the DVDs are distinguishable from each other.
a In how many ways can Jim arrange the DVDs on the shelf?
b What is the probability that the four starting with the letter C will be together?
c What is the probability that no DVD starting with the letter A will be next

to another DVD starting with the letter A?
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1 A group of three boys and one girl is chosen from six boys and five girls.
a How many different groups can be formed?
b What is the probability that the group contains the oldest boy?
c What is the probability that it contains the youngest girl?
d Within the six boys there are two brothers. What is the probability that the

group contains both brothers?
2 a In how many ways can ten people be sat around a circular table?

b Within the ten people there are two sisters.
i What is the probability that the sisters will sit together?
ii What is the probability that the sisters will not sit together?

590

d Given that the arrangement contains both of the letter E’s, what is the
probability that the two letter E’s will be separated?

a Because of the repetition of the letter E we need to do this in groups.

Consider XAMPLS. The number of arrangements of four letters is 

Consider XAMPLSE with the condition that the arrangement must contain

one E. To do this we find the number of permutations of three letters from

Within each of these permutations there are four

positions that the E can take. This is shown below, using XAM as an example.

XAMPLS � 6P˛3 � 120.

6P˛4 � 360.

Hence the number of permutations that contain one E is 

Consider XAMPLSEE with the condition that the arrangement must contain

two E’s. To do this we find the number of permutations of two letters from

Within each of these permutations there are five

positions that the two E’s can take. These are shown below, using XA as an

example.
EEXA EXEA EXAE
XAEE XEEA

The number of permutations that contain two E’s is Hence

the total possible number of arrangements is 

b Since the total number of arrangements is 870 and the number that do

not contain an E is 360, the probability is 

c Since the total number of arrangements is 870 and the number that

contain both E’s is 150, the probability is 

d Because this is a conditional probability question we are limiting the sample
space to only containing two E’s. Consider the permutation PL. The two E’s
can be positioned as shown below.

EEPL EPEL EPLE
PLEE PEEL

Hence for any permutation of two letters, two out of the 5 cases will have the

letter E’s separated. This is true for every permutation of two letters. Hence the

probability is 
2
5

.

150
870

�
5
29

.

360
870

�
12
29

.

� 870.240 � 480 � 150

5 � 30 � 150.

XAMPLS � 6P˛2 � 30.

4 � 120 � 480.

X

1 2 3 4

A M
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11 A committee of five people is to be chosen from five married couples. In
how many ways can the committee be chosen if
a there are no restrictions on who can be on the committee
b the committee must contain at least one man and at least one woman
c the committee must contain the youngest man
d both husband and wife cannot be on the committee?

12 In a bilingual school there is a class of 21 pupils. In this class, 15 of the
pupils speak Spanish as their first language and 12 of these 15 pupils are
Argentine. The other 6 pupils in the class speak English as their first
language and 3 of these 6 pupils are Argentine. A pupil is selected at random
from the class and is found to be Argentine. Find the probability that the
pupil speaks Spanish as his/her first language. [IB May 99 P1 Q8]

13 How many different arrangements, each consisting of five different digits,
can be formed from the digits 1, 2, 3, 4, 5, 6, 7, if
a each arrangement begins and ends with an even digit
b in each arrangement odd and even digits alternate? [IB Nov 96 P1 Q12]

14 Three suppliers A, B and C produce respectively 45%, 30% and 25% of the
total number of a certain component that is required by a car manufacturer.
The percentages of faulty components in each supplier’s output are, again
respectively, 4%, 5% and 6%. What is the probability that a component
selected at random is faulty? [IB May 96 P1 Q4]

15 a How many different arrangements of the letters of the word DISASTER
are there?

b What is the probability that if one arrangement is picked at random, the
two S’s are together?

c What is the probability that if one arrangement is picked at random, it will
start with the letter D and finish with the letter T?

16 Note: In this question all answers must be given exactly as rational numbers.
a A man can invest in at most one of two companies, A and B. The 

probability that he invests in A is and the probability that he invests in B

is otherwise he makes no investment. The probability that an

investment yields a dividend is for company A and for company B.

The performances of the two companies are totally unrelated. Draw a 
probability tree to illustrate the various outcomes and their probabilities.
What is the probability that the investor receives a dividend and, given
that he does, what is the probability that it was from his investment in
company A?

b Suppose that a woman must decide whether or not to invest in each
company. The decisions she makes for each company are independent 

and the probability of her investing in company A is while the

probability of her investing in company B is Assume that there are the

same probabilities of the investments yielding a dividend as in part a.
i Draw a probability tree to illustrate the investment choices and whether

or not a dividend is received. Include the probabilities for the various
outcomes on your tree.

ii If she decides to invest in both companies, what is the probability that
she receives a dividend from at least one of her investments?

iii What is the probability that she decides not to invest in either company?
iv If she does not receive a dividend at all, what is the probability that she

made no investment? [IB May 96 P2 Q4]

6
10

.

3
10

2
3

1
2

2
7

,

3
7
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d Given that the three DVDs starting with the letter S are together, what is the
probability that the three DVDs starting with the letter A will be together?
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A calculator may be used in all questions in this exercise where necessary.

1 In a group of 30 boys, they all have black hair or brown eyes or both. 20 of
the boys have black hair and 15 have brown eyes. A boy is chosen at random.
a What is the probability that he has black hair and brown eyes?
b Are these two events independent, mutually exclusive or exhaustive? Give

reasons.
2 Roy drives the same route to school every day. Every morning he goes

through one set of traffic lights. The probability that he has to stop at the
traffic lights is 0.35.
a In a five-day week, what is the probability that he will have to stop on at

least one day?
b How many times does Roy have to go through the traffic lights to be able

to say that there is a 95% chance that he will have to stop?
3 There are ten seats in a waiting room. There are six people in the room.

a In how many different ways can they be seated?
b In the group of six people, there are three sisters who must sit next to each other.

In how many different ways can the group be seated? [IB May 06 P1 Q19]
4 Tushar and Ali play a game in which they take turns to throw an unbiased

cubical die. The first one to throw a one is the winner. Tushar throws first.
a What is the probability that Tushar wins on his first throw?
b What is the probability that Ali wins on his third throw?
c What is the probability that Tushar wins on his nth throw?

5 A bag contains numbers. It is twice as likely that an even number will be
drawn than an odd number. If an odd number is drawn, the probability that 

Chris wins a prize is If an even number is drawn, the probability that 

Chris wins a prize is Chris wins a prize. Use Bayes’ theorem to find the 

probability that Chris drew an even number.
6 In how many ways can six different coins be divided between two students

so that each student receives at least one coin? [IB Nov 00 P1 Q19]
7 a In how many ways can the letters of the word PHOTOGRAPH be arranged?

b In how many of these arrangements are the two O’s together?
c In how many of these arrangements are the O’s separated?

8 The local football league consists of ten teams. Team A has a 40% chance
of winning any game against a higher-ranked team, and a 75% chance of
winning any game against a lower-ranked team. If A is currently in fourth
position, find the probability that A wins its next game. [IB Nov 99 P1 Q13]

9 Kunal wants to invite some or all of his four closest friends for dinner.
a In how many different ways can Kunal invite one or more of his friends to dinner?
b Mujtaba is his oldest friend. What is the probability that he will be invited?
c Two of his closest friends are Anna and Meera. What is the probability that

they will both be invited?
10 The probability of Prateek gaining a grade 7 in Mathematics HL given that

he revises is 0.92. The probability of him gaining a grade 7 in Mathematics
HL given that he does not revise is 0.78. The probability of Prateek revising is
0.87. Prateek gains a grade 7 in Mathematics HL. Use Bayes’ theorem to
find the probability that he revised.

5
16

.

3
16

.
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17 An advanced mathematics class consists of six girls and four boys.
a How many different committees of five students can be chosen from this

class?
b How many such committees can be chosen if class members Jack and Jill

cannot both be on the committee?
c How many such committees can be chosen if there must be more girls

than boys on the committee? [IB Nov 95 P1 Q12]

18 Each odd number from 1 to 3n, where and n is odd, is written on a
disc and the discs are placed in a box.
a How many discs are there in the box?
b What is the probability, in terms of n, that a disc drawn at random from

the box has a number that is divisible by 3? [IB May 95 P1 Q19]
19 A box contains 20 red balls and 10 white balls. Three balls are taken from

the box without replacement. Find the probability of obtaining three white 
balls. Let be the probability that k white balls are obtained. Show by 

evaluating and that [IB Nov 87 P1 Q19]

20 Pat is playing computer games. The probability that he succeeds at level 1 is
0.7. If he succeeds at level 1 the next time he plays he goes to level 2 and 

the probability of him succeeding is the probability of him succeeding on

level 1. If he does not succeed he stays on level 1. If he succeeds on level 2 he

goes to level 3 where the probability of him succeeding is the probability of

him succeeding on level 2. If he fails level 2 he goes back to level 1 

with the initial probability of success. If he succeeds on level 3 he goes to 

level 4 where the probability of success is again the probability of him 

succeeding on level 3. If he fails on level 3 he goes back to level 2 and the
probability of success is again the same as it was before. This continues in all
games that Pat plays.
a What is the probability that after the third game he is on level 2?
b What is the probability that after the fourth game he is on level 1?
c What is the probability that after the third game he is on level 2?
d Given that he wins the first game, what is the probability that after the

fourth game he is on level 3?
21 In Kenya, at a certain doctor’s surgery, in one week the doctor is consulted

by 90 people all of whom think they have malaria. 50 people test positive
for the disease. However, the probability that the test is positive when the
patient does not have malaria is 0.05 and the probability that the test is
negative when the patient has malaria is 0.12.
a Find the probability that a patient who tested positive in the surgery has

malaria.
b Given that a patient has malaria, what is the probability that the patient

tested negative?
c Given that a patient does not have malaria, what is the probability that the

patient tested positive?

2
3

2
3

2
3

a
k�3

k�0
p˛k � 1.p˛3p˛0, p˛1, p˛2

p˛k

n H �
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In this chapter we will meet
the concept of a discrete
probability distribution and
one of these is called the
Poisson distribution.This was
named after Siméon-Denis
Poisson who was born in
Pithivier in France on 21
June 1781. His father was a
great influence on him and it
was he who decided that a
secure future for his son
would be the medical
profession. However,
Siméon-Denis was not suited
to being a surgeon, due to
his lack of interest and also
his lack of coordination. In
1796 Poisson went to
Fontainebleau to study at the
École Centrale, where he
showed a great academic talent, especially in mathematics. Following his success
there, he was encouraged to sit the entrance examinations for the École
Polytechnique in Paris, where he gained the highest mark despite having had much
less formal education than most of the other entrants. He continued to excel at the
École Polytechnique and his only weakness was the lack of coordination which made
drawing mathematical diagrams virtually impossible. In his final year at the École
Polytechnique he wrote a paper on the theory of equations that was of such a high
quality that he was allowed to graduate  without sitting the final examinations. On
graduation in 1800, he became répétiteur at the École Polytechnique, which was
rapidly followed by promotion to deputy professor  in 1802, and professor in 1806.
During this time Poisson worked on differential calculus and later that decade
published  papers with the Academy of Sciences, which included work on astronomy
and confirmed the belief that the Earth was flattened at the poles.

Poisson was a tireless worker and was dedicated to both his research and his teaching.
He played an ever increasingly important role in the organization of mathematics
in France and even though he married in 1817, he still managed to take on further
duties. He continued to research widely in a range of topics based on applied
mathematics. In Recherches sur la probabilité des jugements en matière criminelle et matière civile,
published in 1837, the idea of the Poisson distribution first appears.This describes
the probability that a random event will occur when the event is evenly spaced, on
average, over an infinite space. We will learn about this distribution in this chapter.
Overall, Poisson published between 300 and 400 mathematical works and his name

21 Discrete Probability Distributions

Siméon Denis Poisson



These probability distributions can be found in three ways. Firstly they can be found
from tree diagrams or probability space diagrams, secondly they can be found from a
specific formula and thirdly they can be found because they follow a set pattern and
hence form a special probability distribution.
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is attached to a wide variety of ideas, including Poisson’s integral, Poisson brackets in
differential equations, Poisson’s ratio in elasticity, and Poisson’s constant in
electricity. Poisson died on 25 April 1840.

21.1 Introduction to discrete random
variables

In Chapter 20 we met the idea of calculating probability given a specific situation and
found probabilities using tree diagrams and sample spaces. Once we have obtained
these values, we can write them in the form of a table and further work can be done
with them. Also, we can sometimes find patterns that allow us to work more easily in
terms of finding the initial distribution of probabilities. In this chapter we will work with
discrete random variables. A discrete random variable has the following properties.

• It is a discrete (exact) variable.
• It can only assume certain values, 

• Each value has an associated probability, etc.

• The probabilities add up to 1, that is 

• A discrete variable is only random if the probabilities add up to 1. 

A discrete random variable is normally denoted by an upper case letter, e.g. X, and the
particular value it takes by a lower case letter, e.g. x.

a
i�n

i�1
P1X � x˛i 2 � 1.

P1X � x˛1 2 � p˛1, P1X � x˛2 2 � p˛2

x˛1, x˛2, p , x˛n.
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Example

Write out the probability distribution for the number of threes obtained
when two tetrahedral dice are thrown. Confirm that it is a discrete random
variable.

Hence the probability distribution is:

 P12 threes 2 �
1
4

�
1
4

�
1
16

 �
1
4

�
3
4

�
3
4

�
1
4

�
6
16

 P11 three 2 � P˛133 2 � P˛133 2

 P1no threes 2 �
3
4

�
3
4

�
9
16

Number of threes 0 1 2

Probability
1
16

6
16

9
16

r 0 1 2 3
6

210
72
210

108
210

24
210

P1R � r 2

The distribution is discrete because we can only find whole-number values for
the number of threes obtained. Finding a value for 2.5 threes does not make

sense. It is also random because 
9
16

�
6
16

�
1
16

�
16
16

� 1.

We can now use the notation introduced above and state that if X is the number
of threes obtained when two tetrahedral dice are thrown, then X is a discrete

random variable, where In a
table:

P1X � 0 2 �
9
16

, P1X � 1 2 �
6
16

, P1X � 2 2 �
1
16

.

X 0 1 2
1

16
6

16
9

16
P1X � x 2

Example

A bag contains 3 red balls and 4 black balls. Write down the probability distri-
bution for R, where R is the number of red balls chosen when 3 balls are picked
without replacement, and show that it is random.
The tree diagram for this is shown below.

Hence

In tabular form this can be represented as:

 P1R � 3 2 �
6

210

 P1R � 2 2 �
72

210

 P1R � 1 2 �
108
210

 P1R � 0 2 �
24

210

R

R

B

B

R

B

R

R

R

B

B

B

R

B

3
7

2
6

1
5

4
5

2
5

3
5

2
5

3
5

3
5

2
5

4
6

3
6

3
6

4
7



Find
a the value of a b c

d e f the mode.
3 Find the discrete probability distribution for X in the following cases and verify

that the variable is random. X is defined as
a the number of tails obtained when three fair coins are tossed
b the number of black balls drawn with replacement from a bag of 4 black

balls and 3 white balls, when 3 balls are picked
c the number of sixes obtained on a die when it is rolled three times
d the sum of the numbers when two dice are thrown
e the number of times David visits his local restaurant in three consecutive

days, given that the probability of him visiting on any specific day is 0.2 and
is an independent event.

4 Write down the discrete probability distributions given the following probability
density functions:

a

b for 

c for 

d for 

5 Find the value of k in each of the probability density functions shown below,
such that the variable is random. In each case write out the probability 
distribution.
a for 

b for 

c for 

d for 

6 A man has six blue shirts and three grey shirts that he wears to work. Once
a shirt is worn, it cannot be worn again in that week. If X is the discrete
random variable “the number of blue shirts worn in the first three days of
the week”, find
a the probability distribution for X
b the probability that he wears at least one blue shirt during the first

three days.
7 In a game a player throws three unbiased tetrahedral dice. If X is the discrete

random variable “the number of fours obtained”, find
a the probability distribution for X

b
8 Five women and four men are going on holiday. They are travelling by car

and the first car holds four people including the driver. If Y is the discrete
random variable “the number of women travelling in the first car”, write down
a the probability distribution for Y
b the probability that there is at least one woman in the first car.

P1X � 2 2 .

b � 3, 4, 5, 6, 7P1B � b 2 �
b � 2

k

y � 1, 2, 3, 4, 5P1Y � y 2 � ky˛

3

x � 4, 5, 6P1X � x 2 � k˛1x˛

2 � 1 2

x � 3, 4, 5P1X � x 2 � k˛1x � 1 2

s � 12, 13, 14, 15P1S � s 2 �
s � 3

42

y � 7, 8, 9, 10P1Y � y 2 �
y � 1

30

x � 1, 2, 3, 4, 5, 6P1X � x 2 �
x

21

P1X � x 2 �
x˛

2

55
 for 0 � x � 5, x H �

P15 6 X 6 7 2P14 6 X 6 8 2

P1X 6 8 2P14 � X � 8 2
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Alternatively the probabilities may be assigned using a function which is known as the
probability density function (p.d.f) of X.

598

To check that it is random, we add together the probabilities.

Thus we conclude that the number of red balls obtained is a random variable.

24
210

�
108
210

�
72
210

�
6

210
�

210
210

� 1
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Example

The probability density function of a discrete random variable Y is given by

for and 3. Find for and 3,

verify that Y is a random variable and state the mode.

y � 0, 1, 2P1Y � y 2y � 0, 1, 2P1Y � y 2 �
y˛

2

14

y 0 1 2 3

0
9
14

4
14

1
14

P1Y � y 2

To check that it is random, we add together the probabilities.

Thus we conclude that Y is a random variable.
The mode is 3 since this is the value with the highest probability.

0 �
1
14

�
4
14

�
9
14

�
14
14

� 1

1 A discrete random variable X has this probability distribution:

Example

The probability density function of a discrete random variable X is given by
for and 12. Find the value of the constant k.

In this case we are told that the variable is random and hence 

Therefore

 1 k �
1
42

 9k � 10k � 11k � 12k � 1

a P1X � x 2 � 1.

x � 9, 10, 11P1X � x 2 � kx

Exercise 1

x 0 1 2 3 4 5 6
0.05 0.1 0.3 b 0.15 0.15 0.05P1X � x 2

x 4 5 6 7 8 9 10
0.02 0.15 0.25 a 0.12 0.1 0.03P1X � x 2

Find
a the value of b b c d

e the mode.
2 A discrete random variable X has this probability distribution:

P11 6 X � 5 2P1X 6 4 2P11 � X � 3 2
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21.2 Expectation and variance
The expectation, E(X)
In a statistical experiment:
• A practical approach results in a frequency distribution and a mean value.
• A theoretical approach results in a probability distribution and an expected value.
The expected value is what we would expect the mean to be if a large number of
terms were averaged.

The expected value is found by multiplying each score by its corresponding probability
and summing.
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E1X 2 � a
all x

x # P1X � x 2

Example

The probability distribution of a discrete random variable X is as shown in the
table.

x 1 2 3 4 5
0.2 0.4 a 0.1 0.05P1X � x 2

a Find the value of a.
b Find E(X).

a Since it is random

b E1X 2 � 1 � 0.2 � 2 � 0.4 � 3 � 0.25 � 4 � 0.1 � 5 � 0.05 � 2.4

 1 a � 0.25

 0.2 � 0.4 � a � 0.1 � 0.05 � 1

Example

The probability distribution of a discrete random variable Y is shown below.

y 5 6 7 8 9
0.05 0.2 b 0.2 0.05P1Y � y 2

a Find the value of b.
b Find E(Y ) .

a Since the variable is random

b In this case we could use the formula to find the

expectation, but because the distribution is symmetrical about we
can state immediately that E1Y 2 � 7.

y � 7

E1Y 2 � a
all y

y # P1Y � y 2

 1 b � 0.5

 0.05 � 0.2 � b � 0.2 � 0.05 � 1

Example

A discrete random variable has probability density function for
and 4.

a Find the value of k.
b Find E(X ).

a

b

 1 E1X 2 � 3.54

 E1X 2 � 1 �
1

100
� 2 �

8
100

� 3 �
27

100
� 4 �

64
100

 1 k �
1

50

 
k
2

� 4k �
27k
2

� 32k � 1

x � 1, 2, 3
P1X � x 2 �

kx˛

3

2

Example

A discrete random variable X can only take the values 1, 2 and 3. If
and find the probability distribution for X.

The probability distribution for X is shown below:

E1X 2 � 2.4,P1X � 1 2 � 0.15

x 1 2 3
0.15 p qP1X � x 2

x 1 2 3
0.15 0.3 0.55P1X � x 2

Since the variable is random

If then

Solving these two equations simultaneously gives and 
Hence the probability distribution function for X is:

q � 0.55.p � 0.3

 1 2p � 3q � 2.25
 0.15 � 2p � 3q � 2.4E1X 2 � 2.4

 1 p � q � 0.85

 0.15 � p � q � 1

Example

Alan and Bob play a game in which each throws an unbiased die. The table
below shows the amount in cents that Alan receives from Bob for each possible
outcome of the game. For example, if both players throw a number greater
than 3, Alan receives 50 cents from Bob while if both throw a number less than
or equal to 3, Alan pays Bob 60 cents.

B

A x
40 507 3

�60� 3
7 3� 3

If the probability
distribution is 
symmetrical about a
mid-value, then E(X) will
be this mid-value.



The expectation of any function f(x)

If then etc.E1X˛

2 2 � a
all x

x˛

2 # P1X � x 2 , E1X˛

3 2 � a
all x

x˛

3 # P1X � x 2E1X 2 � a
all x

x # P1X � x 2 ,
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Find
a i the expected value of Alan’s gain in one game in terms of x

ii the value of x which makes the game fair to both players

iii the expected value of Alan’s gain in 20 games if 

b Alan now discovers that the dice are biased and that the dice are three
times more likely to show a number greater than 3 than a number less
than or equal to 3. How much would Alan expect to win if 

a i  On throwing a die, if X is the number thrown, then

The probability of each combination of results for Alan and Bob is 

Hence the probability distribution table is shown below where the
discrete random variable X is Alan’s gain.

1
2

�
1
2

�
1
4

.

P1X � 32�P 1X 7 32�
1
2

.

x � 30?

x � 40.
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x x 40 50
1
4

1
4

1
4

1
4

P1X � x 2

�60

x 30 40 50
9
16

3
16

3
16

1
16

P1X � x 2

�60

ii If the game is fair, then neither player should gain or lose anything and
hence 

iii His expected gain in one game when is 

Hence his expected gain in 20 games is 

b In this case the probability of die showing a number greater than 3 is and

the probability of it showing a number less than or equal to 3 is 

Hence the probability distribution table is now:

1
4

.

3
4

20 � 17.5 � 350 cents.

30 � 40
4

� 17.5 cents.x � 40

 1 x � �30

 1

30 � x
4

� 0

E1X 2 � 0

1 E1X 2 �
1
4

� �60 �
1
4

 x �
1
4

� 40 �
1
4

� 50 �
30 � x

4

1 E1X 2 �
1

16
� �60 �

3
16

� 30 �
3
16

� 40 �
9
16

� 50 � 37.5 cents

In general, E1f1x 2 2 � a
all x

f1x 2 # P1X � x 2 .

This idea becomes important when we need to find the variance.

Example

For the probability distribution shown below, find:

x 0 1 2 3 4 5
0.08 0.1 0.2 0.4 0.15 0.07P1X � x 2

0 1 4 9 16 25

0.08 0.1 0.2 0.4 0.15 0.07P1X � x2 2

x˛

2

2x 0 2 4 6 8 10
0.08 0.1 0.2 0.4 0.15 0.07P1X � 2x 2

1 3 5 7 9

0.08 0.1 0.2 0.4 0.15 0.07P1X � 2x � 1 2

�12x � 1

a E(X ) b c E(2X ) d

a

b In this case the probability distribution is shown below:
� 5 � 0.07 � 2.65

E1X 2 � 0 � 0.08 � 1 � 0.1 � 2 � 0.2 � 3 � 0.4 � 4 � 0.15

E12X � 1 2E1X˛

2 2

c The probability distribution for this is:
� 25 � 0.07 � 8.65

1 E1X˛

2 2 � 0 � 0.08 � 1 � 0.1 � 4 � 0.2 � 9 � 0.4 � 16 � 0.15

d The probability distribution for this is:
� 10 � 0.07 � 5.3

1 E12X 2 � 0 � 0.08 � 2 � 0.1 � 4 � 0.2 � 6 � 0.4 � 8 � 0.15

� 0.15 � 9 � 0.07 � 4.3� 7
1 E12X � 1 2 � �1 � 0.08 � 1 � 0.1 � 3 � 0.2 � 5 � 0.4
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The variance, Var(X )
From Chapter 19, we know that for a frequency distribution with mean the variance
is given by

Using the first formula we can see that the variance is the mean of the squares of the
deviations from the mean. If we now take a theoretical approach using a probability
distribution from a discrete random variable, where we define and apply the
same idea, we find

However, we do not normally use this form and the alternative form we usually use is
shown below.

 � E1X˛

2 2 � m2

 � E1X˛

2 2 � 2m2 � m2

 � E1X˛

2 2 � 2mE1X 2 � m2

 � E 3X˛

2 � 2mX � m2 4

 Var1X 2 � E1X � m 22

Var1X 2 � E1X � m 22.

E1X 2 � m

s˛

2 �
a f˛1x � x 22

a f
 or s˛

2 �
a fx˛

2

a f
� x2

x,
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 Var1X 2 � E1X˛

2 2 � E˛

21X 2

The variance can never
be negative. If it is, then
a mistake has been
made in the calculation.

Example

For the probability distribution shown below for a discrete random variable X,
find:

x 0 1 2

0.1 0.25 0.3 0.25 0.1P1X � x 2

�1�2

a E(X ) b c Var(X )

a since the distribution is symmetrical.

b

c

 � 1.75 � 0.32 � 1.21

 Var1X 2 � E1X˛

2 2 � E21X 2

E1X˛

2 2 � 4�0.1� 1 � 0.25 � 0 � 0.3 � 1 � 0.25 � 4 � 0.1 � 1.3

E1X 2 � 0.3

E1X˛

2 2

Example

A cubical die and a tetrahedral die are thrown together.
a If X is the discrete random variable “total scored”, write down the probability

distribution for X.
b Find E(X ).
c Find Var(X ).

A game is now played with the two dice. Anna has the cubical die and Beth has
the tetrahedral die. They each gain points according to the following rules:
• If the number on both dice is greater than 3, then Beth gets 6 points.
• If the tetrahedral die shows 3 and the cubical die less than or equal to 3, then

Beth gets 4 points.
• If the tetrahedral die shows 4 and the cubical die less than or equal to 3, then

Beth gets 2 points.
• If the tetrahedral die shows a number less than 3 and the cubical die shows a

3, then Anna gets 5 points.
• If the tetrahedral die shows a number less than 3 and the cubical die shows a

1 or a 2, then Anna gets 3 points.
• If the tetrahedral die shows 3 and the cubical die greater than 3, then Anna

gets 2 points.
• If the tetrahedral die shows a number less than 3 and the cubical die shows a

number greater than 3, then Anna gets 1 point.

d Write out the probability distribution for Y, “the number of points gained
by Anna”.

e Calculate E(Y ) and Var(Y ).
f The game is now to be made fair by changing the number of points Anna

gets when the tetrahedral die shows a number less than 3 and the cubical
die shows a 1 or a 2. What is this number of points to the nearest whole
number?

a A probability space diagram is the easiest way to show the possible outcomes.

6 7 8 9 10
5 6 7 8 9
4 5 6 7 8
3 4 5 6 7
2 3 4 5 6
1 2 3 4 5

1 2 3 4

Hence the probability distribution for X is:

x 2 3 4 5 6 7 8 9 10
1

24
2

24
3

24
4
24

4
24

4
24

3
24

2
24

1
24

P1X � x 2

b Since the probability distribution is symmetrical, 

c

 �
241
6

� 62 �
25
6

 Var1X 2 � E1X˛

2 2 � E21X 2

 �
964
24

�
241
6

� 49 �
4

24
� 64 �

3
24

� 81 �
2
24

� 100 �
1

24

� 36 �
4
24

�
4

24
� 16 �

3
24

� 25 E1X˛

2 2 � 4 �
1
24

� 9 �
2
24

E1X 2 � 6.



d
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1 Find the value of b and E(X ) in these distributions.
a

606

d By considering the possibility space diagram again the probability
distribution is:
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y 5 y 2 1

1
4

1
8

1
6

1
12

1
8

1
8

1
8

P1Y � y 2

�2�4�6

y 5 3 2 1

1
4

1
8

1
6

1
12

1
8

1
8

1
8

P1Y � y 2

�2�4�6

e

f Let the number of points Anna gains when the tetrahedral die shows a
number less than 3 and the cubical die shows a 1 or a 2 be y.
In this case the probability distribution is now:

 �
34
3

�
1

144
�

1631
144

 Var1Y 2 � E1Y˛

2 2 � E˛

21Y 2

 E1Y˛

2 2 �36�
1
8

�16�
1
8

� 4�
1
8

�25�
1
12

�9�
1
6

�4�
1
8

�1�
1
4

�
34
3

 E1Y 2 ��6�
1
8

�4�
1
8

�2�
1
8

�5�
1
12

�3�
1
6

�2�
1
8

�1�
1
4

��
1
12

Since the game is now fair, 

 1 y � 3.5

 1 �
7
12

�
y

6
� 0

E1Y 2 � 0

E1Y 2 ��6�
1
8

�4�
1
8

�2 �
1
8

�5�
1

12
�y �

1
6

�2 �
1
8

�1�
1
4

��
1
12

Exercise 2

x 3 4 5 6
0.1 b 0.4 0.2P1X � x 2

x 0 1 2 3 4
0.05 1.5 0.6 b 0.05P1X � x 2

x 0 3 6 9
0.15 0.2 b 0.22 0.15P1X � x 2

�3

x 1 3 5 6
0.1 0.25 0.3 0.25 bP1X � x 2

�4

b

c

2 If three unbiased cubical dice are thrown, what is the expected number of
threes that will occur?

3 A discrete random variable has a probability distribution function given by 

for 2, 3, 4, 5, 6.

a Find the value of c. b Find E( X ).
4 Caroline and Lisa play a game that involves each of them tossing a fair coin.

The rules are as follows:
• If Caroline and Lisa both get heads, Lisa gains 6 points.
• If Caroline and Lisa both get tails, Caroline gains 6 points.
• If Caroline gets a tail and Lisa gets a head, Lisa gains 3 points.
• If Caroline gets a head and Lisa gets a tail, Caroline gains x points.
a If X is the discrete random variable “Caroline’s gain”, find E(X ) in terms of x.
b What value of x makes the game fair?

5 A discrete random variable X can only take the values and 1. If
find the probability distribution for X.

6 A discrete random variable X can only take the values 1 and 3. If
and find the probability distribution for X.

7 A discrete random variable Y can only take the values 0, 2, 4 and 6. If
and 

find the probability distribution for Y.
8 A five-a-side soccer team is to be chosen from four boys and five girls. If the

team members are chosen at random, what is the expected number of girls
on the team?

9 In a chemistry examination each question is a multiple choice with four
possible answers. Given that Kevin randomly guesses the answers to the
first four questions, how many of the first four questions can he expect to
get right?

10 A discrete random variable X has probability distribution:

E1Y 2 � 2.4,P1Y � 4 2 � 0.6, P1Y � 2 2 � 0.5, P1Y � 2 2 � P1Y � 4 2

E1X 2 � 1.9,P1X � 1 2 � 0.25
�1,

E1X 2 � 0.4,
�1

x � 1,f1x 2 �
cx˛

2

12

x 0 1 2 3 4
0.1 0.2 0.35 0.25 0.1P1X � x 2

Find:
a E(X) b c d

11 A discrete random variable X has probability distribution:
E13X � 2 2E12X � 1 2E1X˛

2 2

x 0 2 4 6
0.05 0.15 0.25 0.35 0.2P1X � x 2

�2

Find:
a E(X) b c d

12 Find Var(X ) for each of these probability distributions.
a

E13X � 1 2E12X � 1 2E1X˛

2 2

x 0 1 2 3 4
0.2 0.2 0.3 0.15 0.15P1X � x 2

b

x 1 3 5 7 9
0.05 0.2 0.2 0.3 0.25P1X � x 2



c Calculate the expectation and variance of X.
d Two children, Ahmed and Belinda, do this. Find the probability that Ahmed

gains a higher score than Belinda.
21 Pushkar buys a large box of fireworks. The probability of there being X

fireworks that fail is shown in the table below.
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x 0 1 2
0.03 0.2 p 0.35 0.1P1X � x 2

�1�2

x 0 2 4
0.1 0.3 p 0.2 0.15P1X � x 2

�2�4

x 0 1 2 3 4
k 0.2 2k 0.3 4kP1X � x 2

c

d

13 If X is the sum of the numbers shown when two unbiased dice are thrown,
find:
a E(X) b c Var ( X )

14 Three members of a school committee are to be chosen from three boys
and four girls. If Y is the random variable “number of boys chosen”, find:
a E(Y) b c Var(Y )

15 A discrete random variable X has probability distribution:
E1Y˛

2 2

E1X˛

2 2

x 0 1 2 3
9k 3k k k 0P1X � x 2

� 4

a Find the value of k.
b Find E( X ) and Var( X ).
c His friend, Priya, also buys a box. They put their fireworks together and the

total number of fireworks that fail, Y, is determined. What values can Y take?
d Write down the distribution for Y.
e Find the expectation and variance of Y.

21.3 Binomial distribution
This is a distribution that deals with events that either occur or do not occur, so there are
two complementary outcomes. We are usually told the number of times an event occurs
and we are given the probability of the event happening or not happening.

Consider the three pieces of Mathematics Higher Level homework done by Jay. The
probability of him seeking help from his teacher is 0.8.

The tree diagram to represent this is shown below.

0.8

0.8

0.8

0.2

0.2

0.2
0.8

0.2
0.8

0.2

0.8

0.2

0.8

0.2

H

H

H

H (seeks help 3 times)

H (seeks help twice)

H (seeks help twice)

H (seeks help once)

H

H

H (does not seek help)

H (seeks help once)

H (seeks help once)

H (seeks help twice)

H

If X is the number of times he seeks help, then from the tree diagram:

By using the different branches of the tree diagram we can calculate the values for

Without using the tree diagram we can see that the probability of him never seeking

help is and this can happen in ways, giving 

The probability of him seeking help once is and this can happen in

ways, giving 

The probability of him seeking help twice is and this can happen in

ways, giving P1X � 2 2 � 0.384.3C˛2

0.8 � 0.8 � 0.2

P1X � 1 2 � 0.096.3C1

0.8 � 0.2 � 0.2

P1X � 0 2 � 0.008.3C˛00.2 � 0.2 � 0.2

x � 1, 2, 3.

P1X � 0 2 � 0.2 � 0.2 � 0.2 � 0.008

a Find the value of k. b Calculate E(X ). c Calculate Var(X ).
16 A teacher randomly selects 4 students from a class of 15 to attend a careers

talk. In the class there are 7 girls and 8 boys. If Y is the number of girls 
selected and each selection is independent of the others, find
a the probability distribution for Y b E(Y ) c Var(Y )

17 A discrete random variable X takes the values 3, 5, with probabilities 

and k respectively. Find

a k
b the mean of X
c the standard deviation of X.

18 One of the following expressions can be used as a probability density
function for a discrete random variable X. Identify which one and calculate
its mean and standard deviation.

a

b

19 Jim has been writing letters. He has written four letters and has four envelopes
addressed. Unfortunately he drops the letters on the floor and he has no
way of distinguishing which letters go in which envelopes so he puts each
letter in each envelope randomly. Let X be the number of letters in their
correct envelopes.
a State the values which X can take.
b Find the probabilities for these values of X.
c Calculate the mean and variance for X.

20 A box contains ten numbered discs. Three of the discs have the number 5 on
them, four of the discs have the number 6 on them, and three of the discs
have the number 7 on them. Two discs are drawn without replacement and
the score is the sum of the numbers shown on the discs. This is denoted by X.
a Write down the values that X can take.
b Find the probabilities of these values of X.

g1x 2 �
x � 1

7
, x � 0, 1, 2, 4, 5

f1x 2 �
x˛

2 � 1
35

, x � 0, 1, 2, 3, 4

1
7

, 
5
14

x � 1,



So how do we recognize a binomial distribution? For a distribution to be binomial there
must be an event that happens a finite number of times and the probability of that event
happening must not change and must be independent of what happened before. Hence
if we have 8 red balls and 6 black balls in a bag, and we draw 7 balls from the bag one
after the other with replacement, X = ”the number of red balls drawn” follows a binomial
distribution. Here the number of events is 7 and the probability of success (drawing a red
ball) is constant. If the problem were changed to the balls not being replaced, then the
probability of drawing a red ball would no longer be constant and the distribution would
no longer follow a binomial distribution.
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The probability of him seeking help three times is and this can happen

in ways, giving 

Without using the tree diagram we can see that for 20 homeworks, say, the probability

of him seeking help once would be 

If we were asked to do this calculation using a tree diagram it would be very time
consuming!

Generalizing this leads to a formula for a binomial distribution.

20C˛1 � 0.8 � 0.219.

P1X � 3 2 � 0.512.3C˛3

0.8 � 0.8 � 0.8
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If a random variable X follows a binomial distribution we say where
of times an event occurs and of success.

The probability of 
n and p are called the parameters of the distribution.

failure � q � 1 � p.
p � probabilityn � number

X � Bin1n, p 2

If then P1X � x 2 � nC˛x p˛

xq˛

n�x.X � Bin1n, p 2

Example

If find:

a

b

a In this case and 

Hence 

b

It is usual to do these calculations on a calculator. The screen shots for these are
shown below.

a

b

 � 7C˛0¢14≤
0¢3

4
≤7

� 7C˛1¢14≤
1¢3

4
≤6

� 7C˛2¢14≤
2¢3

4
≤5

� 0.756

 P1X � 2 2 � P1X � 0 2 � P1X � 1 2 � P1X � 2 2

P1X � 6 2 � 7C˛6 ¢14≤
6¢3

4
≤1

� 0.00128

q � 1 �
1
4

�
3
4

.n � 7, p �
1
4

P1X � 2 2

P1X � 6 2

X � Bin¢7, 
1
4
≤,

Example

Market research is carried out at a supermarket, looking at customers buying cans
of soup. If a customer buys one can of soup, the probability that it is tomato soup
is 0.75. If ten shoppers buy one can of soup each, what is the probability that

a exactly three buy tomato soup

b less than six buy tomato soup
c more than four buy tomato soup?

The distribution for this is 

a

Or from the calculator:

b

Or from the calculator:

:

c In a binomial distribution, the sum of the probabilities is one and hence it is
sometimes easier to subtract the answer from one.

 � 0.0781

� 10C˛3¢34≤
3¢1

4
≤7

� 10C˛4¢34≤
4¢1

4
≤6

� 10C˛5¢34≤
5¢1

4
≤5

 � 10C˛0¢34≤
0¢1

4
≤10

� 10C˛1¢34≤
1¢1

4
≤9

� 10C˛2¢34≤
2¢1

4
≤8

� P1X � 4 2 � P1X � 5 2

 P1X 6 6 2 � P1X � 0 2 � P1X � 1 2 � P1X � 2 2 � P1X � 3 2

P1X � 3 2 � 10C˛3 ¢34≤
3¢1

4
≤7

� 0.00309

X � Bin110, 0.75 2 .



If asked to do a question of this sort, it is not usual to write out the whole table. It is
enough to write down the highest value and one either side and state the conclusion
from there. This is because in the binomial distribution the probabilities increase to a
highest value and then decrease again and hence once we have found where the
highest value occurs we know it will not increase beyond this value elsewhere.

Expectation and variance of a binomial distribution
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In questions involving
discrete distributions, 
ensure you read the
question. If a question
asks for more than 2, this
is different from asking
for at least 2. This also
affects what is inputted
into the calculator. 

In this case

On the calculator we also subtract the answer from 1.
 � 1 � 0.0197p � 0.980

� 10C˛3 ¢34≤
3¢1

4
≤7

� 10C˛4¢34≤
4¢1

4
≤6r

 � 1 � b˛

10C˛0¢34≤
0¢1

4
≤10

� 10C˛1¢34≤
1¢1

4
≤9

� 10C˛2¢34≤
2¢1

4
≤8

 �1 � 5P1X � 0 2 � P1X � 1 2 � P1X � 2 2 � P1X � 3 2 � P1X � 4 2 6

 P1X 7 4 2 � 1 � P1X � 4 2

Example

Scientists have stated that in a certain town it is equally likely that a woman will
give birth to a boy or a girl. In a family of seven children, what is the probability
that there will be at least one girl?
“At least” problems, i.e. finding can be dealt with in two ways. De-
pending on the number, we can either calculate the answer directly or we can
work out and subtract the answer from 1.
In this case, and we want 

Or from the calculator:

 � 1 � 7C˛710.5 2710.5 20 � 0.992

 P1X � 1 2 � 1 � P1X � 0 2

P1X � 1 2 .X � Bin17, 0.5 2
P1X 6 x 2 ,

P1X � x 2 ,

Example

The probability of rain on any particular day in June is 0.45. In any given week
in June, what is the most likely number of days of rain?
If we are asked to find the most likely value, then we should work through all
the probabilities and then state the value with the highest probability. In this
case the calculator is very helpful.
If we let X be the random variable “the number of rainy days in a week in June”,
then the distribution is X � Bin17, 0.45 2 .

Hence we can state that the most likely number of days is 3.

x

0
1
2
3
4
5
6
7 0.00373 p

0.0319 p

0.117 p

0.238 p

0.291 p

0.214 p

0.0871 p

0.0152 p

P1X � x 2

If 

Var1X 2 � npq
E1X 2 � np

X � Bin1n, p 2

The proofs for these are shown below, but they will not be asked for in examination
questions.

Proof that 

Let 

Hence 

Therefore the probability distribution for this is:

P1X � x 2 � nC˛x p˛

xq˛

n�x

X � Bin1n, p 2

E1X 2 � np

x 0 1 2 n

p˛

n
n˛1n � 1 2

2!
 q˛

n�2p˛

2nq˛

n�1pq˛

nP1X � x 2

p

Now

Since q � p � 1, E1X 2 � np.

 � np˛1q � p 2n�1

 � np 3q˛

n�1 � 1n � 1 2q˛

n�2p � p � p˛

n�1 4

 � 0 # q˛

n � 1 # nq˛

n�1p � 2 #
n˛1n � 1 2

2!
 q˛

n�2p˛

2 � p � n # p˛

n

 E1X 2 � a
all x

x # P1X � x 2

From the calculator, the results are:
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Proof that 

Now 

This can be split into two series:

Hence

 � np˛11 � p 2 � npq

 � np � n˛

2p˛

2 � np˛

2 � n˛

2p˛

2

 Var˛1X 2 � np51 � 1n � 1 2p6 � 1np 22
 � np51 � 1n � 1 2p6

 � np51 � 1n � 1 2p˛1q � p 2n�26

 � np 51 � 1n � 1 2p 3q˛

n�2 � 1n � 2 2q˛

n�3p � p � p˛

n�2 4 6

� 1n � 1 2p˛

n�1R
 � np˛1q � p 2n�1 � np B1n � 1 2q˛

n�2p �
21n � 1 2 1n � 2 2

2!
 q˛

n�3p˛

2 � p

� B1n � 1 2q˛

n�2p �
21n � 1 2 1n � 2 2

2!
 q˛

n�3p˛

2 � p � 1n � 1 2p˛

n�1R r

� p˛

n�1R � np b Bq˛

n�1 � 1n � 1 2q˛

n�2p �
1n � 1 2 1n � 2 2

2!
 q˛

n�3p˛

2 � p

 � npBq˛

n�1 � 21n � 1 2q˛

n�2p �
31n � 1 2 1n � 2 2

2!
 q˛

n�3p˛

2 � p � np˛

n�1R
� n˛

2 # p˛

n

 � 0 # q˛

n�1 #nq˛

n�1p�4 #
n˛1n � 1 2

2!
 q˛

n�2p˛

2� 9 #
n˛1n � 1 2 1n � 2 2

3!
 q˛

n�3p˛

3� p

E1X˛

2 2 � a
all x

x˛

2 # P1X � x 2

Var1X 2 � E1X˛

2 2 � E21X 2

Var1X 2 � npq
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Since the first series is
the same as the one in
the proof of E(X ).

Since p � q � 1.

Again since p � q � 1.

Example

X is a random variable such that Given that and
find n and the standard deviation of X.

Since then 

Using the formula

Hence the standard deviation is 22.16 � 1.47.

Var1X 2 � npq � 9 � 0.4 � 0.6 � 2.16

 1 n � 9

 1 3.6 � 0.4n

 E1X 2 � np

q � 1 � 0.4 � 0.6.p � 0.4

p � 0.4,
E1X 2 � 3.6X � Bin1n, p 2 .

Example

In a class mathematics test, the probability of a girl passing the test is 0.62 and
the probability of a boy passing the test is 0.65. The class contains 15 boys and
17 girls.

a What is the expected number of boys to pass?
b What is the most likely number of girls to pass?
c What is the probability that more than eight boys fail?

If X is the random variable “the number of boys who pass” and Y is the random variable
“the number of girls who pass”, then and 

a

b From the calculator the results are:

Hence we can state that the most likely number of girls passing is 11.

c The probability of more than eight boys failing is the same as the probability
of no more than six boys passing, hence we require 

Therefore the probability that more than eight boys fail is 0.0422. 

P1X � 6 2 .

E1X 2 � np � 15 � 0.65 � 9.75

117, 0.62 2 .Y � BinX � Bin115, 0.65 2

y 10 11 12

0.158 p0.193 p0.186 pP1Y � y 2 The expectation is the
theoretical equivalent of
the mean, whereas the
most likely is the 
equivalent of the mode. 

Example

Annabel always takes a puzzle book on holiday with her and she attempts a
puzzle every day. The probability of her successfully solving a puzzle is 0.7. She
goes on holiday for four weeks.

a Find the expected value and the standard deviation of the number of
successfully solved puzzles in a given week.

b Find the probability that she successfully solves at least four puzzles in a
given week.

c She successfully solves a puzzle on the first day of the holiday. What is the
probability that she successfully solves at least another three during the
rest of that week?

d Find the probability that she successfully solves four or less puzzles in only
one of the four weeks of her holiday.

Let X be the random variable “the number of puzzles successfully completed by
Annabel”. Hence X � Bin17, 0.7 2 .



1 If find:
a b c

2 If find:
a b c

3 If find:
a b c d

4 A biased coin is tossed ten times. On each toss, the probability that it will
land on a head is 0.65. Find the probability that it will land on a head at
least six times.

5 Given that find

a E(X) b Var(X) c the most likely value for X.
6 In a bag of ten discs, three of them are numbered 5 and seven of them are

numbered 6. A disc is drawn at random, the number noted, and then it is
replaced. This happens eight times. Find
a the expected number of 5’s
b the variance of the number of 7’s drawn
c the most likely number of 5’s drawn.

7 A random variable Y follows a binomial distribution with mean 1.75 and
variance 1.3125.
a Find the values of n, p and q.
b What is the probability that Y is less than 2?
c Find the most likely value(s) of Y.

8 An advert claims that 80% of dog owners, prefer Supafood dog food. In a
sample of 15 dog owners, find the probability that
a exactly seven buy Supafood
b more than eight buy Supafood
c ten or more buy Supafood.

9 The probability that it will snow on any given day in January in New York is
given as 0.45. In any given week in January, find the probability that it will
snow on
a exactly one day b more than two days
c at least three days d no more than four days.

10 A student in a mathematics class has a probability of 0.68 of gaining full
marks in a test. She takes nine tests in a year. What is the probability that
she will
a never gain full marks
b gain full marks three times in a year
c gain full marks in more than half the tests
d gain full marks at least eight times?

11 Alice plays a game that involves kicking a small ball at a target. The probability
that she hits the target is 0.72. She kicks the ball eight times.
a Find the probability that she hits the target exactly five times.
b Find the probability that she hits the target for the first time on her fourth kick.

12 In a school, 19% of students fail the IB Diploma. Find the probability that in
a class of 15 students
a exactly two will fail b less than five will fail
c at least eight will pass.

13 A factory makes light bulbs that it distributes to stores in boxes of 20. The
probability of a light bulb being defective is 0.05.

X � Bin16, 0.4 2 ,

P1X � 0 or 1 2P1X � 4 2P1X � 5 2P1X � 3 2
X � Bin18, 0.25 2 ,

P1X � 5 2P1X � 3 2P1X � 5 2
X � Bin110, 0.4 2 ,

P1X 7 4 2P1X � 2 2P1X � 3 2
X � Bin17, 0.35 2 ,
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a

Hence standard deviation 

b

 � 1 � 0.126 p � 0.874

� 7C˛210.7 2210.3 25 � 7C˛310.7 2310.3 24 f

 � 1 � e 7C˛010.7 2010.3 27 � 7C˛110.7 2110.3 26

 P1X � 4 2 � 1 � 3P1X � 0 2 � P1X � 1 2 � P1X � 2 2 � P1X � 3 2 4

� 21.47 � 1.21

 Var1X 2 � npq � 7 � 0.7 � 0.3 � 1.47

 E1X 2 � np � 7 � 0.7 � 4.9

c This changes the distribution and we now want where

 � 1 � 0.704 p � 0.930

 � 1 � e 6C˛010.7 2010.3 26 � 6C˛110.7 2110.3 25 � 6C˛210.7 2210.3 24 f

 P1Y � 3 2 � 1 � P1Y � 2 2

 Y � Bin16, 0.72.P 1Y � 32

We now want where 

P˛1A � 1 2 � 4C˛110.353 2110.647 23 � 0.382

A � Bin14, 0.353 2 .P1A � 1 2
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Exercise 3

d We first calculate the probability that she successfully completes four or
less in a week, 

 � 0.353

� 7C˛310.7 2310.3 24 � 7C˛410.7 2410.3 23
 � 7C˛010.7 2010.3 27 � 7C˛110.7 2110.3 26 � 7C˛210.7 2210.3 25

 P1X � 4 2 � P1X � 0 2 � P1X � 1 2 � P1X � 2 2 � P1X � 3 2 � P1X � 4 2

P1X � 4 2 .



18 In the game scissors, paper, rock, a girl never chooses paper, and is twice as
likely to choose scissors as rock. She plays the game eight times.
a Write down the distribution for X, the number of times she chooses rock.

b Find 
c Find E(X).
d Find the probability that X is at least one.

19 On a statistics course at a certain university, students complete 12 quizzes. 

The probability that a student passes a quiz is 

a What is the expected number of quizzes a student will pass?
b What is the probability that the student will pass more than half the

quizzes?
c What is the most likely number of quizzes that the student will pass?

d At the end of the course, the student takes an examination. The

probability of passing the examination is given that n is the number of

quizzes passed. What is the probability that the student passes four
quizzes and passes the examination?

n
55

,

2
3

.

P1X � 1 2 .
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a Find the probability that there are exactly three defective bulbs in a box of
light bulbs.

b Find the probability that there are more than four defective light bulbs in a box.
c If a certain store buys 25 boxes, what is the probability that at least two of

them have more than four defective light bulbs?
The quality control department in the company decides that if a randomly
selected box has no defective light bulbs in it, then all bulbs made that day
will pass and if it has two or more defective light bulbs in it, then all light
bulbs made that day will be scrapped. If it has one defective light bulb in it,
then another box will be tested, and if that has no defective light bulbs in it,
all light bulbs made that day will pass. Otherwise all light bulbs made that
day will be scrapped.
d What is the probability that the first box fails but the second box passes?
e What is the probability that all light bulbs made that day will be scrapped?

14 A multiple choice test in biology consists of 40 questions, each with four
possible answers, only one of which is correct. A student chooses the 
answers to the questions at random.
a What is the expected number of correct answers?
b What is the standard deviation of the number of correct answers?
c What is the probability that the student gains more than the expected

number of correct answers?
15 In a chemistry class a particular experiment is performed with a probability

of success p. The outcomes of successive experiments are independent.
a Find the value of p if probability of gaining three successes in six experiments

is the same as gaining four successes in seven experiments.
b If p is now given as 0.25, find the number of times the experiment must

be performed in order that the probability of gaining at least one success
is greater than 0.99.

16 The probability of the London to Glasgow train being delayed on a weekday

is Assuming that the delays occur independently, find

a the probability that the train experiences exactly three delays in a five-day
week

b the most likely number of delays in a five-day week
c the expected number of delays in a five-day week
d the number of days such that there is a 20% probability of the train having

been delayed at least once
e the probability of being delayed at least twice in a five-day week
f the probability of being delayed at least twice in each of two weeks out of

a four-week period (assume each week has five days in it).
17 It is known that 14% of a large batch of light bulbs is defective. From this

batch of light bulbs, 15 are selected at random.
a Write down the distribution and state its mean and variance.
b Calculate the most likely number of defective light bulbs.
c What is the probability of exactly three defective light bulbs?
d What is the probability of at least four defective light bulbs?
e If six batches of 15 light bulbs are selected randomly, what is the

probability that at least three of them have at least four defective light
bulbs?

1
15

.
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21.4 Poisson distribution
Consider an observer counting the number of cars passing a specific point on a road
during 100 time intervals of 30 seconds. He finds that in these 100 time intervals a total
of 550 cars pass.

Now if we assume from the beginning that 550 cars will pass in these time intervals, that
a car passing is independent of another car passing, and that it is equally likely that they
will pass in any of the time intervals, then the probability that a car passes in any specific

time interval is The probability that a second car arrives in this time interval is also

as the events are independent, and so on. Hence the number of cars passing this

point in this time period follows a binomial distribution 

Unfortunately, this is not really the case as we do not know exactly how many cars will
pass in any interval. What we do know from experience is the mean number of cars that
will pass. Also, as n gets larger, p must become smaller. That is, the more cars we
observe, the less likely it is that a specific car will pass in a given interval. Hence the
distribution we want is one where n increases as p decreases and where the mean np
stays constant. This is called a Poisson distribution and occurs when an event is evenly
spaced, on average, over an infinite space.

X � Bin¢550, 
1

100
≤.

1
100

1
100

.

If a random variable X follows a Poisson distribution, we say where 
is the parameter of the distribution and is equal to the mean of the distribution.

lX � Po1l 2

If then P1X � x 2 �
e�llx

x!
.X � Po1l 2



With a Poisson distribution we are sometimes given the mean over a certain
interval. We can sometimes assume that this can then be recalculated for a
different interval.
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To recognize a Poisson distribution we normally have an event that is randomly scattered in
time or space and has a mean number of occurrences in a given interval of time or space.

Unlike the binomial distribution, X can take any positive integer value up to infinity and
hence if we want we must always subtract the answer from 1. As x becomes
very large, the probability becomes very small.

P1X � x 2
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Example

If find:

a

b

a

b

As with the binomial distribution, it is usual to do these calculations on the
calculator.

a

b

 �
e�220

0!
�

e�221

1!
�

e�222

2!
�

e�223

3!
�

e�224

4!
� 0.947

 P1X � 4 2 � P1X �0 2�P1X � 1 2 � P1X � 2 2 � P1X � 3 2 � P1X � 4 2

P1X � 3 2 �
e�2

˛23

3!
� 0.180

P1x � 4 2

P1X � 3 2

X � Po12 2 ,

Example

The mean number of zebra per square kilometre in a game park is found to be
800. Given that the number of zebra follows a Poisson distribution, find the
probability that in one square kilometre of game park there are

a 750 zebra
b less than 780 zebra
c more than 820 zebra.

Let X be the number of zebra in one square kilometre.
Hence 

a We require 

Because of the numbers involved, we have to use the Poisson function on
a calculator.

b In this case we have to use a calculator. We want less than 780, which is
the same as less than or equal to 779.

c We calculate using on a calculator.

P˛1X 7 820 2 � 0.233

1 � P1X � 820 2P1X 7 820 2

P1X 6 780 2 � 0.235

P1X � 750 2 � 0.00295

P1X � 750 2 � e�800 #
800750

750!
.

X � Po1800 2 .
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Example

The mean number of telephone calls arriving at a company’s reception is five per
minute and follows a Poisson distribution. Find the probability that there are

a exactly six phone calls in a given minute
b more than three phone calls in a given minute
c more than 20 phone calls in a given 5-minute period
d less than ten phone calls in a 3-minute period.

Let X be the “number of telephone calls in a minute”. Hence 

a

b

On a calculator:

c If there are five calls in a minute period, then in a 5-minute period there are,
on average, 25 calls. Hence if Y is “the number of telephone calls in a 
5-minute period”, then We require Because of
the numbers involved we need to solve this on a calculator.

d If A is “the number of telephone calls in a 3-minute period”, then
We require Because of the numbers involved,

again we solve this on a calculator. 
P1Y 6 10 2 .A � Po115 2 .

P1Y 7 20 2 � 0.815

P1Y 7 20 2 .Y � Po125 2 .

 � 1 � be˛

�550

0!
�

e˛

�551

1!
�

e˛

�552

2!
�

e˛

�553

3!
r � 0.735

 P1X 7 3 2 � 1 � 3P1X � 0 2 � P1X � 1 2 � P1X � 2 2 � P˛1X � 3 2 4

P1X � 6 2 �
e�556

6!
� 0.146

X � Po15 2 .

P1Y 6 10 2 � 0.0699

Example

Passengers arrive at the check-in desk of an airport at an average rate of
seven per minute.
Assuming that the passengers arriving at the check-in desk follow a Poisson
distribution, find
a the probability that exactly five passengers will arrive in a given minute
b the most likely number of passengers to arrive in a given minute
c the probability of at least three passengers arriving in a given minute
d the probability of more than 30 passengers arriving in a given 5-minute period.

If X is “the number of passengers checking-in in a minute”, then 

a

b As with the binomial distribution, we find the probabilities on a calculator
and look for the highest. This time we select a range of values around the
mean. As before, it is only necessary to write down the ones either side as
the distribution rises to a maximum probability and then decreases again.
Written as a table, the results are:

Since there are two identical probabilities in this case, the most likely value
is either 6 or 7.

c

On the calculator:

d If seven people check-in in a minute period, then on average 35 people will
check-in in a 5-minute period. Hence if Y is “the number of people
checking-in in a 5-minute period”, then We require

Because of the numbers involved we need to solve this on a
calculator.

P1Y 7 30 2 � 0.773

P1Y 7 30 2 .
Y � Po135 2 .

 � 1 � be�770

0!
�

e�771

1!
�

e�752

2!
r � 0.970

 P1X � 3 2 � 1 � P1X � 2 2

P1X � 5 2 �
e�775

5!
� 0.128

X � Po17 2 .

x 5 6 7 8
0.130 p0.149 p0.149 p0.127pP1X � x 2
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Expectation and variance of a Poisson distribution

21  Discrete Probability Distributions

624

If 

Var1X 2 � l

E1X 2 � l

X � Po1l 2

The proofs for these are shown below, but they will not be asked for in examination
questions.

Proof that 

The probability distribution for is:X � Po1l 2

E˛1x 2 � l

x 0 1 2 3

l3

3!
 e�ll2

2!
 e�lle�le�lP1X � x 2

p

Now 

The series in the bracket has a sum of (the proof of this is beyond the scope of this

curriculum).

Hence 

Proof that 

Now 

We now split this into two series.

The first of these series is the same as in the proof for E(X ) and has a sum of 

Hence

 � l

 � l � l2 � l2

 Var1X 2 � E˛1X˛

2 2 � E˛

21X 2

 � l � l2

 � lel1el � lel 2

 � le�lbel p � l¢1 � l �
l2

2!
� p ≤r

el.

� le�l¢1 � l �
l2

2!
�
l3

3!
� p � l �

2l2

2!
�

3l3

3!
� p ≤

 � le�l¢1 � 2l �
3l2

2!
�

4l3

3!
� p ≤

 � 0 # e�l � 1 # le�l � 4 #
l2

2!
 e�l � 9 #

l3

3!
 e�l � 16 #

l4

4!
 e�l � p

 E1X˛

2 2 � a
all x

x˛

2 # P1X � x 2

Var1X 2 � E1X˛

2 2 � E21X 2

Var1X 2 � l

E1X 2 � l.

el

 � le�l¢1 � l �
l2

2!
�
l3

3!
p ≤

 � 0 # e�l � 1 # le�l � 2 #
l2

2!
 e�l � 3 #

l3

3!
 e�l � p

 E1X 2 � a
all x

x # P1X � x 2

Example

In a given Poisson distribution it is found that Find the variance
of the distribution.

Let the distribution be 

If then

This can be solved on a calculator.

Since m is not negative, and this is also Var(X ).m � 0.961

 1 e˛

�m � me˛

�m � 0.75 � 0

 1 1 � e˛

�m � me˛

�m � 0.25

 1 � P1X � 0 2 � P1X � 1 2 � 0.25

P1X � 1 2 � 0.25

X � Po1m 2 .

P1X � 1 2 � 0.25.

Example

In a fireworks factory, the number of defective fireworks follows a Poisson
distribution with an average of three defective fireworks in any given box.
a Find the probability that there are exactly three defective fireworks in a

given box.
b Find the most likely number of defective fireworks in a box.
c Find the probability that there are more than five defective fireworks in a

box.
d Find the probability that in a sample of 15 boxes, at least three boxes have

more than five defective fireworks in them.

Let X be the number of defective fireworks.
Hence 

a

b We select a range of values around the mean to find the most likely value.
In this case we choose 1, 2, 3, 4, 5 and use a calculator.
Written as a table, the results are:

Since there are two identical probabilities in this case, the most likely value
is either 2 or 3.

c

� P1X � 4 2 � P1X � 5 2 4

 P1X 7 5 2 � 1 � 3P1X � 0 2 � P1X � 1 2 � P1X � 2 2 � P1X � 3 2

P1X � 3 2 �
e�333

3!
� 0.224

X � Po13 2 .

x 1 2 3 4 5

0.100 p0.168 p0.224 p0.224 p0.149 pP1X � x 2



d the probability that X is at least 3
e the probability that X is less than or equal to 5.

7 If and find
a n
b the probability that X equals 4
c the probability that X is greater than 5
d the probability that X is at least 3.

8 A Poisson distribution is such that 
a Given that find the value of n.
b Find the probability that X is at least 2.

9 On a given road, during a specific period in the morning, the number of
drivers who break the speed limit, X, follows a Poisson distribution with
mean m. It is calculated that is twice Find

a the value of m b
10 At a given road junction, the occurrence of an accident happening on a given

day follows a Poisson distribution with mean 0.1. Find the probability of
a no accidents on a given day
b at least two accidents on a given day
c exactly three accidents on a given day.

11 Alexander is typing out a mathematics examination paper. On average he
makes 3.6 mistakes per examination paper. His colleague, Roy, makes 3.2
mistakes per examination paper, on average. Given that the number of
mistakes made by each author follows a Poisson distribution, calculate the
probability that
a Alexander makes at least two mistakes
b Alexander makes exactly four mistakes
c Roy makes exactly three mistakes
d Alexander makes exactly four mistakes and Roy makes exactly three

mistakes.
12 A machine produces carpets and occasionally minor faults are produced.

The number of faults in a square metre of carpet follows a Poisson 
distribution with mean 2.7. Calculate
a the probability of there being exactly five faults in a square metre of carpet
b the probability of there being at least two faults in a square metre of carpet
c the most likely number of faults in a square metre of carpet

d the probability of less than six faults in of carpet

e the probability of more than five faults in of carpet.
13 At a local airport the number of planes that arrive between 10.00 and

12.00 in the morning is 6, on average. Given that these arrivals follow a
Poisson distribution, find the probability that
a only one plane lands between 10.00 and 12.00 next Saturday morning
b either three or four planes will land next Monday between 10.00 and

12.00.
14 X is the number of Annie dolls sold by a shop per day. X has a Poisson

distribution with mean 4.
a Find the probability that no Annie dolls are sold on a particular Monday.
b Find the probability that more than five are sold on a particular Saturday.
c Find the probability that more than 20 are sold in a particular week,

assuming the shop is open seven days a week.

2 m2

3 m2

P1X � 3 2 .

P1X � 2 2 .P1X � 1 2

P1X � 5 2 � P1X � 3 2 � P1X � 4 2 ,
X � Po1n 2 .

E1X˛

2 2 � 6.5,X � Po1n 2
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1 If find:
a b c d E(X )

2 If find:
a b c d E(X )

3 If find:
a b c d Var(X )

4 If and find:

a m b c

5 If and find:

a E(X ) b c d

6 If and find

a Var(X )

b
c the probability that X is greater than 4

P1X � 5 2

P1X 7 1 2 � 0.75,X � Po1m 2

P1X 7 5 2P1X 6 4 2P1X � 3 2

P1X � 2 2 � 0.55,X � Po1l 2

P1X � 3 2P1X � 4 2

E1X˛

2 2 � 4.5,X � Po1m 2

P1X � 6 2P1X � 8 2P1X � 9 2
X � Po110 2 ,

P1X 7 5 2P1X � 3 2P1X � 4 2
X � Po16 2 ,

P1X 7 3 2P1X � 2 2P1X � 2 2
X � Po13 2 ,
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d This is an example of where the question now becomes a binomial
distribution Y, which is the number of boxes with more than five defective
fireworks in them. Hence 

 � 1 � 0.874 p � 0.126

 � 15C˛210.839 2210.916 213 f

 � 1 � e 15C˛010.0839 2010.916 215 � 15C˛110.0839 2110.916 214

 P1Y � 3 2 � 1 � 3P1Y � 0 2 � P1Y � 1 2 � P1Y � 2 2 4

Y � Bin115, 0.0839 2 .

� 0.0839
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Exercise 4
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2 The random variable X follows a Poisson distribution. Given that
find:

a the mean of the distribution
b [IB Nov 06 P1 Q7]

3 The probability that a boy in a class has his birthday on a Monday or a 

Tuesday during a school year is There are 15 boys in the class.

a What is the probability that exactly three of them have birthdays on a
Monday or a Tuesday?

b What is the most likely number of boys to have a birthday on a Monday or
a Tuesday?

c In a particular year group, there are 70 boys. The probability of one of these

boys having a birthday on a Monday or a Tuesday is also What is the

expected number of boys having a birthday on a Monday or Tuesday?

4 In a game a player rolls a ball down a chute. The ball can land in one of six
slots which are numbered 2, 4, 6, 8, 10 and x. The probability that it lands in
a slot is the number of the slot divided by 50.
a If this is a random variable, calculate the value of x.
b Find E(X ).
c Find Var(X ).

5 The number of car accidents occurring per day on a highway follows a Poisson
distribution with mean 1.5.
a Find the probability that more than two accidents will occur on a given

Monday.
b Given that at least one accident occurs on another day, find the probability

that more than two accidents occur on that day. [IB May 06 P1 Q16]
6 The most popular newspaper according to a recent survey is the Daily Enquirer,

which claims that 65% of people read the newspaper on a certain bus route.
Consider the people sitting in the first ten seats of a bus.
a What is the probability that exactly eight people will be reading the Daily

Enquirer?
b What is the probability that more than four people will be reading the Daily

Enquirer?
c What is the most likely number of people to be reading the Daily Enquirer?
d What is the expected number of people to be reading the Daily Enquirer?
e On a certain bus route, there are ten buses between the hours of 09.00 and

10.00. What is the probability that on exactly four of these buses at least six
people in the first ten seats are reading the Daily Enquirer?

7 The discrete random variable X has the following probability distribution.

Calculate:
a the value of the constant k
b E(X ) [IB May 04 P1 Q13]

8 An office worker, Alan, knows that the number of packages delivered in a
day to his office follows a Poisson distribution with mean 5.
a On the first Monday in June, what is the probability that the courier company

delivers four packages?

 � 0 otherwise

 P1X � x 2 �
k
x
, x � 1, 2, 3, 4

1
4

.

1
4

.

P1X � 2 2

P1X � 1 2 � 0.2,
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d If each Annie doll sells for 20 euros, find the mean and variance of the
sales for a particular day.

Y is the number of Bobby dolls sold by the same shop per day. Y has a
Poisson distribution with mean 6.
e Find the probability that the shop sells at least four Bobby dolls on a

particular Tuesday.
f Find the probability that on a certain day, the shop sells three Annie dolls

and four Bobby dolls.
15 A school office receives, on average, 15 calls every 10 minutes. Assuming

this follows a Poisson distribution, find the probability that the office 
receives
a exactly nine calls in a 10-minute period
b at least seven calls in a 10-minute period
c exactly two calls in a 3-minute period
d more than four calls in a 5-minute period
e more than four calls in three consecutive 5-minute periods.

16 The misprints in the answers of a mathematics textbook are distributed 
following a Poisson distribution. If a book of 700 pages contains exactly 500
misprints, find
a i the probability that a particular page has exactly one misprint

ii the mean and variance of the number of misprints in a 30-page
chapter

iii the most likely number of misprints in a 30-page chapter.
b If Chapters 12, 13 and 14 each have 40 pages, what is the probability that

exactly one of them will have exactly 50 misprints?
17 A garage sells Super Run car tyres. The monthly demand for these tyres has

a Poisson distribution with mean 4.
a Find the probability that they sell exactly three tyres in a given month.
b Find the probability that they sell no more than five tyres in a month.
A month consists of 22 days when the garage is open.
c What is the probability that exactly one tyre is bought on a given day?
d What is the probability that at least one tyre is bought on a given day?
e How many tyres should the garage have at the beginning of the month in

order that the probability that they run out is less than 0.05?
18 Between 09.00 and 09.30 on a Sunday morning, 15 children and 35 adults

enter the local zoo, on average. Find the probability that on a given Sunday
between 09.00 and 09.30
a exactly ten children enter the zoo
b at least 30 adults enter the zoo
c exactly 14 children and 28 adults enter the zoo
d exactly 25 adults and 5 children enter the zoo.
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All questions in this exercise will require a calculator.
1 The volumes (V ) of four bottles of drink are 1 litre, 2 litres, 3 litres and 4 litres.

The probability that a child selects a bottle of drink of volume V is cV.
a Find the value of c.
b Find E(X ) where X is the volume of the selected drink.
c Find Var(X ).
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Find the value of n in order for the player to get an expected return of 9
counters per roll. [IB May 99 P1 Q17]

14 The number of accidents in factory A in a week follows a Poisson distribution
X, where 
a Find the probability that there are exactly three accidents in a week.
b Find the probability that there is at least one accident in a week.
c Find the probability of more than 15 accidents in a four-week period.
d Find the probability that during the first two weeks of a year, the factory

will have no accidents.
e In a neighbouring factory B, the probability of one accident in a week is the

same as the probability of two accidents in a week in factory A. Assuming that
this follows a Poisson distribution with mean n, find the value of n.

f What is the probability that in the first week of July, factory A has no
accidents and factory B has one accident?

g Given that in the first week of September factory A has two accidents,
what is the probability that in the same week factory B has no more than
two accidents?

15 a Give the definition of the conditional probability that an event A occurs
given that an event B (with ) is known to have occurred.

b If and are mutually exclusive events, express in terms
of and 

c State the multiplication rule for two independent events and 
d Give the conditions that are required for a random variable to have a

binomial distribution.

e A freight train is pulled by four locomotives. The probability that any
locomotive works is and the working of a locomotive is independent of
the other locomotives.

i Write down an expression for the probability that k of the four
locomotives are working.

ii Write down the mean and variance of the number of locomotives working.

iii In order that the train may move, at least two of the locomotives must be
working. Write down an expression, in terms of for P, the probability
that the train can move. (Simplification of this expression is not required.)

iv Calculate P for the cases when and when 
v If the train is moving, obtain a general expression for the conditional

probability that j locomotives are working. (Again, simplification of the
expression is not required.) Verify that the sum of the possible conditional
probabilities is unity.

vi Evaluate the above conditional probability when for the cases
when and when 

vii For calculate the probability that at least one of the three
trains is able to move, assuming that they all have four locomotives
and that different trains work independently. [IB May 94 P2 Q15]

u � 0.5,

u � 0.9.u � 0.5
j � 2,

u � 0.9.u � 0.5

u,

u

E˛2.E˛1

P1A˛2 2 .P1A˛1 2

P1A˛1 ´ A˛2 2A˛2A˛1

P1B 2 7 0

Var1X 2 � 2.8.
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b On another day, Alan sees the courier van draw up to the office and hence
knows that he will receive a delivery. What is the probability that he will
receive three packages on that day?

9 The number of cats found in a particular locality follows a Poisson distribution
with mean 4.1.
a Find the probability that the number of cats found will be exactly 5.
b What is the most likely number of cats to be found in the locality?
c A researcher checks half the area. What is the probability that he will find

exactly two cats?
d Another area is found to have exactly the same Poisson distribution. What

is the probability of finding four cats in the first area and more than three
in the second?

10 The probability of the 16:55 train being delayed on a weekday is 

Assume that delays occur independently.

a  What is the probability, correct to three decimal places, that a traveller
experiences 2 delays in a given 5-day week?

b  How many delays must a commuter travel before having a 90% probability
of having been delayed at least once? [IB Nov 90 P1 Q20]

11 Two children, Alan and Belle, each throw two fair cubical dice simultaneously.
The score for each child is the sum of the two numbers shown on their
respective dice.
a i Calculate the probability that Alan obtains a score of 9.

ii Calculate the probability that Alan and Belle both obtain a score of 9.
b i Calculate the probability that Alan and Belle obtain the same score.

ii Deduce the probability that Alan’s score exceeds Belle’s score.
c Let X denote the largest number shown on the four dice.

i Show that for 

ii Copy and complete the following probability distribution table.

x � 1, 2, p 6.P1X � x 2 � ¢x
6
≤4

1
10

.
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x 1 2 3 4 5 6
671
1296

5
1296

1
1296

P1X � x 2

iii Calculate E(X ). [IB May 02 P2 Q4 ]
12 The probability of finding the letter z on a page in a book is 0.05.

a In the first ten pages of a book, what is the probability that exactly three
pages contain the letter z?

b In the first five pages of the book, what is the probability that at least two
pages contain the letter z?

c What is the most likely number of pages to contain the letter z in a chapter
of 20 pages?

d What would be the expected number of pages containing the letter z in a
book of 200 pages?

e Given that the first page of a book does not contain the letter z, what is
the probability that it occurs on more than two of the following five
pages?

Score 1 2 3 4

Probability

Number of counters player receives 4 5 15 n

1
10

1
5

1
5

1
2

13 A biased die with four faces is used in a game. A player pays 10 counters to roll
the die. The table below shows the possible scores on the die, the probability of
each score and the number of counters the player receives for each score.



16 In a game, a player pays 10 euros to flip six biased coins, which are twice as
likely to show heads as tails. Depending on the number of heads he obtains,
he receives a sum of money. This is shown in the table below:
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x 1 2 3 4

a2 � a2a2 � 3a4a22aP1X � x 2

a Calculate the probability distribution for this.
b Find the player’s expected gain in one game.
c What is the variance?
d What would be his expected gain, to the nearest euro, in 15 games?

17 The table below shows the probability distribution for a random variable X.
Find and E( X ). [IB May 93 P1 Q20]a

Number of 
heads 0 1 2 3 4 5 6
Amount 
received 
in euros 30 25 15 12 18 25 40

18 An unbiased coin is tossed n times and X is the number of heads obtained.
Write down an expression for the probability that 
State the mean and standard deviation of X.
Two players, A and B, take part in the game. A has three coins and B has two
coins. They each toss their coins and count the number of heads which they ob-
tain.
a If A obtains more heads than B, she wins 5 cents from B. If B obtains more

heads than A, she wins 10 cents from A. If they obtain an equal number of
heads then B wins 1 cent from A. Show that, in a series of 100 such games, the
expectation of A’s winnings is approximately 31 cents.

b On another occasion they decide that the winner shall be the player obtaining
the greater number of heads. If they obtain an equal number of heads, they
toss the coins again, until a definite result is achieved. Calculate the probability
that
i no result has been achieved after two tosses
ii A wins the game. [IB Nov 89 P2 Q8]

X � r.



Binomial distributions for 2, 4 and 12 throws
In Chapter 21, we saw
that the binomial
distribution could be used
to solve problems such as
“If an unbiased cubical
die is thrown 50 times,
what is the probability of
throwing a six more than
25 times?”To solve this
problem, we compute the
probability of throwing a
six 25 times then the
probability of throwing a
six 26 times, 27 times,
etc., which before the
introduction of calculators
would have taken a very
long time to compute.
Abraham de Moivre, who
we met in Chapter 17,
noted that when the
number of events
(throwing a die in this
case) increased to a large
enough number, then the
shape of the binomial
distribution approached
a very smooth curve.

De Moivre realised that if
he was able to find a
mathematical expression
for this curve, he would be
able to find probabilities
much more easily.This
curve is what we now call
a normal curve and the distribution associated with it is introduced in this chapter. It
is shown here approximating the binomial distribution for 12 coin flips.

The normal distribution is of great importance because many natural phenomena are
at least approximately normally distributed. One of the earliest  applications of the
normal distribution was connected to error analysis in astronomical observations.
Galileo in the 17th century hypothesized several distributions for these errors, but it
was not until two centuries later that it was discovered that they followed a normal
distribution.The normal distribution  had also been discovered by Laplace in 1778

22 Continuous Probability
Distributions
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when he derived the extremely important central limit theorem. Laplace showed that
for any distribution, provided that the sample size is large, the distribution of the
means of repeated samples from the distribution would be approximately normal,
and that the larger the sample size, the closer the distribution would be to a normal
distribution.

22.1 Continuous random variables
In Chapter 19 we discussed the difference between discrete and continuous data and in

Chapter 21 we met discrete data where In this chapter we consider

continuous data. To find the probability that the height of a man is 1.85 metres, correct

to 3 significant figures, we need to find Hence for continuous

data we construct ranges of values for the variable and find the probabilities for these

different ranges.

For a discrete random variable, a table of probabilities is normally given. For a

continuous random variable, a probability density function is normally used instead. In

Chapter 21, we met probability density functions where the variable was discrete. When

the variable is continuous the function f(x) can be integrated over a particular range of

values to give the probability that the random variable X lies in that particular range.

Hence for a continuous random variable valid over the range we can say that

This is analogous to for discrete data and also the idea

of replacing sigma notation with integral notation when finding the area under the

curve, as seen in Chapter 14.

Thus, if then as shown in the diagram.P1x˛1 � X � x˛2 2 � �
x˛2

x˛1

f1x 2  dxa � x˛1 � x˛2 � b

a
x�b

x�a
P1X � x 2 � 1�

 b

a 

f˛1x 2  dx � 1.

a � x � b

P11.845 � H 6 1.855 2 .

a
all x

P1X � x 2 � 1.
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0 x1 x2

f(x)

f(x2)

f(x1)

x

P(x1 � X � x2)

The area under the
curve represents the
probability.

Since many of the calculations
involve definite integration, if
the questions were to appear
on a calculator paper, the 
calculations could be performed
on a calculator.

Example

Consider the function which is being used as a probability

density function for a continuous random variable X.

a Show that f(x) is a valid probability density function.

b Find the probability that X lies in the range to 

c Show this result graphically.

a f(x) is a valid probability density function if 

Hence f(x) can be used as a probability density function for a continuous
random variable.

b

c

 � B3x
4
R

3
4

5
4

�
15
16

�
9
16

�
6
16

�
3
8

 P¢3
4

� X �
5
4
≤ � �

5
4

3
4

 

3
4

 dx

 �
5
4

�
1
4

� 1

 �
5
3

1
3

 

3
4

 dx � B3x
4
R

1
3

5
3

�
5
3

1
3

 

3
4

 dx � 1.

5
4

.
3
4

f1x 2 �
3
4

, 
1
3

� x �
5
3

,

In this case we did not
have to use integration
as the area under the
curve is given by the
area of a rectangle.

0

f(x)

x

3
4

f(x) � 3
4

3
4

5
4

Example

The continuous random variable X has probability density function f(x) where

a Find the value of the constant k.

b Sketch 

c Find and show this on a diagram.

d Find P1X � 2.5 2 .

P12.5 � X � 3.5 2

y � f1x 2 .

f1x 2 �
3
26

 1x � 1 22, 2 � x � k.
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a

b

 1 k � 1 � 3 1 k � 4

 1

1k � 1 23

26
�

27
26

 1

1k � 1 23

26
�

1
26

� 1

 1 B 1x � 1 23

26
R

2

k

� 1

 �
 k

2 

3
26

 1x � 1 22 dx � 1
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 � B 1x � 1 23

26
R
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�
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208

�
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�
98
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�
49
104

 P12.5 � X � 3.5 2 � �
 3.5

2.5 

 

3
26

 1x � 1 22 dx

0

f(x)

x

f(x) � (x � 1)23
26

2 4
The graph has a domain
of 2 � x � 4.

0

f(x)

x

f(x) � (x � 1)23
26

2.5 3.5

d

 � B 1x � 1 23

26
R

2.5

4

�
27
26

�
27
208

�
189
208

 P1X � 2.5 2 � �
 4

2.5 

 

3
26

 1x � 1 22 dx

Sometimes the probability density function for a continuous random variable can use
two or more different functions.

However, it works in exactly the same way.

This is similar to the
piecewise functions met
in Chapter 3.

Example

The continuous random variable X has probability density function

where k is a constant.

a Find the value of the constant k.

b Sketch 

c Find 

d Find 

a

b

 1 k �
3

64

 1

64k
3

� 1

 1 �
8k
3

�
64k
3

�
32k
3

� 8k � 0

 1 Bk˛14 � x 23

�3
R

0

2

� 34kx 42
8
3 � 1

 �
 2

0 

k˛14 � x 22 dx � �
8
3

2

4k dx � 1

P1X � 1 2 .

P11 � X � 2.5 2 .

y � f1x 2 .

f˛1x 2 � d
k˛14 � x 22 0 � x � 2

4k 2 6 x �
8
3

0 otherwise

c As the area spans the two distributions, we integrate over the relevant
domains.

d  P1X � 1 2 � �
 2

1 

 

3
64

 14 � x 22 dx � �
8
3

2

 

3
16

 dx

 � �
1
8

�
27
64

�
15
32

�
3
8

�
25
64

 � B� 1
64

 14 � x 23R
1

2

� B3x
16
R
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2.5

 P11 � X � 2.5 2 � �
 2

1 

3
64

 14 � x 22 dx � �
 2.5

2 

3
16

 dx

0

f(x)

x

f(x) � (4 � x)23
64

f(x) � 3
163

16

8
3

3
4
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22.2 Using continuous probability density
functions

Expectation
For a discrete random variable 

Hence for a continuous random variable valid over the range

If the probability density function is symmetrical then E(X ) is the value of the line of
symmetry.

a � x � b.

E1X 2 � �
 b

a 

x f1x 2  dx

E1X 2 � a
all x

x # P1X � x 2 .
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 � �
1
8

�
27
64

�
1
2

�
3
8

�
27
64

 � B� 1
64

 14 � x 23R
1

2

� B3x
16
R

2

8
3

These integrals could be done
directly on a calculator.

Exercise 1

1 A continuous probability density function is defined as

where k is a constant.

a Find the value of k. b Sketch 

c Find and show this on a sketch. d Find 

2 Let X be a continuous random variable with probability density function

where c is a constant.

a Find the value of c.
b Sketch 

c Find and show this on a sketch.

d Find 

3 A continuous random variable X has probability density function

where k is a constant.

a Find the value of k. b Sketch 

c Find and show this on a sketch. d Find 

4 The probability density function f(x) of a continuous random variable X is 
defined by

where k is a constant.

a Find the value of k. b Sketch 

c Find and show this on a sketch. d Find P1X � 1.5 2 .P11.1 � X � 1.3 2

y � f1x 2 .

f˛1x 2 � c
1
2

 x˛14 � x˛

2 2 k � x � 2

0 otherwise

P ¢X �
p

12
≤.P¢0 � X �

p

6
≤

y � f1x 2 .

f˛1x 2 � ck cos x 0 � x �
p

4
0 otherwise

P14.5 � X � 5.2 2 .

P12.5 � X � 3 2

y � f1x 2 .

f˛1x 2 � c
x
2

� 1 2 � x � c

0 otherwise

P1X � 2.5 2 .P11.5 � X � 2.5 2

y � f1x 2 .

f˛1x 2 � ck �
x
4

1 � x � 3

0 otherwise

5 The time taken for a worker to perform a particular task, t minutes, has 
probability density function

where k is a constant.

a Find the value of k. b Sketch

c Find and show this on a sketch. d Find P1X � 9 2 .P14 � X � 11 2

y � f1t 2 .

f˛1t 2 � c
kt˛

2 0 � t � 5
0.4k˛12 � t 2 5 6 t � 15
0 otherwise

This is similar to the
result for discrete data.

For continuous data we
are often dealing with a
population, so E(X ) is
denoted as For discrete
data we are often dealing
with a sample, so E(X ) is
denoted as In both
cases E(X ) is referred to as
the mean of X.

x.

m.
Example

If X is a continuous random variable with probability density function 

find E(X ).
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 E1X 2 � �
 3

0 

x ¢1
9

 x˛
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1
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2,



22  Continuous Probability Distributions

641

22  Continuous Probability Distributions

640

Example

The continuous random variable X has probability density function 

a Find the value of the constant k.

b Sketch 
c Find E(X).

d Find 

a

b

 1 k �
3

32

 1

32
3

 k � 1

 1 k B¢�125
3

� 75 � 25≤ � ¢�1
3

� 3 � 5≤R� 1

 1 k B�x˛

3

3
� 3x˛

2 � 5xR
1

5

� 1

 1 k�
 5

1 

1�x˛

2 � 6x � 5 2  dx � 1

�
 5

1 

k˛11 � x 2 1x � 5 2  dx � 1

P11.5 � X � 3.5 2 .

y � f1x 2 .

� k˛11 � x 2 1x � 5 2 , 1 � x � 5.f1x 2

0

f(x)

x

f(x) � (1 � x)(x � 5)3
32

1 3 5

c Since the distribution is symmetrical, from the above diagram.

d

 �
41
64

 �
3
32

 B¢�343
24

�
147
4
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2
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8
�
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� 3x˛
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3.5
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1�x˛

2 � 6x � 5 2  dx

 P11.5 � X � 3.5 2 � �
 3.5

1.5 

3
32

 11 � x 2 1x � 5 2  dx

E1X 2 � 3

Example

The time taken in hours for a particular insect to digest food is a continuous ran-
dom variable whose probability density function is given by

Find

a the value of the constant k
b the mean time taken
c the probability that it takes an insect between 1.5 and 3 hours to digest its

food
d the probability that two randomly chosen insects each take between 1.5 and

3 hours to digest their food.

a

b

c

d P(two randomly chosen insects each take between 1.5 and 3 hours to digest

their food) � 0.8022 � 0.644

 � 0.802

 �
3
31
B¢1

3
�

1
24
≤ � 122 � 14 2R

 P11.5 � X � 3 2 � �
 2

1.5 

k˛1x � 1 22 dx � �
 3

2 

k˛18 � x 2  dx

 � 2.90 hours

 �
3
31
B¢4 �

16
3

� 2≤ � ¢1
4

�
2
3

�
1
2
≤ � ¢64 �

64
3
≤ � ¢16 �

8
3
≤R 

 �
3
31
• Bx˛

4

4
�

2x˛

3

3
�

x˛

2

2
R

1

2

� B4x˛

2 �
x˛

3

3
R

2

4

¶

 �
3
31
B�

 2

1 

1x˛

3 � 2x˛

2 � x 2  dx � �
 4

2 

18x � x˛

2 2  dxR

 E1X 2 � �
 2

1 

kx˛1x � 1 22 dx � �
 4

2 

kx˛18 � x 2  dx

 1 k �
3

31

 1 kB¢1
3

� 0≤ � 124 � 14 2R � 1

 1 kB 1x � 1 23

3
R

1

2

� kB8x �
x˛

2

2
R

2

4

� 1

 �
 2

1 

k˛1x � 1 22 dx � �
 4

2 

k˛18 � x 2  dx � 1

f1x 2 � c
k˛1x � 1 22 1 � x � 2
k˛18 � x 2 2 6 x � 4
0 otherwise

 �
3

31
•B 1x � 1 23

3
R

1.5

2

� B8x �
x˛

2

2
R

2

3

¶



Variance
We are now in a position to calculate the variance. As with discrete data
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E1X2 2 � �
 b

a 

x˛

2 f1x 2  dx

E 3g1X 2 4 � �
 b

a 

g1x 2  f1x 2  dx

Var1X 2 � �
 b

a 

x˛

2 f1x 2  dx � °�
 

b

a 

x f1x 2  dx¢

2

 � E1X˛

2 2 � E21X 2

 Var1X 2 � E1X � m 22

This is similar to the
result for discrete data.

where g(x) is any function of the continuous random variable X and f(x) is the probability
density function.

Hence we have the result

Example

The continuous random variable X has probability density function f(x) where

Find:

a E(X)

b

c

a

b

c  E1X˛

2 2 � �
 6

0 

1
18

 x˛

216 � x 2  dx

 �
1
18

 1�144 � 234 � 36 2 � 3

 �
1
18

 B�2x˛

3

3
�

13x˛

2

2
� 6xR

0

6

 �
1
18 �

 6

0 

1�2x˛

2 � 13x � 6 2  dx

 E12X � 1 2 � �
 6

0 

1
18

 ˛12x � 1 2 16 � x 2  dx

�
1

18
 ¢108 �

216
3
≤ � 2

 �
1
18

 B3x˛

2 �
x˛

3

3
R

0

6

 �
1
18 �

 6

0 

16x � x˛

2 2  dx

 E1X 2 � �
 6

0 

1
18

 x 16 � x 2  dx

E1X˛

2 2

E12X � 1 2

f1x 2 �
1
18

 16 � x 2 , 0 � x � 6.
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 �
1
18

 1512 � 324 2 � 10.4

 �
1
18
B2x˛

3 �
x˛

4

4
R

0

6

 �
1
18 �

 6

0 

16x˛

2 � x˛

3 2  dx

Therefore for a continuous random variable with probability density function valid over
the domain a � x � b

The standard deviation

of X is s � 2Var1X 2 .
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Example

The continuous random variable X has probability density function f(x) where

Find:

a E(X )
b
c Var(X )
d

a

 �
163
56

 �
2
63

 B¢49
8

�
343
6

�
2401
16
≤ � ¢2 �

32
3

� 16≤R
 �

2
63
Bx˛

2

2
�

4x˛

3

3
� x˛

4R
2

7
2

 �
2
63 �

7
2

2

1x � 4x˛

2 � 4x˛

3 2  dx

 E1X 2 � �
7
2

2

2
63

x 11 � 2x 22 dx

s

E1X˛

2 2

f1x 2 �
2
63

 11 � 2x 22, 2 � x �
7
2

.

For a continuous random variable valid over the range a � x � b
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b

c

d s � 2Var1X 2 � 20.217 � 0.466

�
2433
280

� ¢163
56
≤2

� 0.217

Var1X 2 � E1X˛

2 2 � E21X 2

 �
2433
280

 �
2
63

 B¢343
24

�
2401
16

�
16 807

40
≤ � ¢8

3
� 16 �

128
5
≤R

 �
2
63
Bx˛

3

3
� x˛

4 �
4x˛

5

5
R

2

7
2

 �
2
63 �

7
2

2

1x˛

2 � 4x˛

3 � 4x˛

4 2  dx

 E1X˛

2 2 � �
7
2

2

2
63

x˛

211 � 2x 22 dx

Example

A particular road has been altered so that the traffic has to keep to a lower
speed and at one point in the road traffic can only go through one way at a
time. At this point traffic in one direction will have to wait. The time in minutes
that vehicles have to wait has probability density function

a Find the mean waiting time.
b Find the standard deviation of the waiting time.
c Find the probability that three cars out of the first six to arrive after 8.00 am

in the morning have to wait more than 2 minutes.

a The mean waiting time is given by E(X).

 �
1
2

 ¢8 �
16
3
≤ �

4
3

 �
1
2
Bx˛

2

2
�

x˛

3

12
R

0

4

 � �
 4

0 

1
2
¢x �

x˛

2

4
≤ dx

 E1X 2 � �
 4

0 

1
2

x¢1 �
x
4
≤ dx

f1x 2 � c
1
2

 ¢1 �
x
4
≤ 0 � x � 4

0 otherwise
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b

Hence 

c First we need to calculate the probability that a car has to wait more than
2 minutes.

Since we are now considering six cars, this follows the binomial distribution

We want P1Y � 3 2 � 6C˛3¢14≤
3¢3

4
≤3

� 0.132.

Y � Bin¢6, 
1
4
≤.

 �
1
4

 �
1
2

 B14 � 2 2 � ¢2 �
1
2
≤R

 �
1
2
Bx �

x˛

2

8
R

2

4

 P˛1X 7 2 2 � �
 4

2 

1
2
¢1 �

x
4
≤ dx

s � 2Var1X 2 �
B

8
9

� 0.943

 �
8
3

� ¢4
3
≤2

�
8
9

 Var1X 2 � E1X˛

2 2 � E21X 2

 �
1
2

 ¢64
3

� 16≤ �
8
3

 �
1
2
Bx˛

3

3
�

x˛

4

16
R

0

4

 � �
 4

0 

1
2

 ¢x˛

2 �
x˛

3

4
≤ dx

 E1X˛

2 2 � �
 4

0 

1
2

 x˛

2¢1 �
x
4
≤ dx

Example

A continuous random variable has probability density function f(x) where

Calculate:
a E(X )
b Var(X )
c

d P1�X � m� 6 s 2

s

f˛1x 2 � e
3

128
 x˛

2 0 � x � 4

1
4

4 6 x � 6

0 otherwise
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The median
Since the probability is given by the area under the curve, the median splits the area
under the curve into two halves. So if the median is m, then

�
 m

a 

f1x 2  dx � 0.5

y � f1x 2 , a � x � b,

This becomes a little more complicated if the probability density function is made up of
more than one function, as we have to calculate in which domain the median lies.
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The mode
Since the mode is the most likely value for X, it is found at the value of X for which f(x)
is greatest, in the given range of X. Provided the probability density function has a
maximum point, it is possible to determine the mode by finding this point.Example
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a

b

c

d

 � 0.5 � 0.169 � 1.33 � 1 � 0.658

 � B x˛

3

128
R

2.79

4

� Bx
4
R

4

5.31

 � �
 4

2.79 

3
128

x˛

2 dx � �
 5.21

4 

1
4

 dx

 � P˛12.79 6 X 6 5.21 2

 � P˛1�1.21 6 X � 4 6 1.21 2

P1 0X � m 0 6 s 2 � P1 0X � 4 0 6 1.21 2

s � 2Var1X 2 �
B

22
15

� 1.21

 �
262
15

� 14 22 �
22
15

 Var1X 2 � E1X˛

2 2 � E21X 2

 �
24
5

� 18 �
16
3

�
262
15

 � B 3x˛

5

640
R

0

4

� B x˛

3

12
R

4

6

 E1X˛

2 2 � �
 4

0 

3
128

x˛

4 dx � �
 6

4 

1
4

 x˛

2 dx

 �
3
2

�
9
2

� 2 � 4

 � B 3x˛

4

512
R

0

4

� Bx˛

2

8
R

4

6

 E1X 2 � �
 4

0 

3
128

x˛

3 dx � �
 6

4 

1
4

 x dx

Example

The continuous random variable X has probability density function f(x) where

Find the mode.

To find the mode we differentiate the function and justify that it has a maximum
value.

 �
3
38

 1�2x˛

2 � 3x � 9 2

 f1x 2 �
3
38

 13 � 2x 2 13 � x 2

f1x 2 �
3
38

 13 � 2x 2 13 � x 2 , 1 � x � 3.

To find the mode we
differentiate, but when
we find the mean and
the median we integrate.

for a maximum or minimum point

This is a maximum because 

Therefore the mode is x �
3
4

.

f–¢3
4
≤ � �

6
19

.

1 x �
3
4

f¿ 1x 2 �
3

38
 1�4x � 3 2 � 0
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Example

The continuous random variable X has probability density function f(x) where

Find the median.

Let the median be m.

We now solve this on a calculator.

 1 �2m˛

3 � 15m˛

2 � 24m � 1 � 0

 1
3

10
 B¢�m˛

3

3
�

5m˛

2

2
� 4m≤ � ¢�1

3
�

5
2

� 4≤R � 0.5

 1

3
10

 B�x˛

3

3
�

5x˛

2

2
� 4xR

1

m

� 0.5

 1

3
10 �

 m

1 

1�x˛

2 � 5x � 4 2  dx � 0.5

 �
 m

1 

3
10

 1x � 4 2 11 � x 2  dx � 0.5

f1x 2 �
3
10

 1x � 4 2 11 � x 2 , 1 � x � 3.

There are three solutions to this equation, but only one lies in the domain and
hence m � 2.24.
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Example

A continuous random variable X has a probability density function

a Sketch 

b Find the median m.

c Find 

a

P¢�X � m� 7

1
2
≤.

y � f1x 2 .

f1x 2 � f

4x 0 � x �
1
4

1
1
4

� x �
1
2

�
4
5

 x �
7
5

1
2

� x �
7
4

0

f(x)

x

f(x) � x4
� �5

7
5

1
4

1
2

7
4

f(x) � 1

f(x) � 4x
1

b We now have to determine in which section of the function the median
occurs. We will do this by integration, but it can be done using the areas
of triangles and rectangles.

Since the median does not lie in this region.

Since the median does not lie in this region so it must be in the

third region.

Hence 

 1

3
8

�
1
5

 3�2x˛

2 � 7x 4 1
2

m
� 0.5

 �
1
4

0

4x dx � �
1
2

1
4

1 dx � �
m

1
2

¢�4
5

 x �
7
5
≤ dx � 0.5

3
8

6 0.5

 � 32x˛

24 0
1
4 � 3x 4 1

4

1
2 �

1
8

�
1
2

�
1
4

�
3
8

 P¢X �
1
2
≤ � �

1
4

0

4x dx � �
1
2

1
4

1 dx

1
8

6 0.5

 � 32x˛

2 40
1
4

�
1
8

 P¢X �
1
4
≤ � �

1
4

0

4x dx

Since is not defined for the probability density function,

c

 � 0.125 � 0.0348 � 0.5 � 0.25 � 1.07 � 0.6 � 0.812

 � 32x˛

2 40.132

1
4 � 3x 4 1

4

1
2 �

1
5

 3�2x˛

2 � 7x 4 1
2

1.13

 � �
1
4

0.132

4x dx � �
1
2

1
4

1 dx � �
1.13

1
2

¢�4
5

 x �
7
5
≤ dx

 � P10.132 6 X 6 1.13 2

 � P¢�1
2

6 X � 0.632 6

1
2
≤

 P¢�X � m � 7

1
2
≤ � P¢�X � 0.632 � 7

1
2
≤

m � 0.632.

m � 2.86

 1 m � 0.632 or 2.86

 1 16m˛

2 � 56m � 29 � 0

 1 15 � 16m˛

2 � 56m � 24 � 20

 1

3
8

�
1
5

 ¢�2m˛

2 � 7m �
1
2

�
7
2
≤ � 0.5
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Exercise 2

1 A continuous random variable has probability density function

where k is a constant.

a Find the value of k. b Find E(X ). c Find Var(X ).

2 A continuous random variable has probability density function

where k is a constant.

Without using a calculator, find:

a k b E(X ) c Var(X)

3 The probability density function of a continuous random variable Y is given by

where c is a constant.

a Find the value of c. b Find the mean of Y.

f1x 2 � by˛12 � 3y 2 0 6 y 6 c
0 otherwise

f1x 2 � c
k
x

1 � x � 3

0 otherwise

f1x 2 � bkx 0 � x � 2
0 otherwise

0 otherwise
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4 A continuous random variable X has probability density function

where k is a constant.

Find:

a k b E(X) c Var(X) d the median of x e

5 A continuous random variable X has a probability density function

where k is a constant.

Find:

a k b E(X) c Var(X) d the median of X.

6 A continuous probability density function is described as

where c is a constant.

a Find the value of c. b Find the mean of the distribution.

7 A continuous random variable X has a probability density function

Find:

a k b E(X ) c Var(X ) d the median of X e

8 A continuous probability distribution is defined as

where k is a constant.

Find:

a k
b the mean, 
c the standard deviation, 
d the median, m

e

9 a If what is the largest domain of the function 

The function is now to be used as a probability density

function for a continuous random variable X.

b For it to be a probability density function for a continuous random variable
X, what is the domain, given that the lower bound of the domain is 0?

f1x 2 �
1

21 � 4x˛

2

f1x 2 �
1

21 � 4x˛

2
?x � 0,

P¢�X � m� 7

1
4
≤

s

m

p1x 2 � c
1

1 � x˛

2 0 � x � k

0 otherwise

P¢�X � m� 7

1
2
≤

f1x 2 � k cos x, 0 � x �
p

2
.

f1x 2 � bcex 0 � x � 1
0 otherwise

f1x 2 � bkx˛

2 0 � x � 3
0 otherwise

P13 � X � 5 2

p1x 2 � c
kx 0 � x � 4
4k 4 � x � 6
0 otherwise

c Find the mean of X.

d Find the standard deviation of X.

10 A continuous random variable has a probability density function given by

a Without using a calculator, find 

b Find the mean of X.

c Find the standard deviation of X.

11 A continuous random variable X has probability density function

where k and c are positive constants. Show that 

12 The time taken in minutes for a carpenter in a factory to make a wooden
shelf follows the probability density function

a Find:
i

ii

b A carpenter is chosen at random. Find the probability that the time taken
for him to complete the shelf lies in the interval 

13 The lifetime of Superlife batteries is X years where X is a continuous random
variable with probability density function

where k is a constant.

a Find the exact value of k.

b Find the probability that a battery fails after 4 months.

c A computer keyboard takes six batteries, but needs a minimum of four
batteries to operate. Find the probability that the keyboard will continue
to work after 9 months.

14 The probability that an express train is delayed by more than X minutes is modelled

by the probability density function It is

assumed that no train is delayed by more than 60 minutes.

f1x 2�
1

72 000
 1x � 60 22, 0 � x � 60.

f1x 2 � b0 x 6 0
ke

�x
3 0 � x � 6

3m � s, m 4 .

s2

m

f1t 2 � c
6

56
 115t � t˛

2 � 50 2 6 � t � 10

0 otherwise

k �
�c˛

3e2c

212c˛

2 � c � 1 2
.

f1x 2 � bkx˛

2e�cx 0 � x � 2
0 otherwise

P¢�X � �  tan 
p

4
≤.

f1x 2 � c
2

p11 � x˛

2 2
�1 � x � 1

0 otherwise
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a Sketch the curve.

b Find the standard deviation of X.

c Find the median, m, of X.

15 A continuous random variable X has probability density function

where k and c are constants.

The mean of X is 

a Find the values of k and c.

b Find the variance of X.

c Find the median, m, of X.

d Find where is the standard deviation of X.sP1 0 X � 1 0 6 s 2

3
2

.

f1x 2 � bkx˛

2 � c 0 � x � 2
0 otherwise

Important results
1. The area under the curve is 1, meaning that f(x) is a probability density function.

2. The curve is symmetrical about that is the part of curve to the left of is

the mirror image of the part to the right. Hence 

and 

3. We can find the probability for any value of x since the probability density function
is valid for all values between The further away the value of x is from the
mean, the smaller the probability becomes.

4. Approximately 95% of the distribution lies within two standard deviations of the mean.

;q.

P1X � m 2 � P˛1X � m 2 � 0.5.

P1�a � X � a 2 � 2P10 � X � a 2

x � mm,

The exact shape of the curve is dependent on the values of and and four examples
are shown below.

sm

22.3 Normal distributions
We found in Chapter 21 that there were special discrete distributions, which modelled

certain types of data. The same is true for continuous distributions and the normal

distribution is probably the most important continuous distribution in statistics since it

models data from natural situations quite effectively. This includes heights and weights

of human beings. The probability density function for this curve is quite complex and

contains two parameters, the mean and the variance.s2m

If a random variable X follows a normal distribution, we say X � N˛1m, s2 2 .

The probability density function for a normal distribution is f1x 2 �
e

�1x�m 22

2s2

s22p
.

When we draw the curve it is a bell-shaped distribution as shown below.

f(x)

x

f(x) � 
e
�

(x �   )� 2

2 2�

�

2	��

f(x)

0

0.4

x

X ~ N(0, 1)

�2 2

f(x)

150

0.0399

x

X ~ N(150, 10)

148 152

f(x)

40

0.132

x

X ~ N(40, 3)

4238

f(x)

6

1.20

x

X ~ N(6,   )1
3

75

We normally make 
the axis of symmetry,
but we could draw
them as translations
of the normal curve
centred on m � 0.

m

f(x)

95%

� � 2� �� 2� � x

f(x)

99.8%

�� 3� � � 3� � x

5. Approximately 99.8% of the distribution lies within three standard deviations of
the mean.



If we need to find a probability where Z is greater than a certain value or between two
values, this works in the same way.

22  Continuous Probability Distributions

655

6. The maximum value of f(x) occurs when and is given by Hence

in the case of a normal distribution, the mean and the mode are the same.

7. The proof of this involves mathematics beyond the scope of this syllabus.

8. Again the proof of this involves mathematics beyond the scope of

this syllabus.

9. The curve has points of inflexion at and 

Finding probabilities from the normal distribution
Theoretically, this works in exactly the same way as for any continuous random variable

and hence if we have a normal distribution with and that is 

and we want to find the calculation we do is This

could be done on a calculator, but would be very difficult to do manually. In fact there is 
no direct way of integrating this function manually and approximate methods would
need to be used. In the past this problem was resolved by looking up values for the
different probabilities in tables of values, but now graphing calculators will do the
calculation directly. Within this syllabus you will not be required to use tables of values
and it is unlikely that a question on normal distributions would appear on a non-
calculator paper.

Since there are infinite values of and there are an infinite number of possible
distributions. Hence we designate what we call a standard normal variable Z and these
are the values that appear in tables and are the default values on a calculator. The
standard normal distribution is one that has mean 0 and variance 1, that is Z � N10, 1 2 .

sm

�
 0.5

�0.5 

 

e˛

�x˛

2

2

22p
 dx.P1�0.5 � X � 0.5 2

X � N10, 1 2 ,s2 � 1,m � 0

x � m � s.x � m � s

Var1X 2 � s2.

E1X 2 � m.

f1x 2 �
1

s22p
.x � m
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� 1.5 z

Example

Find 

The diagram for this is shown below.

P1Z � 1.5 2 .

We do the calculation directly on a calculator.

It is often a good idea
to draw a sketch
showing what you need.

The value 

was chosen as the lower

bound because the

number is so small that

the area under the curve

to the left of that bound

is negligible.

�1 
 1099

P1Z � 1.5 2 � 0.933

Example

Find 

The diagram for this is shown below.

P1�1.8 � Z � 0.8 2 .

0.8�1.8 0 z

Again, we do the calculation directly on a calculator.

P1�1.8 � Z � 0.8 2 � 0.752

More often than not we will be using normal distributions other than the standard
normal distribution. This works in the same way, except we need to tell the calculator
the distribution from which we are working.

Example

If find 

The diagram for this is shown below.

P1X � 3 2 .X � N12, 1.52 2 ,

Again, we do the calculation directly on a calculator.

P1X � 3 2 � 0.252

32 x



The calculator will only calculate the value that provides what we call the lower tail of
the graph and if we wanted which we call the upper tail, we would
need to undertake a different calculation. An upper tail is an area greater than a certain
value and a lower tail is an area less than a certain value. This is why it can be very useful
to draw a sketch first to see what is required.

P1Z � a 2 � 0.73,
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Up until now we have been calculating probabilities. Now we also need to be able to
find the values that give a defined probability using a calculator.
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Example

If find given that 25 is correct to 2 significant figures.

In terms of continuous data and hence this
is what we calculate.
This is shown in the diagram.

P1X � 25 2 � P124.5 � X 6 25.5 2

P1X � 25 2 ,X � N120, 1.22 2 ,

24.5
25.5

20 x

P1X � 25 2 � 8.62 
 10�5

Since we are dealing with continuous distributions, if we are asked to find the probability
of X being a specific value, then we need to turn this into a range.

For the normal distribution,
calculating the probability
of X “less than” or the
probability of X “less than
or equal to” amounts to
exactly the same calculation.

Example

Find a if 

In this case we are using the standard normal distribution and we are told the
area is 0.73, that is the probability is 0.73, and we want the value. This is shown
in the diagram.

P˛1Z � a 2 � 0.73.

a

73%

0 z

We do the calculation directly on a calculator.

a � 0.613

Example

Find a if 

This is shown in the diagram.

P˛1Z � a 2 � 0.73.

a

73%

0 z

In this case 
We do this calculation directly on a calculator.

P1Z � a 2 � 1 � 0.73 � 0.27.

a � �0.613

Because of the symmetry of
the curve, the answer is the
negative of the answer in
the previous example. You
can use this property, but it
is probably easier to always
use the lower tail of the
distribution. This negative
property only appears on
certain distributions,
including the standard
normal distribution, since the
values to the left of the
mean depend on the value
of the mean.

If we do not have a standard normal distribution, we can still do these questions on a
calculator, but this time we need to specify and s.m

Example

If find a where 

This is shown in the diagram.

P1X � a 2 � 0.6.X � N120, 3.22 2,

a

60%

20 x
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In this case 
We do this calculation directly on a calculator.

P1X � a 2 � 1 � 0.6 � 0.4.

22  Continuous Probability Distributions

a � 19.2

Example

If find a where 
This is the same as finding 
This is shown in the diagram.

P1�a � X � a 2 � 0.75.
P1�X � � a 2 � 0.75.X � N115, 0.82 2 ,

a�a

75%

15 x

a � 14.1

In this case 

We do this calculation directly on a calculator.

P˛1X � a 2 �
1 � 0.75

2
 � 0.125.

Exercise 3

1 If find:

a b

c d

e f

g h

i j P1 � Z � 7 0.614 2P1� Z � 6 1.41 2

P1�1.28 6 Z 6 0.419 2P1�0.561 6 Z 6 �0.0232 2

P10.831 6 Z 6 1.25 2P1Z � 1.43 2

P1Z � �1.76 2P1Z � �0.341 2

P1Z � 0.224 2P1Z � 0.756 2

Z � N10, 1 2 ,

2 If find a where

a b

c d

e f

g h

i j

3 If find:

a b

c d

4 If find:

a b c

d e

5 If find:

a b c

d e

6 If find:

a b

c d

7 If find:

a b

c d

8 If find a where

a b

c d

9 If find a where

a b

c d

10 If find a where

a b

c d

11 Z is a standardized normal random variable with mean 0 and variance 1. Find
the upper quartile and the lower quartile of the distribution.

12 Z is a standardized normal random variable with mean 0 and variance 1.
Find the value of a such that P1� Z �� a 2 � 0.65.

P1� X � 300� 6 a 2 � 0.45P1�X � 300 � 6 a 2 � 0.99

P1�X � 300 � 6 a 2 � 0.95P1� X � 300 � 6 a 2 � 0.6

X ~ N1300, 49 2 ,

P1X 7 a 2 � 0.764P1X 7 a 2 � 0.336

P1X 6 a 2 � 0.459P1X 6 a 2 � 0.989

X ~ N185, 15 2 ,

P1X 7 a 2 � 0.651P1X 7 a 2 � 0.173

P1X 6 a 2 � 0.293P1X 6 a 2 � 0.617

X ~ N140, 4 2 ,

P1�X � 80 � 6 3222 2P1�X � 80 � 6 222 2

P160 6 X 6 73 2P175 6 X 6 90 2

X ~ N˛180, 22 2 ,

P1�X � 100 � 6 9 2P1�X � 125� 6 270 2

P190 6 X 6 100 2P185 6 X 6 120 2

X ~ N1125, 70 2 ,

P1X � �14 2P1X 6 �20.1 2

P1X 6 �3.55 2P1X 7 �18.5 2P1X 7 �10 2

X ~ N1�15, 16 2,

P1X � 62 2P1X 6 59.5 2

P1X 6 68 2P1X 7 54.5 2P1X 7 67 2

X ~ N163, 9 2 ,

P1X 6 263 2P1X 6 231 2

P1X 7 241 2P1X 7 269 2

X ~ N1250, 49 2 ,

P1� Z � 6 a 2 � 0.416P1�Z � 7 a 2 � 0.611

P1Z 7 a 2 � 0.0598P1Z 7 a 2 � 0.159

P1Z 7 a 2 � 0.686P1Z 7 a 2 � 0.0456

P1Z 6 a 2 � 0.249P1Z 6 a 2 � 0.346

P1Z 6 a 2 � 0.937P1Z 6 a 2 � 0.548

Z ~ N10, 1 2 ,
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13 A random variable X is normally distributed with mean and standard
deviation 1.5. Find the probability that an item chosen from this distribution
will have a positive value.

14 The diagram below shows the probability density function for a random
variable X which follows a normal distribution with mean 300 and standard
deviation 60.

�2

Find the probability represented by the shaded region.

15 The random variable Y is distributed normally with mean 26 and standard
deviation 1.8. Find 

16 A random variable X is normally distributed with mean zero and standard

deviation 8. Find the probability that �X� 7 12.

P123 � Y � 30 2 .

500300100 x

22.4 Problems involving finding and 

To do this, we need to know how to convert any normal distribution to the standard

normal distribution. Since the standard normal distribution is N(0,1) we standardize X

which is using This enables us to find the area under the curve by

finding the equivalent area on a standard curve. Hence if and we want

this is the same as finding on the standard

curve. The way to find and/or if they are unknown is best demonstrated by example.sm

P¢Z �
2.5 � 2

0.5
≤ � P1Z � 1 2P1X � 2.5 2 ,

X ~ N12, 0.52 2

Z �
X � m

s
.N1m, s2 2

SM

Example

If and find the value of 

We begin by drawing a sketch.

m.P1X � 22 2 � 0.729,X � N1m, 7 2

�22

72.9%

x

It is clear from the sketch that 
Since the question gives an upper tail, we want the value of Z associated with a
probability of which can be found on a calculator to be

Since we have 

 1 m � 26.3

 �0.610 �
22 � m

7
Z �

X � m

s

�0.610.
1 � 0.729 � 0.271

m 7 22.

Example

If and find the value of 

Again, we begin by drawing a sketch.

s.P1X � 215 2 � 0.218,X ~ N1221, s2 2

221215 x

21.8%

The question gives a lower tail and hence we want the value of Z associated
with a probability of 0.218, which can be found on a calculator to be

Since we have 

 1 s � 7.70

 �0.779 �
215 � 221

s
Z �

X � m

s

�0.779.

Example

If and find the values

of and 

In this case we will have two equations and we will need to solve them
simultaneously. Again we begin by drawing a sketch.

s.m

P1X � 65 2 � 0.246,X ~ N1m, s2 2 , P1X � 30 2 � 0.197

�30 65 x

19.7% 24.6%

We first want the value of Z associated with a probability of 0.197, which can
be found on a calculator to be 

equation (i)

To find the value of Z associated with 0.246 we need to use 
as it is an upper tail that is given. From the calculator we find the required value is
0.687.

equation (ii)

We now subtract equation (i) from equation (ii) to find 

Substituting back in equation (i) allows us to find m � 51.6.

s � 19.5.

 1 0.687s � 65 � m

 0.687 �
65 � m

s

1 � 0.246 � 0.754

 1 �0.852s � 30 � m

 �0.852 �
30 � m

s

�0.852.



663

22  Continuous Probability Distributions

662

Example

The life of a certain make of battery is known to be normally distributed with a
mean life of 150 hours and a standard deviation of 15 hours. Estimate the
probability that the life of such a battery will be

a greater than 170 hours
b less than 120 hours
c within the range 135 hours to 155 hours.

Six batteries are chosen at random. What is the probability that
d exactly three of them have a life of between 135 hours and 155 hours
e at least one of them has a life of between 135 hours and 155 hours?

Exercise 4

1 If and find the value of 

2 If and find the value of 

3 If and find the value of 

4 If and find the value of 

5 If and find the value of 

6 If and find the value of 

7 If and find the value of 

8 If and find the value of 

9 If and find the

values of and 

10 If and find the

values of and 

11 If and find the

values of and 

12 A random variable X is normally distributed with mean and standard
deviation such that and

a Find the values of and  b Hence find

13 The random variable X is normally distributed and
Find E(X ).P1X � 18.7 2 � 0.953.

P1X � 14.1 2 � 0.715,

P1� X � m � 6 3.5 2 .s.m

P1X 6 18.7 2 � 0.211.P1X 7 30.1 2 � 0.145s

m

s.m

P1X � 300 2 � 0.187,X~ N1m, s2 2 , P1X � 268 2 � 0.0237

s.m

P1X � 42.5 2 � 0.811,X ~ N1m, s2 2 , P1X � 45 2 � 0.384

s.m

P1X � 14.5 2 � 0.261,X ~ N1m, s2 2 , P1X � 8.5 2 � 0.247

s.P1X � 135 2 � 0.185,X ~ N1125, s2 2

s.P1X � 520 2 � 0.856,X ~ N1535, s2 2

s.P1X � 18.5 2 � 0.673,X ~ N115, s2 2

s.P1X � 49 2 � 0.152,X ~ N156, s22

m.P1X 6 41 2 � 0.852,X ~ N1m, 3.5 2

m.P1X 6 28.5 2 � 0.225,X ~ N1m, 7 2

m.P1X 7 72.5 2 � 0.769,X � N1m, 18 2

m.P1X 7 15.5 2 � 0.372,X ~ N1m, 1.5 2
a We require 

This is shownbelow.
P1X 7 170 2 .

X ~ N1150, 152 2

22  Continuous Probability Distributions

b We require 
This is shown below.

P1X 6 120 2 .

P1X 7 170 2 � 0.0912

c We require 
This is shown below.

P1135 6 X 6 155 2 .

P1X 6 120 2 � 0.0228

d We can now model this using a binomial distribution, 

e Again, we use the binomial distribution and in this case we need

 � 0.978

 P1Y � 1 2 � 1 � P1Y � 0 2

 � 0.310

 P1Y � 3 2 � 6C˛310.472 2310.528 23
Y ~ Bin16, 0.472 2 .

P1135 6 X 6 155 2 � 0.472 It is quite common for
questions to involve
finding a probability
using the normal 
distribution and then
taking a set number of
these events, which
leads to setting up 
a binomial distribution.

Example

The weight of chocolate bars produced by a particular machine follows a normal
distribution with mean 80 grams and standard deviation 4.5 grams. A chocolate
bar is rejected if its weight is less than 75 grams or more than 83 grams.

a Find the percentage of chocolate bars which are accepted.

22.5 Applications of normal distributions
Normal distributions have many applications and are used as mathematical models
within science, commerce etc. Hence problems with normal distributions are often given
in context, but the mathematical manipulation is the same.
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The setting of the machine is altered so that both the mean weight and the
standard deviation change. With the new setting, 2% of the chocolate bars are
rejected because they are too heavy and 3% are rejected because they are too
light.

b Find the new mean and the new standard deviation.
c Find the range of values of the weight such that 95% of chocolate bars are

equally distributed about the mean.

a We require 
This is shown below.

P175 6 X 6 83 2 .

X ~ N180, 4.52 2

22  Continuous Probability Distributions

are accepted.
b In this case we need to solve two equations simultaneously.

We begin by drawing a sketch.

1 61.4%

P175 6 X 6 83 2 � 0.614

�75 83 x

3%
2%

We first want the value of Z associated with a probability of 0.03. Since
this is a lower tail, it can be found directly on a calculator to be 

equation (i)

To find the value of Z associated with 0.02 we need to use 
as it is an upper tail that is given. From the calculator we find the required value
is 2.05.

equation (ii)

If we now subtract equation (i) from equation (ii) we find 
Substituting back in equation (i) allows us to find 

c Again we begin by drawing a sketch.
m � 78.8.

s � 2.03.

 1 2.05s � 83 � m

 2.05 �
83 � m

s

1 � 0.02 � 0.98

 1 �1.88s � 75 � m

 P1X 6 75 2 � �1.88 �
75 � m

s

�1.88.

�a a78.8 x

2.5%
95%

2.5%

In this case and we require 
This is shown below.

P1X 6 a 2 � 0.025.X ~ N178.8, 2.032 2

22  Continuous Probability Distributions

Hence the lower bound of the range is 74.8.

The upper bound is given by 

The range of values required is 74.8 6 X 6 82.8.

78.8 � 178.8 � 74.8 2 � 82.8.

Exercise 5

1 The weights of a certain breed of otter are normally distributed with mean
2.5 kg and standard deviation 0.55 kg.

a Find the probability that the weight of a randomly chosen otter lies between
2.25 kg and 2.92 kg.

b What is the weight of less than 35% of this breed of otter?

2 Jars of jam are produced by Jim’s Jam Company. The weight of a jar of jam
is normally distributed with a mean of 595 grams and a standard deviation
of 8 grams.

a What percentage of jars has a weight of less than 585 grams?

b Given that 50% of the jars of jam have weights between m grams and n
grams, where m and n are symmetrical about 595 grams and find
the values of m and n.

3 The temperature T on the first day of July in England is normally distributed
with mean 18°C and standard deviation 4°C. Find the probability that the
temperature will be

a more than 20°C
b less than 15°C
c between 17°C and 22°C.

4 The heights of boys in grade 11 follow a normal distribution with mean 170
cm and standard deviation 8 cm. Find the probability that a randomly chosen
boy from this grade has height

a less than 160 cm b less than 175 cm
c more than 168 cm d more than 178 cm
e between 156 cm and 173 cm f between 167 cm and 173 cm.

5 The mean weight of 600 male students in a college is 85 kg with a standard
deviation of 9 kg. The weights are normally distributed.

a Find the number of students whose weight lies in the range 75 kg to 95 kg.
b 62% of students weigh more than a kg. Find the value of a.

6 The standard normal variable has probability density function 

Find the coordinates of the two points of inflexion.

f1x 2 �
e

�1x �m22

2s
2

s22p
.

m 6 n,



b If three loaves of bread are chosen at random, what is the probability that
exactly one of them has a weight of more than 270 g?

16 Students’ times to run a 200 metre race are measured at a school sports
day. There are ten races and five students take part in each race. The results
are shown in the table below.

a Find the mean and the standard deviation of these times.
b Assuming that the distribution is approximately normal, find the percentage

of students who would gain a time between 27.5 seconds and 29.5
seconds.

17 Apples are sold on a market stall and have a normal distribution with mean
300 grams and standard deviation 30 grams.

a If there are 500 apples on the stall, what is the expected number with a
weight of more than 320 grams?

b Given that 25% of the apples have a weight less than m grams, find the
value of m.

18 The lengths of screws produced in a factory are normally distributed with
mean and standard deviation 0.055 cm. It is found that 8% of screws
have a length less than 1.35 cm.

a Find 
b Find the probability that a screw chosen at random will be between 1.55 cm

and 1.70 cm.

19 In a zoo, it is found that the height of giraffes is normally distributed with
mean height H metres and standard deviation 0.35 metres. If 15% of giraffes
are taller than 4.5 metres, find the value of H.

20 The weights of cakes sold by a baker are normally distributed with a mean
of 280 grams. The weights of 18% of the cakes are more than 310 grams.

a Find the standard deviation.
b If three cakes are chosen at random, what is the probability that exactly two

of them have weights of less than 260 grams?

21 A machine in a factory is designed to produce boxes of chocolates
which weigh 0.5 kg. It is found that the average weight of a box of
chocolates is 0.57 kg. Assuming that the weights of the boxes of 
chocolate are normally distributed, find the variance if 2.3% of the
boxes weigh below 0.5 kg.

22 The marks in an examination are normally distributed with mean and standard
deviation 5% of candidates scored more than 90 and 15% of candidates
scored less than 40. Find the mean and the standard deviation 

23 The number of hours, T, that a team of secretaries works in a week is normally
distributed with a mean of 37 hours. However, 15% of the team work more
than 42 hours in a week.

a Find the standard deviation of T.
b Andrew and Balvinder work on the team. Find the probability that both

secretaries work more than 40 hours in a week.

s.m

s.
m

m.

m
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7 A manufacturer makes ring bearings for cars. Bearings below 7.5 cm in
diameter are too small while those above 8.5 cm are too large. If the 
diameter of bearings produced is normally distributed with mean 7.9 cm
and standard deviation 0.3 cm, what is the probability that a bearing chosen
at random will fit?

8 The mean score for a mathematics quiz is 70 with a standard deviation of
15. The test scores are normally distributed.

a Find the number of students in a class of 35 who score more than 85 in
the quiz.

b What score should more than 80% of students gain?

9 For the delivery of a package to be charged at a standard rate by a courier
company, the mean weight of all the packages must be 1.5 kg with a standard
deviation of 100 g. The packages are assumed to be normally distributed. 
A company sends 50 packages, hoping they will all be charged at standard
rate. Find the number of packages that should have a weight

a of less than 1.4 kg
b of more than 1.3 kg
c of between 1.2 kg and 1.45 kg.

10 At Sandy Hollow on a highway, the speeds of cars have been found to be
normally distributed. 80% of cars have speeds greater than 55 kilometres
per hour and 10% have speeds less than 50 kilometres per hour. Calculate
the mean speed and its standard deviation.

11 Packets of biscuits are produced such that the weight of the packet is normally
distributed with a mean of 500 g and a standard deviation of 50 g.

a If a packet of biscuits is chosen at random, find the probability that the
weight lies between 490 g and 520 g.

b Find the weight exceeded by 10% of the packets.
c If a supermarket sells 150 packets in a day, how many will have a weight

less than 535 g?

12 Bags of carrots are sold in a supermarket with a mean weight of 0.5 kg and
standard deviation 0.05 kg. The weights are normally distributed. If there
are 120 bags in the supermarket, how many will have a weight

a less than 0.45 kg
b more than 0.4 kg
c between 0.45 kg and 0.6 kg?

13 The examination scores in an end of year test are normally distributed with
a mean of 70 marks and a standard deviation of 15 marks.

a If the pass mark is 50 marks, find the percentage of candidates who pass
the examination.

b If 5% of students gain a prize for scoring above y marks, find the value of y.

14 The time taken to get to the desk in order to check in on a flight operated by
Surefly Airlines follows a normal distribution with mean 40 minutes and stan-
dard deviation 12 minutes. The latest time that David can get to the desk for a
flight is 1400. If he arrives at the airport at 1315, what is the probability that he
will miss the flight?

15 Loaves of bread made in a particular bakery are found to follow a normal
distribution X with mean 250 g and standard deviation 30 g.

a 3% of loaves are rejected for being underweight and 4% of loaves are
rejected for being overweight. What is the range of weights of a loaf of
bread such that it should be accepted?

Time to nearest 
second 26 27 28 29 30 31

Number of 
students 3 7 15 14 9 2



The settings on the machine are altered so that the mean diameter changes
but the standard deviation remains unchanged. With the new settings 5% of
hooks are rejected because the hole is too large.
b Find the new mean diameter of the hole produced on the hooks.
c Find the percentage of hooks rejected because the hole is too small in

diameter.
d Six hooks are chosen at random. What is the probability that exactly three

of them will have a hole in them that is too small in diameter?

6 a A machine is producing components whose lengths are normally 
distributed with a mean of 8.00 cm. An upper tolerance limit of 8.05 cm is
set and on one particular day it is found that one in sixteen components is
rejected. Estimate the standard deviation.

b The next day, due to production difficulties, it is found that one in twelve
components is rejected. Assuming that the standard deviation has not
changed, estimate the mean of the day’s production.

c If 3000 components are produced during each day, how many would be
expected to have lengths in the range 7.95 cm to 8.05 cm on each of the
two days? [IB May 93 P2 Q8]

7 A continuous random variable X has probability density function defined by

a Show that 

b Sketch the graph of f(x) and state the mode of X.
c Find the median of X.
d Find the expected value of X.
e Find the variance of X. [IB Nov 93 P2 Q8]

8 A continuous random variable X has probability density function defined by

a Find the exact value of k.
b Calculate the mean and the variance of X.

c Find 

9 A company buys 44% of its stock of bolts from manufacturer A and the rest from
manufacturer B. The diameters of the bolts produced by each manufacturer 
follow a normal distribution with a standard deviation of 0.16 mm.

The mean diameter of the bolts produced by manufacturer A is 1.56 mm.
24.2% of the bolts produced by manufacturer B have a diameter less than
1.52 mm.

a Find the mean diameter of the bolts produced by manufacturer B.

A bolt is chosen at random from the company’s stock.
b Show that the probability that the diameter is less than 1.52 mm is 0.312 to

3 significant figures.

P¢p
2

� X �
5p
4
≤.

f1x 2 � bk�sinx� 0 � x � 2p
0 otherwise

k �
2
p

.

f1x 2 � c
k

1 � x˛

2 for �
1

23
� x � 23

0 otherwise
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A calculator may be used in all questions unless exact answers are required.

1 A man is arranging flowers in a vase. The lengths of the flowers in the vase are
normally distributed with a mean of cm and a standard deviation of cm.
When he checks, he finds that 5% of the flowers are longer than 41 cm and
8% of flowers are shorter than 29 cm.

a Find the mean and the standard deviation of the distribution.
b Find the probability that a flower chosen at random is less than 45 cm long.

2 In a school, the heights of all 14-year-old students are measured. The heights
of the girls are normally distributed with mean 155 cm and standard deviation
10 cm. The heights of the boys are normally distributed with mean 160 cm
and standard deviation 12 cm.

a Find the probability that a girl is taller than 170 cm.
b Given that 10% of the girls are shorter than x cm, find x.

c Given that 90% of the boys have heights between q cm and r cm where q
and r are symmetrical about 160 cm, and find the values of q and r.

In a group of 14-year-old students, 60% are girls and 40% are boys. The
probability that a girl is taller than 170 cm was found in part a. The probability
that a boy is taller than 170 cm is 0.202. A 14-year-old student is selected at
random.
d Calculate the probability that the student is taller than 170 cm.
e Given that the student is taller than 170 cm, what is the probability that

the student is a girl? [IB May 06 P2 Q4]

3 In a certain college the weight of men is normally distributed with mean 80 kg
and standard deviation 6 kg. Find the probability that a man selected at random
will have a weight which is
a between 65 kg and 90 kg
b more than 75 kg.

Three men are chosen at random from the college. Find the probability that
c none of them weigh more than 70 kg, giving your answer to 5 decimal places.
d at least one of them will weigh more than 70 kg.

4 A random variable X has probability density function f(x) where

Find the median value of X. [IB Nov 97 P1 Q15]

5 A factory makes hooks which have one hole in them to attach them to a
surface. The diameter of the hole produced on the hooks follows a normal
distribution with mean diameter 11.5 mm and a standard deviation of 0.15 mm.
A hook is rejected if the hole on the hook is less than 10.5 mm or more
than 12.2 mm.

a Find the percentage of hooks that are accepted.

f1x 2 � g

1
4

 x 0 � x 6 1

1
4

1 � x 6 3

1
12

 16 � x 2 3 � x � 6

0 otherwise

q 6 r,

sm

sm
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b With the new settings from part a, it is found that 80% of the bags of salt
have a weight which lies between A g and B g, where A and B are
symmetric about the mean. Find the values of A and B, giving your answers
correct to 2 decimal places. [IB May 00 P2 Q4]

13 A farmer’s field a yields crop of potatoes. The number of thousands of 

kilograms of potatoes the farmer collects is a continuous random variable X

with probability density function and

otherwise, where k is a constant.

a Find the value of k.
b Find the mean of X.
c Find the variance of X.
d Potatoes are sold at 30 cents per kilogram, but cost the farmer 15 cents per

kilogram to dig up. What is the expected profit?

14 The difference of two independent normally distributed variables is itself
normally distributed. The mean is the difference between the means of the
two variables, but the variance is the sum of the two variances.

Two brothers, Oliver and John, cycle home from school every day. The
times taken for them to travel home from school are normally distributed
and are independent. Oliver’s times have a mean of 25 minutes and a
standard deviation of 4 minutes. John’s times have a mean of 20 minutes
and a standard deviation of 5 minutes. What is the probability that on a
given day, John arrives home before Oliver?

15 The continuous random variable X has probability density function f(x) where

a Show that 

b What is the probability that the random variable X has a value that lies

between and Give your answer in terms of e.

c Find the mean and variance of the distribution. Give your answer exactly in
terms of e.

The random variable X above represents the lifetime, in years, of a certain
type of battery.
d Find the probability that a battery lasts more than six months.
A calculator is fitted with three of these batteries. Each battery fails independently
of the other two. Finds the probability that at the end of six months
e none of the batteries has failed
f exactly one of the batteries has failed. [IB Nov 99 P2 Q4]

1
2

?
1
4

k � 1.

f1x 2 � be � kekx, 0 � x � 1
0 otherwise

f1x 2 � 0

f1x 2 � k˛13 � x 23, 0 � x � 3
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c The diameter of the bolt is found to be less than 1.52 mm. Find the probability
that the bolt was produced by manufacturer B.

d Manufacturer B makes 8000 bolts in one day. It makes a profit of $1.50 on
each bolt sold, on condition that its diameter measures between 1.52 mm
and 1.83 mm. Bolts whose diameters measure less than 1.52 mm must be
discarded at a loss of $0.85 per bolt. Bolts whose diameters measure over
1.83 mm are sold at a reduced profit of $0.50 per bolt. Find the expected
profit for manufacturer B. [IB May 05 P2 Q4]

10 The ages of people in a certain country with a large population are presently
normally distributed. 40% of the people in this country are less than 25
years old.

a If the mean age is twice the standard deviation, find, in years, correct to
1 decimal place, the mean and the standard deviation.

b What percentage of the people in this country are more than 45 years old?
c According to the normal distribution, 2.28% of the people in this country

are less than x years old. Find x and comment on your answer.
d If three people are chosen at random from this population, find the probability

that
i all three are less than 25
ii two of the three are less than 25

iii at least one is less than 25.
e 40% of the people on a bus are less than 25 years old. If three people on this

bus are chosen at random, what is the probability that all three are less than
25 years old?

f Explain carefully why there is a difference between your answers to d i and e.
[IB Nov 91 P2 Q8]

11 A business man spends X hours on the telephone during the day. The
probability density function of X is given by

a i Write down an integral whose value is E(X ).
ii Hence evaluate E(X ).

b i Show that the median, m, of X satisfies the equation

ii Hence evaluate m.
c Evaluate the mode of X. [IB May 03 P2 Q4]

12 A machine is set to produce bags of salt, whose weights are distributed 
normally with a mean of 110 g and standard deviation 1.142 g. If the
weight of a bag of salt is less than 108 g, the bag is rejected. With these
settings, 4% of the bags are rejected.
The settings of the machine are altered and it is found that 7% of the bags
are rejected.

a i If the mean has not changed, find the new standard deviation, correct to
3 decimal places.

The machine is adjusted to operate with this new value of the standard
deviation.
ii Find the value, correct to 2 decimal places, at which the mean should be

set so that only 4% of the bags are rejected.

� 24 � 0.m˛

4 � 16m˛

2

f1x 2 � c
1
12

 18x � x˛

3 2 for 0 � x � 2

0 otherwise

22  Continuous Probability Distributions

670





673

Answers

1 a 135° b 20° c 72° d 150° e 105° f 22.5° g 110° h 114.6° i 85.9° j 229.2° k 206.3° l 22.9°

2 a b c d e f g h 3 a 0.611 b 1.75 c 5.24 d 1.40 e 2.30 f 4.85

4 a b c d 5 a 6.28cm b 8.55m c 295cm d 113mm

6 a 66.8cm b 293cm c 177mm 7 a 126cm b 8 9 10 200°

11 9.30cm 12 30cm 13 99.5cm 14 7:2 15 a 17.9cm b 99.1cm˛

2

46.9m˛

252.2cm˛

22670cm˛

2

2430cm˛

2489cm˛

24.71m˛

230.7cm˛

2

3p
10

2p
5

7p
18

4p
3

7p
4

3p
4

7p
6

p

6

1 a b 0.174 c d e f g h

2 a b c 1 d e f g h 0 i j 0

3 a b c d e f

4 a b c d No Solution e f g h u � 0.775, 2.37u � 1.20, 5.08u � 0.290, 2.85u �
p

6
, 

11p
6

u �
p

4
, 

3p
4

u �
p

3
, 

2p
3

u �
p

3
, 

5p
3

x° � 55.2°, 304.8°x° � 22.0°, 158.0°x° � 80.4°, 279.6°x° � 41.8°, 138.2°x° � 70.5°, 289.5°x° � 30°, 150°

�1
1

22

1

22

1
2

23
2

1
2

1
2

�0.737�
23
2

1

22

23
2

�0.996�
1

22

1
2

1 a b c d 2 3 a b 4

5 6 a b c d e

7 a b 8 44.7° or 135.3° 9 38.8° or 141.2°

10 a b c d 11 2.63m 12 a 59.6° b 143.2° 13 68.7°

14 15 a b c d e

16 312km 17 21.6m 18 57.9° 19 56.25cm˛

2

x � 16.9mx � 15.8cmx° � 83.8°x° � 50.9°x � 7.64mA � 39.4°, B � 46.5°, C � 94.1°

t � 10.7cmp � 381mmx � 22.7mx � 6.07cm

x° � 127.7°x° � 32.4°

a � 14.2mmn � 7.35mx � 7.64mx � 6.37cmx � 5.82cm311m˛

2

63.7m˛

3120cm˛

284.9cm˛

28220m˛

226.0m˛

2160cm˛

220.7cm˛

224cm˛

2

1 a 180° b 120° c d 90° e 360° f 120° g 180° h i 36° j 3°

2 a b c d

p

2
p

2
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3 d e

3 a b c
y
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�1
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0
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4 d e f
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1
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�1

x�

y

180�

2

0

�2
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y

180�

3

0

�3

x�

5 a b c

6 7

5 d ey

��0

y
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1

720�
�3

�7
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6

0 x�12

�6

8
y

8
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6

0
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�
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9 a b c d e f

9 g h i j y � 3 sec 

3
2

 uy � 2 csc 3x°y � 3 sin 24u � 8y � tan 15x°

y � �
7
2

 cos 4x° �
7
2

y � �4 sin 2u � 4y � �4 cos x° � 2y � tan 2uy � sin x° � 1y � 4 cos 2u

Exercise 5Chapter 1

1 a b c d e 1 f g h i j

2 a b c d e f g 0 h i 1 j

3 a sin 43° b cos 50° c tan 20° d e f g h i

4 a b c d

5 a b c d u �
5p
6

, 
7p
6

u �
p

3
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5p
3

u �
p

6
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7p
6

u �
p

3
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2p
3

x° � 135°, 315°x° � 60°, 240°x° � 30°, 330°x° � 30°, 150°

�tan 46°�sin 20°�cos 15°�tan 34°�cos 23°�sin 50°
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1
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Exercise 6Chapter 1

1 a 60°, 240° b 60°, 300° c 60°, 120° d 210°, 330° e 150°, 210° f 180° g 90° h 30°, 150° i 45°, 225°

2 a b c d e f g h

3 a 15°, 75°, 195°, 255° b 10°, 110°, 130°, 230°, 250°, 350° c 11.25°, 56.25°, 101.25°, 146.25°, 191.25°, 236.25°, 281.25°, 326.25°

3 d 60°, 120°, 240°, 300° e 25°, 45°, 145°, 165°, 265°, 285° f 40°, 80°, 160°, 200°, 280°, 320°

4 a b c

4 d 5 15°, 105° 6 7 1°, 5°, 13°, 17° 8 9

10 a 19.5°, 160.5° b 41.4°, 318.6° c 58.0°, 238° d 48.2°, 311.8° e 48.6°, 131.4°

10 f 31.3°, 288.7° g 75.5°, 284.5° h 45°, 135° i 228.7°, 341.3° j 36.9°, 143.1°

10 k 20.9°, 159.1°, 200.9°, 339.1° l 25.2°, 94.8°, 145.2°, 214.8°, 265.2°, 334.8°

10 m 47.1°, 83.1°, 119.1°, 155.1°, 191.1°, 227.1°, 263.1°, 299.1°, 335.1° n 70.5°, 289.5°
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11 n 0.14, 3.28 o 0.11, 0.67, 1.68.2.25, 3.25, 3.82, 4.82, 5.39 12 70.5°, 289.5°, 430.5°, 649.5° 13
5p
36

, 
13p
36

, 
29p
36

�
35p
36

, �
19p
36

, �
11p
36

, 

p

11.12,

2p
9

, 
4p
9

, 
8p
9

�
8p
9

, �
4p
9

, �
2p
9

, �120°, 60°
7p
24

, 
11p
24

, 
19p
24

, 
23p
24

5p
12

, 
7p
12

, 
17p
12

, 
19p
12

p

30
, 

5p
30

, 
13p
30

, 
17p
30

, 
25p
30

, 
29p
30

, 
37p
30

, 
41p
30

, 
49p
30

, 
53p
30

p

6
, 

2p
3

, 
7p
6

, 
5p
3

p

12
, 

5p
12

, 
7p
12

, 
11p
12

, 
13p
12

, 
17p
12

, 
19p
12

, 
23p
12

p

6
, 

11p
6

p

2
, 

5p
6

p

6
, 

7p
6

p

6
, 

5p
6

p

4
, 

5p
4

5p
6

, 
11p

6
7p
6

, 
11p

6
p

6
, 

11p
6



Answers

677

14 a 3 minutes b

Answers

676

14 c  i 2 mins 15 secs ii 45 secs 15 a 7500 b 7060 c 12 years, 4500 fish

1 a 30° b 75° 2 a b 3 4 14.0m 5

6 a 15.1cm b 44.8° c 48.9° d 8.63mm 7

8 a b c d e f g h i j 2 k
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Chapter 1 Review Exercise

1 a b c d

2 a b c d e

3 a b c d e

4 a b c d e

Exercise 2:
x � �1.78, x � 0.281x � �3.91, x � 1.41x � �1.77, �0.566x � �1.61, x � 5.61x � �5.45, x � �0.551

x � �2.14, x � 0.468x � �0.260, x � �1.54x � �0.314, x � �3.19x � �0.854, x � 5.85x � 4.73, x � 1.27
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12 d e f
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Exercise 1Chapter 2

Exercise 2Chapter 2

1 a b c d e

2 a Minimum y intercept: 4 x intercepts: 

2 b Minimum y intercept: 3 x intercepts: 3,1

2 c Minimum y intercept: 2 x intercepts: 4.56,0.438

2 d Maximum y intercept: 3 x intercepts: 

2 e Maximum y intercept: 3 x intercepts: 

2 f Minimum y intercept: x intercepts: 

2 g Minimum y intercept: 1 x intercepts: none

2 h Minimum y intercept: 2 x intercepts: 

2 i Minimum y intercept: 4 x intercepts: 

3 a Minimum y intercept: x intercepts: 

3 b Maximum y intercept: x intercepts: none c Minimum y intercept: 16 x intercepts: none

3 d Maximum (0.833,11.1) y intercept: 9 x intercepts: �1.09, 2.76
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1 2 3 4 i. ii 5 

6 8 9 10 Maximum point is Line of symmetry is 
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1 a b c d e f 2 a b c

2 d e 3 a b c d e

4 a b c d 5 a 40 b 132 c 3.84 days 6 37.8 months 7 a 80° C b 10.8 mins

8 a 2100g b 1650g c 57.8 years 9 a 20100 km b 22.7 years 10 a 220 b 57 c 2027

11 a b 67.2 hours c 9.6 hours longer 12 a b 60.8 years 13 14 15 16

17 18 19 20 21 22

1 a b c d

2 a b c d

x

y

(2, 1)

0x

y

(1, �e)
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13  14 15 a b Yes as it will be ok for 8.07 hours 16 17 18

19 20 21 22 a b 23 

24 a b x � 28k �
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13 14 15 16 17 18 19 20 k � �9, k � 6k � 3k � 8k � 2u˛n � �
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10 11 Proof: p˛

2 � �
1
5

�22688x˛

2 � 12480x � 3200

�5888x˛

7 � 2x˛

5 � 6x˛

3 � 8x �
17
x

�
6

x˛

3
�

20

x˛

5
�

8

x˛

7

x˛

6 � 6x˛

5 � 15x˛

4 � 26x˛

3 � 39x˛

2 � 42x � 37 �
30
x

�
12

x˛

2
�

8

x˛

3
x˛

7 � x˛

6 � 69x˛

5 � 109x˛

4 � 1616x˛

3 � 3360x˛

2 � 12800x � 32000

�243�1392�8

x˛

6 � 9x˛

5 � 30x˛

4 � 45x˛

3 � 30x˛

2 � 9x � 116t˛

4 � 8t˛

2 �
3
2

�
1

8t˛

2
�

1

256t˛

4
x˛

6 � 6x˛

4 � 15x˛

2 � 20 �
15

x˛

2
�

6

x˛

4
�

1

x˛

6

x˛

5 � 10x˛

3 � 40x �
80
x

�
80

x˛

3
�

32

x˛

5
x˛

3 � 3x � 3x˛

�1 � x˛

�332p˛

5 � 240p˛

4q � 720p˛

3q˛

2 � 1080p˛

2q˛

3 � 810pq˛

4 � 243q˛

5

1 � 4x � 6x˛

2 � 4x˛

3 � x˛

4729x˛

6 � 2916x˛

5 � 4860x˛

4 � 4320x˛

3 � 2160x˛

2 � 576x � 64a˛

4 � 4a˛

3b � 6a˛

2b˛

2 � 4ab˛

3 � b˛

4

1 2 a b 3 a b 4 a b

5 a b 6 a b 5 7 a  b  50 8 9 10 a b

11 12 a b 32.8080401 13 a b 14 a 59 b

14 c i 99 ii 100 15 280 and 84 16 17 34642080 18 4455 19 20 n � 106n �
5
6

 n˛1n � 1 2 12n � 1 2 , �972k �
36

p˛

3

n � 12, d � 0.25d � �
9
20

r �
1
2

x˛

5 � 10x˛

4 � 40x˛

3 � 80x˛

2 � 80x � 32a � 2, b � �3

u˛n � 1514 2n�1n � 6a � 9a � ;38n � 3�x� 6

3
2

u˛n � 4n � 31,9

a � 9r �
2
3

n � 30S˛n �
3n˛

2

2
�

n
2

S˛n � 1614n � 1 2r � 4�7

Review ExerciseChapter 6

1 a b c d No possible value 2 a b c No possible value d 4
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1 a b c d 2 a b

2 c d 3 a b 4 a b

5 a b 6 a b c d
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2

, 4≤¢�1
2

, �4≤¢�1
3

, �
25
3
≤

12, �9 21�2, 23 214, �13 2



21 22

x˛

2

16
�

y˛

2

9
� 25y �

4

x˛

2 � 2

x

y

0 20�20x

y

0

�2
�2��2

Answers

695

2 a Minimum Turning Point b Maximum Turning Point c Maximum Turning Point and (4, 0) Minimum Turning Point

2  d (1, 10) Maximum Turning Point and (2, 9) Minimum Turning Point e (0, 0) Rising Point of Inflexion

3  a Maximum Turning Point and Minimum Turning Point b Minimum Turning Point c Maximum Turning Point

3 d (0, 0) Minimum Turning Point e Maximum Turning Point and (0, 2) Minimum Turning Point 4 21�1.57, 12.5 2

¢�1
2

, �12≤¢5
2

, 0≤13, �4 2¢1, �
8
3
≤

¢4
3

, 
256
27
≤1�1, 25 21�2, �13 2
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Exercise 5Chapter 8

1 Non-Stationary, (0,0) Stationary, Non-Stationary 2 Non-Stationary 3 a None b None

3 c None Quadratic functions have no points of inflexion 4 a (0,0) Stationary b Non-Stationary c Non-Stationary

4 d There is always one point of inflexion for cubic functions

5 Non-Stationary and (1, 3) Non-Stationary 6 Non-Stationary and Non-Stationary

7 (0,0) Stationary 8 No points of inflexion, is a minimum turning point. 9 10 21312 � 36.2y � �21x � 3610, �3 2

1�1, �9 2¢1
6

, 4.11≤1�1, 3 2

x � �
b
3a

, y �
8b˛

3

27a˛

2
�

bc
3a

� d

1�2, �35 211, �3 2

1�1, 15 2¢2, �
224
3
≤¢�2, 

224
3
≤

Exercise 6Chapter 8

1 Vertical: Horizontal 2 Vertical: Horizontal 3 Vertical: Oblique 

4 Vertical: Horizontal 5 Vertical: Oblique 6 Vertical: Oblique 

7 Vertical: None, Oblique 8 Vertical: None, Oblique 9 Vertical: and Horizontal 

10 Vertical: and Horizontal 11 Vertical: and Horizontal 

12 Vertical: and Oblique 

Graphs of the following functions, including asymptotes, stationary points and intercepts:

13 14 15 16

17 18 19 20

y �
1

x˛

2 � x � 12
y �
12x � 5 2 1x � 4 2

1x � 2 2 1x � 3 2
y �

x˛

2

1 � x
y �

x

x˛

2 � 1

x

y

0
4�3 1

12�

, �0.08161
2

x

y
(0.124, 3.33)

0 3 4�2
2

�5
2

10
3

x

y

(2, �4)0x

y

0�1

y �
2x˛

2

x � 1
y �

x
x � 4

y �
x � 1

x˛1x � 1 2
y �

x � 1
x � 1

x

y

(�2, �8)

0�1

x

y

0�4

1

x

y
(�0.414, 5.83)

(2.41, 0.172)

0�1 1x

y

0
�1 1

1

�1

y � 4x � 4x � 3,x � �2

y � 3x � 3,x � �3y � 1x � 1,x � �1

y � 0x � 4,x � �1y � xy � x � 2

y � 2x � 9x � 3,y � x � 2x � �2,y � 1x � 2,

y � xx � 0,y � 1x � 3,y � 0x � 0,
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1 a b c d

1 e f g h

1 i 2 a b c

2 d e f g

2 h i j

x

y

0 1�1 63x

y

0 2�2x

y

30 6�1

x

y

a0 cx

y

40 1x

y

50 1x

y

20�1

x

y

0 3x

y

0 4x

y

0

3

x

y

0

x

y

(�2, �1)
0

�1

�3

3

x

y

0x

y

0

1

x

y

0

x

y

0x

y

0x

y

0
�1

x

y

0

4



10 11 12

13 a b

y

x�2 3

(�3.36, �4.39)

(5.36, 8.87)

a � �4, b � 18y � 1, x � 1, x � 4

Answers

697

3 a b c d

4 a b c d

4 e f g h

5 a b c d

e f y

x

�2 7

1
5�1, 1

83,

y

x�3 �1 4

(4, 1)

1
4�3, 1

7�1,

0

y

x�3 30

y

x20

y

x�2 40

y

x

1
2

�3 0

x

y

0
1
2�

x

y

0

�1

1

�
2

3�
2

2�x

y

0 1x

y

0

1

x

y

0 4

1
2�

x

y

0 1�2 3x

y

0

1
4

x

y

0

�1

1
2

x

y

0�5 1 6x

y

0�1 7x

y

0�2x

y

0�1
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Review ExerciseChapter 8

1 2 3 4 5 6

7 8 9
y

x�1 20 6

y � 5x � 1, y �
1
2

 x �
17
2

, ¢5
3

, 
28
3
≤¢�1

2
, 

9
2
≤ max TP, ¢2

3
, �

50
27
≤ min TP

y � �6 x � 16h˛1x 2 � 45x˛

2 � 60x � 19, h¿ 1x 2 � 90x � 60x 7 4
dy

dx
�

3
4

 x˛

�1
2 �

17
4

 x˛

15
2

1
16

f¿ 1x 2 � 3x˛

2 � 4

y

x�4

1

1
31, 1

73,

y

x�3 4

1
4�2,

1
71,�

1  2 3 4 5 6

7 8
dy

dx
� 7 � 5 cos � sec x tan x

dy

dx
� 18x � 4 sin x

dy

dx
� �3 sec x tan x

dy

dx
� �7 cosec2 x

dy

dx
� �5 sin x

dy

dx
� cos x � 12x

dy

dx
� cos x � cosec x cot x

dy

dx
� sec2 x

Exercise 1Chapter 9

1 2 3 4 5 6

7 8 9 10 11

12 13 14 15 16

17 18 19 20 21 22

23 24 25 26

27 28 29 30
dy

dx
� 1x � 1 2�

1
2 sec212x � 1 2

dy

dx
� �3 sin¢3x �

p

4
≤dy

dx
� �3013x � 4 2�6 � 2 sec2 2x tan 2x

dy

dx
� 12x˛

3 � 3 cos2 x sin x

dy

dx
� 8 tan 4x sec2 4x

dy

dx
� 3 sin2 x cos x

dy

dx
� 5 cos 5x � 3013x � 4 2�

7
2

dy

dx
� �2 cosec 2x cot 2x � 1213x � 2 23

dy

dx
� 6 � 3 cosec2 3x

dy

dx
� 9 sec 9x tan 9x

dy

dx
� 6 sec2 6x

dy

dx
� �

1
2

 cos 

1
2

 x
dy

dx
� �3 sin 3x

dy

dx
� 4 cos 4x

dN
dp

�
75
2

 18 � 5p 2�
5
2

dP
dk

� 1814 � 3k 2�3f¿ 1x 2 � 5613 � 8x 2�2f¿ 1x 2 � �2015x � 4 2�2
dy

dx
� �

3
2

 13x � 2 2�
3
2  

dy

dx
� 216x � 5 2�

2
3

dy

dx
�

10
3

 12x � 9 2
2
3

dy

dx
�

3
2

 13x � 8 2�
1
2

dy

dx
� 4812x � 3 25

dy

dx
� �2019 � 4x 24

f¿ 1x 2 � �817 � 2x 23f¿ 1x 2 � �315 � x 22f¿ 1x 2 � 2015x � 4 23f¿ 1x 2 � 613x � 4 2f¿ 1x 2 � 412x � 3 2f¿ 1x 2 � 21x � 4 2
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Exercise 3Chapter 9

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21

22 23
dy

dx
�

1
x

 sec21ln x 2
dy

dx
� cosec x sec x

dy

dx
� �tan x

dy

dx
� 4e˛

4x � 2 cos 2x �
1
x

dy

dx
� ln 4 # 4x �

1
x ln 5

dy

dx
�

1
x ln 8

dy

dx
�

1
x ln 2

dy

dx
�

1
x

� ln 2 # 2x

dy

dx
� 3e˛

3x � ln 3 # 3x
dy

dx
� 6 ln 5 # 5x

dy

dx
� ln 10 # 10x

dy

dx
� ln 4 # 4xf¿ 1x 2 �

2x

x˛

2 � 2
f¿ 1x 2 � �

2
x

f¿ 1x 2 �
1
x

f¿ 1x 2 �
1
x

f¿ 1x 2 � 2e˛

2x�3f¿ 1x 2 � 2xe˛

x˛

2

f¿ 1x 2 � 54e˛

�9xf¿ 1x 2 � �10e˛

�5xf¿ 1x 2 � �4e˛

4xf¿ 1x 2 � 7e˛

7xf¿ 1x 2 � 3e˛

3x

1 2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18 19 20

21 22

23 24 25
dy

dx
� e˛

3x1x � 2 2 �13x � 8 2  tan x � 1x � 2 2  sec2 x�
dy

dx
� x˛1 12 ln x � 1 2sin x � x ln x cos x 2

dy

dx
� �3x˛

�5 ¢4 tan ¢3x �
p

2
≤ � 3x sec2 ¢3x �

p

2
≤≤

dy

dx
� e˛

3x sec ¢2x �
p

4
≤ B3 � 2 tan ¢2x �

p

4
≤Rdy

dx
� 8x Bln1x˛

2 � 2x � 5 2 �
x˛1x � 1 2

x˛

2 � 2x � 5
R

dy

dx
� ln12x � 3 2 �

2x
2x � 3

dy

dx
� 4x ¢ln 4 log8 x �

1
x ln 8

≤dy

dx
� 312x � 1 22 cosec 3x 32 � 12x � 1 2  cot 3x 4

dy

dx
� e˛

4x sec 3x˛14 � 3 tan 3x 2
dy

dx
� x˛

2 a3 log6 x �
1

 ln 6
≤dy

dx
� 5x1ln 5 #  cos x � sin x 2

dy

dx
� 13x � 4 22 39 sin x � 13x � 4 2  cos x 4

dy

dx
� 615 � 2x 2213x � 4 2 11 � 5x 2

dy

dx
� 21x � 5 2 13x � 2 2319x � 28 2

dy

dx
� 12x � 1 2218x � 11 2

dy

dx
� 6x˛

213x � 2 2 15x � 2 2

dy

dx
� x˛

21x � 2 2313 � 4x 2
dy

dx
� 2x˛1x � 1 2 12x � 1 2

dy

dx
� 3 cos 3x cos 2x � 2 sin 3x sin 2x

dy

dx
� cos2 x � sin2 x

dy

dx
�

sin x
x

� ln x cos x
dy

dx
� e˛

3x13 sin x � cos x 2
dy

dx
� 3xe˛

x12 � x 2
dy

dx
� x˛

213 cos x � x sin x 2
dy

dx
� x˛12 sin x � x cos x 2
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Exercise 5Chapter 9

1 2 3 4 5

6 7 8 9 10

11 12 13 14

15 16 17 18

19
dy

dx
�

�2 cosec2 x¢2x �
p

3
≤ ln13x � 1 2 �

3
3x � 1

 cot¢2x �
p

3
≤

1ln13x � 1 2 22

dy

dx
�

tan¢x �
p

4
≤ � 2

e˛

2x cos¢x �
p

4
≤

dy

dx
�

xe˛

3x13x˛

2 � 15x � 10 2

1x � 5 22
dy

dx
�
1x � 1 2  sin x � x cos x

e˛

x

dy

dx
�

1213x � 2 2414x � 19 2

12x � 3 24

dy

dx
�

21cos 2x � 3 sin 2x 2

e˛

6x

dy

dx
�

�2

1e˛

x � e˛

�x 22
dy

dx
�

1
x

 ln1x � 4 2 �
1

x � 4
 ln x

1ln1x � 4 2 22
dy

dx
�

1
x ln 6

 1x � 6 2 � log6 x

1x � 6 22

dy

dx
�

e˛

3x13x � 2 2

9x˛

3
f¿ 1x 2 �

x � 2

1x � 1 2
3
2

f¿ 1x 2 �
4x12x ln 4 � 1 2

2x˛

3
2

f¿ 1x 2 �
�31x � 12 2

2x˛

32x � 9
f¿ 1x 2 �

�6

1x � 3 22

f¿ 1x 2 �
e˛

x1x � 5 2

1x � 4 22
f¿ 1x 2 �

1 � ln x

4x˛

2
f¿ 1x 2 �

7 tan x � 7x sec2 x

tan2 x
f¿ 1x 2 �

6x˛1x � 6 2

1x � 3 22
f¿ 1x 2 �

e˛

x1cos x � sin x 2

cos2 x

1 2 3 4 5 6

7 8 9 10 11

12 13

14 15 16 Answers given�19.y �
3
2

 x �
5
2

, y �
1
2

 x �
5
2

 
d˛

2y

dx˛

2
�

1

x˛

2
 
dy

dx
� �

1
x

 
d˛

2y

dx˛

2
�

14x � 1 2¢�sin x � 4 

dy

dx
≤ � 41cos x � 4y 2

14x � 1 22
 
dy

dx
�

cos x � 4y

4x � 1
 
d˛

2y

dx˛

2
�
12 � 3y 22 � 3x˛12 � 3y 2 � x˛

2

12 � 3y 23
 
dy

dx
�

x
2 � 3y

dy

dx
�

y˛

218 � e˛

x 2 � 4y˛1x � y 23

1x � y 2313y � x 2

dy

dx
�

�31x � y 22

31x � y 22 � e˛

y

dy

dx
�

4x˛

3

1 � ln y

dy

dx
�

�sin1x � y 2

1 � sin1x � y 2

dy

dx
�

�13 cos 3x � 2e˛

2xy˛

3 2

3e˛

2xy˛

2

dy

dx
�

21x � y 2

e˛

y � 2x � 2y

dy

dx
�

y

2y � x

dy

dx
�

1 � xy � 2x

x˛1x � 3 2

dy

dx
�

1

62xy˛

2

dy

dx
�

�4x
y

dy

dx
�

�3x˛

2 � y

x

1 2 3 4 5 6

7 8 9
dy

dx
�

1

x21 � 1ln 5x 22
dy

dx
�

1

2x˛

2 � 2x � 1

dy

dx
�

�1

22�1x � 4 2 1x � 3 2

dy

dx
�

2e˛

x

4 � e˛

2x

dy

dx
�

�3

21 � 9x˛

2

dy

dx
�

2

29 � 4x˛

2

dy

dx
�

10

100 � x˛

2

dy

dx
�

�1

264 � x˛

2

dy

dx
�

1

225 � x˛

2
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Exercise 8Chapter 9

1 2 3 4 5

6 7 8 9

10 11 12 13

14 15 16 17

18 19 20
dy

dx
�

y˛14x˛

3y˛

2 � cos x 2

1sin x � 3x˛

4y˛

2 2

dy

dx
�

�y˛12x � e˛

xy 2

x˛

2 � 2e˛

xy
f¿ 14 2 �

�p � 2
64

f¿ 12 2 � �
20
3

dy

dx
�

�1sec x cosec x � ln1cot x 2 2

e˛

x

dy

dx
� sin x˛1ln x � 1 2 � x ln x cos xf¿ 1x 2 �

�¢ x

21 � x˛

2
� 2 cos�1 x≤

3x˛

3

dy

dx
�

12

21 � 4x˛

2

dy

dx
� �61sin 2x sin 4x � 2 cos 2x cos 4x 2

dy

dx
�

x ln x˛1x � 18 2 � x˛1x � 9 2

1x � 9 22
dy

dx
�

x � 4
x ln 2

� 3 log2 x

1x � 4 24

f¿ 1x 2 � 3x1ln 3 #  sin x � cos x 2
dy

dx
�

sin x � 4x sin x � x cos x

e˛

4x
f¿ 1x 2 �

3 cos 3x � sin 3x
e˛

x

dy

dx
� x˛12 ln x � 1 2

f¿ 1x 2 � x˛

2e˛

�4x13 � 4x 2
dy

dx
� sec x tan x � 5e˛

5xf¿ 1x 2 � �8 sin 8x �
3
2

 x˛

�1
2

dy

dx
� 612x � 7 22f¿ 1x 2 � 2x � 5

1 2 0 3 4 6 7 (0,0) and 8 (0, 0) and

9 (0, 0) rising point of inflexion and max TP¢3,
27

e˛

3
≤

¢2,
4

e˛

2
≤2 � 2p

e˛

p
y � �

7
5

 x �
17
5

, y � �
3
5

 x �
13
5

4 ln 4 � 3

e˛

2

3
4

1 2 All three sides are 3 6.83cm 4 5.62cm, 4.22cm, 16.9cm 5 4.16cm, 6.56cm 6 7 78.5 8 b

9 It is a maximum value. 10 b 10 c It is a maximum value.

11 12 11100 13 12.5 Yen, 14 20 15  a b c 42cm˛

2A �
168x � 24x˛

2

7
7 � x

7
�

y

24
24.1Kmh˛

�1t � 6.29 seconds, t � 12.6 seconds

x � 1.58cm.V � 60 ¢450x � 60x˛

3

13
≤x � y � 75cm.

4r
3

3.66cm˛

2250cmv � 2500ms˛

�1
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1 2 3 4 5 6 7 8 9

10 a 11 13 a b
4p
3

 cm˛

2s˛

�12
9

 cms˛

�1100cm˛

3s˛

�11au � a sin u, a � a cos u 2

�
5
3

0.283cms˛

�11.49cm˛

2s˛

�10.954ms˛

�1216cm˛

3s˛

�11640N˛0
2
h

15
32p

128pcm˛

2s˛

�1

Exercise 2Chapter 10

1 2 a b c 3 a b c

4 a b c 7

8 a b c d 10 a

10 b c 11 a b. c d 0.629

12 a Min is (2,1.39) b c d

13 a b c s � t˛1�1 < 23 2a �
31s˛

2 � 2st � 2t˛

2 2

1t � s 23
v �

2t � s
t � s

v �
4
45

 ms˛

�1 a � �
31

4050
 ms˛

�2a � �
2

t˛

2
�

1

1t � 1 22
 t 	 2v �

2
t

�
1

t � 1
 t 	 2

a �
ln 300

50
 e˛

ln 300
100  t˛

2¢3t �
ln 300

50
 t˛

2≤v � e˛

ln 300
100  t˛

2¢1 �
ln 300

50
 t˛

2≤k �
1

100
 ln 300a � 0.0213ms˛

�2t �
p � 2c

2k

v � 3k cos1kt � c 2a �
�10e˛

4

9
a �

2e˛

2t1t˛

4 � 6t˛

3 � 4t˛

2 � 6t � 1 2

1t˛

2 � 1 23
v �

�e˛

4

9
s �

e˛

2t1t˛

2 � 2t � 1 2

1t˛

2 � 1 22

Period � pa �
t˛

3 sin t � 2t˛

2 sin t � 2t cos t � 2 cos t � t sin t � 2 sin t

1t � 1 23
�1.74ms˛

�1v �
t˛

2 cos t � t cos t � sin t

1t � 1 22

0ms˛

�2t �
1
2

 second�411 � 2t 2�20ms˛

�216 � 12t8ms˛

�1v � 3 

1
4

 ms˛

�1 a � �3ms˛

�2 t �
223

3
 seconds
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Review Exercise Chapter 10

Review Exercise Chapter 9

1 2 a b

2 c Maximum velocity is Minimum velocity is 3 4 5

6 a b 4.30 cm c 7 a b 0.457 hours c 0.304 hours 8 a

8 b 9 10 11 a 6.28 hours. b 6.28 hours. 12 13 a BC � 21x � h csc u 2
704
3

 cm3 s�1�
56
27

 ms�2p

3
 cm2 s�11.12 units2

1p � 2x 2  sin x6t sin 5t � 15t˛

2 cos 5t1120 cm2A � 2prh � pr˛

2

�1.6b � 22.7 cma � 26.2 cm
1

2p
 cms˛

�1�1.35 ms�10.541 ms�1

t � 4.70 seconds and t � 1.05 seconds13 ms�2240 kmh�1

Exercise 1Chapter 11

1 a b c d 2 Week 1 Week 2 Week 3 

The operation is addition.

£
4 2
1 0
1 1

≥£
1 2
4 1
0 1

≥£
3 1
2 2
4 4

≥4 � 13 � 32 � 31 � 3

Magazines Newspapers

Alan 8 5
Bill 7 3
Colin 5 6

¢e , 
� 2
e˛

≤˛

l
2-

1 a b c d e 2 a b

2 c d e 3 a b 

4 5 6 7 �
3
4

�
161x � 4p1x

p2

�211 � csc x cot x � cot2 x 2

1 � ¢1 � cos x
sin x

≤2

2 sin x � 4x cos x � 2x sin x � x˛

2 1cos x � sin x 2

ex �
2x sin x � x˛

2 cos x

e2x
� y

3x˛

2

ln x
�

y

x ln x

6xy

8y � 3x˛

2

1
ln 10

 ¢2 � 3 tan 3x �
2

x � 4
≤3

3x � 4
�

2
2x � 1

e5x

2x � 4
 ¢5 �

1
21x � 4 2

≤

1
x

� cot x4e4x sin 3x � 3e4x cos 3x
1
x

� 3x ln 348e8x6 � 3 tan 3t sec 3t14x˛13 � 2x˛

2 2�
3
26013x � 2 23

13 b c 14 a b c d 1.48 minutes27.7 cm2 min�1112t˛

3

18 � t˛

4 22
 cm min�1t � 2 minutesh˛12x � h23 22xh � h˛

21cot u � 2 csc u 2

8 9 10 11 2.533 12 13 . 14 a b i ii 5 15 a b 
4
5

�13 � 5p6 sec 2t tan 2t � 5�212x � 1 2�2y �
x
4

�
5
2

x � 0
4
3

�
1
3



6 a Consistent. Lines intersect giving unique solution. b Consistent. Same line giving infinite solutions. c Consistent. Same line giving infinite solutions.

7 8 l � �6, x � 1, y � �1p � 3
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3 a b c d 4 a b c d

4 e f g 5 a not possible b c not possible d e f

5 g h 6 a b c d e

6 f 7 a b c d e

7 f g h 8 a b c d

9 10 a b c

Total number of calories consumed on day 1 and day 2. d i (33500). Total calories consumed. ii Total number of people dieting on each day.

iii (4300) Total number of calories consumed by one man, one women and one child. 11 a b c

12 a b c 13 14 16 17

18 19 a b c 20 ¢a b
0 a

≤x �
13
3

, y � 0x � �5, y � 0x � �
8
5

, y � 10QP � £
5 � c 22 �15

2 8 �6
3 � c˛

2 12 � 2c �9
≥PQ � ¢ 4 1 � 3c

5c � 4 c
≤

c � �2c � 5k � 10m � 1, n � �6¢�6 0
0 �6

≤¢�7 9
�6 �4

≤¢�1 6
�4 1

≤

•
13
20
31
18
27

μQ � £
3
1
0
≥P � •

3 4 7
6 2 6
10 1 3
3 9 2
8 3 3

μ

¢ 9
14
≤

AB � ¢12700
20800

≤B � £
1900
1300
1100

≥A � ¢3 2 4
5 7 2

≤A˛

3 � ¢40 �13
39 �12

≤A˛

2 � ¢13 �4
12 �3

≤

x � 4, y � �3x � 10, y � 1x � 0, y � 1x � 2, y � 1¢�264 168
�99 63

≤¢�6 84 � 9k
�6 52 � 5k

≤¢ 0 0
�11 7 � 11k

≤

¢ 9 9k � 12
27 27k � 6

≤¢45 � 39k 4 � 18k
39 �18

≤¢45 45k � 4
39 39k �18

≤¢45 45k � 4
39 39k �18

≤¢45 4
39 �18

≤§
7 � 3k˛

2 � 4k
�5

4 � k
1 � 2k � 2k˛

2

¥

¢6 � k˛

2 2 � 2k
k˛

2 � 3 2k � 1
≤£

29 39 �11
11 41 �9
2 �29 2

≥£
11 29
6 22
12 �7

≥1�26 2¢�24 11
�6 29

≤¢�15 1
1 �5

≤£
18 5
�8 �15
�4 37

≥

¢9 �2
0 3

≤¢ 7 1
�1 3

≤£
�11 5

6 0
8 1

≥¢10 �2
0 4

≤x � 0, y � 11k � 5k �
1
2

k � 0, 3k � 1k � 0, 1k � 6¢31k � 1 2 21k � 1 2
1 � k 0

≤£
3k 6k

�4k �k
12k 4k

≥£
�18 �24

6 �12
18 24

≥£
8 4 12
20 �8 12
28 �16 4

≥
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Exercise 2Chapter 11

1 a b c d e f

1 g h 2 3 a b 44 c 78 d 190

4 a b c d 2abc e f g

5 a 5 b c 6 a Collinear b Not collinear c Collinear 8 10

11 12 13 a b 14 b
1
8

 ¢�x � 3 x � 1
x � 1 3 � x

≤X � I
1
3

 B˛

�112A � B 2x � y � 1y � �3.36, 3.86

c � �5, 4.5k � �1.22, 1.0820 units24 units24 units2

a˛

3 � a˛

2b � ab˛

2 � b˛

3�y˛

2 � y � 2cos3 u � sin3 u � 3 sin2 u � tan3 u�2�sin 2ucos 2 u � sin 2 u � 1

�30 Z � §
43
18

31
18

19
18

�
11
18

¥
 
Y � £5

2
1
2

7 5

≥X � §
1 �

3
14

�1
5
14

¥1

k˛

2 � 7k
 ¢ k � 2 �k

1 � 2k 3k
≤�

1
14k

 ¢ 1 �5
�3k k

≤

¶

37
304

�
33
152

9
76

�
1

38
5
19

�
1
19

�
17
152

9
76

1
38

∂¶

2
37

�
25

333
�

8
333

3
74

1
37

11
74

5
74

5
111

�
19
222

∂¶

11
137

�
6

137
29
274

10
137

7
137

�
11
274

�
24
137

38
137

�
1

274

∂1
76

 ¢1 �8
9 4

≤1
41

 ¢10 �7
3 2

≤1
11

 ¢ 5 2
�3 1

≤

1 a b c d 2 a b

2 c d 3 a b

3 c d 4 a Unique solution b Unique solution

4 c No unique solution d No unique solution 5 a Lines are parallel. b Lines are parallel.c � �2.c � 1, 0.

x �
31 � 33k

3k˛

2 � 2k � 5
, y �

5k � 6

3k˛

2 � 2k � 5
, k 
 �

5
3

, 1x �
12

11k � 5
, y �

�13k � 7
11k � 5

, k 

5
11

x �
313 � k 2

3 � k˛

2
, y �

31k � 1 2

3 � k˛

2
, k 
 ;23x � �

1
3k � 1

, y � �
5k � 2
3k � 1

, k 

1
3

x � �
16
5

, y � �
69
5

x � �
5
7

, y �
22
7

a �
19
11

, b � �
9

11
x �

17
4

, y � �
11
20

x � 7, y � 17x �
5
6

, y �
2
9

p � �21, q � �14x �
15
7

, y � �
17
7

Exercise 3Chapter 11

Exercise 4Chapter 11
1 a b c d 2 a

2 b c d 3 a b

3 c d 4 a Unique solution. b No unique solution.

4 c No unique solution. d No unique solution. 5 a b

5 c d 6 a b

6 c d 7 a b

7 c d e f No solution. g No solution.

7 h 8 a b c No solution.

8 d No solution. e f 9 a b

10 a 0 b c

12 13 a b 14 a � 36k � �7.86, 2.36�2k˛

2 � 11k � 37a �
2 � 4b
b � 20

x � l, y � l, z � �2lc � 3

x �
7

15
, y � �

2
5

, z � �
1
9

¶

1
5

3
5

�
2
15

�
1
10

1
5

�
1
10

�
1
6

0
1
18

∂x � 1, y � 2, z � �3x �
44 � 4l

11
, y � l, z �

3l
11

x � �
5
44

, y �
15
44

, z � �
7
22

x � 2l � 3, y � l, z �
5l � 10

2
x � 4, y � 4, z � 6

x �
7
5

, y � 0, z �
2
5

x � l, y � m, z �
4 � 2l � m

3
x �

19 � 5l
13

, y � l, z �
7l � 11

13

x � �
2
15

, y �
4
15

, z �
4
3

x �
5 � 24l

2
, y � l, z �

2l � 3
4

x � 0, y � 2, z � 3x �
35
66

, y � �
43
66

, z � �
13
33

x � 2, y � �1, z � �1x �
74
19

, y � �
3

19
, z � �

9
19

x �
1
4

, y �
1
2

, z � 2x � �1, y � �2, z � 4

x � �
3

19
, y � �

59
19

, z �
28
19

x � �1, y � �1, z � 1Determinant � 0.Determinant � 0.

Determinant � 0.Determinant � 6.x � 2, y � 3, z � �2x �
1
2

, y � 1, z � �2

x �
55
47

, y �
40
47

, z � �
64
47

x � 4, y �
1
3

, z � �
2
3

x � 4, y � �5, z � 2x � �1, y � 1, z � 2x � �2, y � 1, z � 4

x � �3, y � 2, z � 4x � 2, y � �1, z � 2x � 2, y � �4, z � �3x � 10, y � 10, z � �36x � �1, y � 9, z � �13

Review Exercise Chapter 11

1 R is an matrix R is an matrix 2 3 a b 4

5 a b c d If there is no solution.

5 d Otherwise 6 7 a

7 b Solution is not unique. 8 b 9 10 a

10 b c Since M is singular, A must be singular. 11 12 b c

13 a b 15 16

17  y˛3 � 13z˛1 � 12z˛2 � 17z˛3 y˛2 � �18z˛1 � 11z˛2 � 3z˛3

 y˛1 � 16z˛1 � 36z˛2 � 58z˛3 a � 4, b � �1a � 1x � �1, y � 2, z � �1a � 7, b � 2

x � �
1 � 7l

2
, y � l, z �

11l � 7
2

c � �3k � 5£
36 39 50
14 16 20
15 18 22

≥

c � �2.5, 0.5, 2p � 3, q � �5k � �3x �
17 � 3l

51
, y � l, z � �

5l � 11
17

3p � 3q � r � 0a � �1, b � 3x �
�k˛

3 � 2k˛

2 � 29k � 22
8 � 3k

, y �
k˛

2 � 6k � 14
8 � 3k

 z �
k˛

2 � 5k � 4
8 � 3k

k �
8
3

z �
k˛

2 � 5k � 4
8 � 3k

k �
8
3

£
1 k � 3 5
1 3 k � 1
1 1 k

≥ £
x
y
z
≥ � £

0
k � 2

2k � 1
≥

x � 1, y � 8x � 1, y � �k
1

k˛

2 � 1
 ¢ k 1

�1 k
≤l � 1 or 6m � pn � p

1 a b c 2 a b

3 a b 4 5 a b c d e f 6 a Parallel b Parallel

6 c Not parallel d Not parallel 7 a b c 8 9 10 a Not parallel b Not parallel c Parallel¶

�5

262
�6

262
1

262

∂§
13
2

1323
2

¥c � 6c � �7c � 6

257221229290253234¢1
3
≤�AB� � 213AB � ¢�3

2
≤

�PQ� � 217PQ � i � 4j b � �3 a �
4
7

 c � �8 b � 0, 
1
2

 a �
1
3

 c � 6 b �
1
2

 a � 1
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11 12 a

12 b c  �RP � � 214 �SR� � 221 �QR� � 221�PQ� � 221 RP � £
�3
�2
�1
≥ SR � £

4
�2
�1
≥QR � £

� 1
4
2
≥PQ � £

4
2

�1
≥

R � £
3
3
5
≥ �PR� � 213 �QR � � 252 �QR� � 221 �PQ� � 213 PR � ¢�2

�3
≤ QR � ¢�4

�6
≤PQ � ¢2

3
≤
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1 a b c d e f

1 g 2 a b c 43.0° 3 Ratio is 1:2 4 a b AC �
1
2

 1b � a 2AB � b � aq � 1242117i � 16j�5mi � 27mj � 17mk

20i � 25j � 84k�3i � 6j � 49k17i � 21j � 16k�2i � 11j � 2k6i � 2j � 9k3i � 4j � k

Exercise 2Chapter 12

1 a 11 b c 29 d 2 e 7 f 54 g 40 h 25 2 a b 6 c 30 d e 3 f 55 g h 1 3 a 58.7° b 86.6°

3 c 24.8° d 129° e 54.0° f 50.0° 4 , 5 a and d, a and f, b and c, b and e. 6 a b 11 c d 2

8 9 or 10 70.5° 16 It is a rectangle since is 90° but we do not know if AB � BCAB̂Cx � 6.5x � 17.9�
5

235
 i �

3

235
 j �

1

235
 k

�3,
15
2

�
3
2

cos u �
B

7
19

p . q � 14

�26�9�5�1

Exercise 3Chapter 12

1 a b c d e f g 24

2 a b c 6 7 a b 8 a b

9 10 11 12 13 14 15

16 and Area � 1021734 units2PS � �6i � 14j � 2kPQ � 25i � 5j � 10k

2234 units22850 units22756 units226 units22341
2

 units2274
2

 units2�3

219
 i �

3

219
 j �

1

219
 k

B

54
55

�
2

26
 i �

1

26
 j �

1

26
 k

B

817
986

�
18

2817
 i �

3

2817
 j �

22

2817
 k

9239
2

2123
2

42i � 15j � 24k14i � 5j � 8k28i � 10j � 16k14i � 5j � 8k�14i � 5j � 8k� 14i � 5j � 8k
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Review ExerciseChapter 12

1 ii iii iv 29.6° 2 a b 4 5

6 0 8 0.70210 11 a A has coordinates (2, 4, 6) B has coordinates C has coordinates 

11 b 11 c d 96.3° e 12 m �
10
3

22.6 units2§
3

�
3
2

0

¥50.2 units2

14, �7, �6 216, �3, 0 2a �
p

2
� 2u

¢5 cos u � 3
5 sin u � 2

≤22 � 2 cos up � 46i � 12j � 12p � 1 2k�10.8i � 9.6j � 1.2k2378 units2

1 a b c d e

1 f 2 a b c d

2 e 3 a

3 b

3 c

3 d

4 a b

4 c d

4 e f

5 a b c d 6 a

6 b c d e f

7 a No b Yes c No d Yes e No f Yes 8 Position vector is 

9 Crosses the xy plane at Crosses the yz plane at Crosses the xz plane at 

10 a Crosses the xy plane at Crosses the yz plane at Crosses the xz plane at 

10 b Crosses the xy plane at (9, –1, 0) Crosses the yz plane at (0, 8, 9) Crosses the xz plane at (8, 0, 1)

11 Crosses the xy plane at Crosses the yz plane at Crosses the xz plane at ¢�17
3
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14
3
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4

, �
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≤¢�29
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8 � y

7
�

z � 1
6
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4
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x � 3
4

�
y � 2

�7
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3
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Exercise 2Chapter 13

1 a Skew b Intersect at the point (2, 1, 6) c Parallel d Skew e Skew f Parallel g Skew

2 a b c 1 d e Lies on line. f

3 Coordinates of C are (4, 7, 4)

4 a 60.5° b 36.3° c 71.2° d 88.4° e 62.8° 5 Point of intersection is 6 7 p � 34r � ¢�3
8
≤ � t ¢�3

2
≤11, 5, �3 2a � �2

x �
y � 1

2
� �z � 2AD: r � £
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1

�2
≥ � l £

1
2

�1
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3
�

y � 1

4
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z � 2
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14 15 16 17 x � �
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p � �
4
7

, q �
4
7

, r � �
6
7

a � �1, b � 1SU � �a � b

4 c d 5 a b c d 6 a b c d

7 a  b c d  

8 a i ii iii iv v b c

9 a 7 b c d e

10 a b c d e 12 a

12 c 14 a b They are perpendicular.AB � c, BC � �a, AC � c � a, OB � a � cFA � �b � c � d

DG � d � a � bBH � b � c � aAG � a � b � cAH � b � cFH � b � aBC � b

ED � �a �
12m � 3n � 9 2b

m � n � 3
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≤AC � ¢6k
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≤XD �

2
3

 bAX �
1
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1 a b c d

1 e f g

1 h i j k r. ¢ 3
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 i �
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 j≤ �
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 i �

4
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 j �

1
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2557
6

2557
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r. ¶

7

2354
17

2354
4

2354

∂ �
32

2354

r. ¢ 10

21133
 i �

3

21133
 j �

32

21133
 k≤ �

�63

21133
r. ¢ �3

219
 i �

3

219
 j �

1

219
 k≤ �

3

219
r. ¢ 1

274
 i �

8

274
 j �

3

274
 k≤ �

�19

274

r. ¢ �1

218
 i �

4

218
 j �

1

218
 k≤ �

�15

218
r. •

2

25
0
1

25

μ �
6

25
r. ¢ 1

235
 i �

3

235
 j �

5

235
 k≤ �

�8

235
r. ¶

1

218
4

218
�1

218

∂ �
3

218

Answers

704

Exercise 3Chapter 13

Exercise 4Chapter 13

1 a b c d e f

2 a 45.0° b 23.2° c 11.0° d 64.5° e 90° f 55.9° 3 a 11.7° b 57.8° c 17.6° d 32.5° e 34.1° f 5.51°

4 a b c d r � 1i � 6j 2 � l1�3i � 2j � k 2r � 17i � 3j 2 � l12i � k 2r � £
2

�2
0
≥ � l £

7
�1
4
≥r � 14i � j 2 � l114i � 17j � 13k 2

116, �10, �7 2¢20
3

, 
�13

9
, 

4
3
≤a

51
7

 ,
1
7

 , 1 b13, �2, �9 2¢4, 
1
2

, �2≤a9, 
1
2

 ,�
2
3

 b

2 iv AD has equation BD has equation v 16.4° 3 b

3 c 4 ii iii iv 5 i ii iii

5 iv 116° 6 a b c d 8.52 7 8 a

8 b c d e f g h

9 i A lies in the plane. B does not lie in the plane ii iii 43.6° iv 3.16 units. v

10 a b i and ii 79.0° d i

11 i ii iii 0.716 iv v vi r � £
0

�13
18
≥ � l•

�
13
3

13

�
26
3

μ¢�13
3

, 0, 
28
3
≤10, �13, 18 21�4, �1, 4 2r � 12i � j � 4k 2 � l13i � j 2

18, �20, �12 2n˛2 � �2i � 2j � kn˛1 � 6i � 3j � 2k�2i � 2j � k

r. 1i � 3j � 10k 2 � �87
2 � x

2
�

y � 3

4
� z � 8

1�4, 5, 6 2
�i

26
�

j

26
�

2k

26
326z � �6 � 2ly � �1 � lx � 2 � lr. £

�1
1
2
≥ � 3

26
2

�i � j � 2k

AB � £
�1
�3
1
≥ BC � £

1
1
0
≥r � £

�1
�3
0
≥ � l£

�1
1
1
≥¢�4

3
, 

5
3

, 
�13

3
≤¢1

3
, 

10
3

, 
�8
3
≤x � 2

1
�

y � 5

1
�

z � 1
1

r � £
6

�1
4
≥ � l£

25
8
6
≥16, �1, 4 2¢1, �

13
5

, 
12
5
≤¢�33, 

�51
2

, 4≤r. £
4

�8
5
≥ � 0¢ 2

21
, 

�4
21

, 
�8
21
≤r � £

2
1
1
≥ � l £

�1
�2
�1
≥

3x � 2y � z � 52x � 4 �
4 � 2y

�9
�

6 � 2z
�7

x � 1 �
1 � y

3
�

1 � z
4

Review ExerciseChapter 13

1 5x 2 10x 3 4 5 6 7 8 9 10 4x˛

�13x˛

3x˛

5x˛

4x˛

36x˛

22x˛

2�2x

Exercise 1Chapter 14

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26

27 28 29 30 31 y �
2
3

 t˛

1
2 �

4
9

 t˛

3 � cy � �t˛

�1 � 3 t˛

�2 � 3t˛

�3 � cy �
1
6

 z˛

6 �
1
2

 z˛

2 � cy �
32
9

 k˛

9
4 � cy � �6p˛

�2 � c

y �
14
19

 x˛

19
4 � 2x˛

3
2 � cy �

8
7

 x˛

7
2 �

14
3

 x˛

3
2 � cy � �

1
2

 x˛

�2 �
5
4

 x˛

�4 � cy � 3x˛

3 � 12x˛

2 � 16x � cy �
2
3

 x˛

3 �
21
2

 x˛

2 � 27x � c

y � 4x˛

4 � 12x˛

2 � cy � 8x �
9
2

 x˛

2
3 � cy �

2
3

 x˛

3
2 � 2x˛

1
2 � cy � �

1
2

 x˛

�4 � c�3x˛

�2 � cx � x˛

2 � 2x˛

3 �
1
4

 x˛

4 � c

x˛

4 � 2x˛

2 � 9x � c2x˛

5
2 � 2x˛

�2 � c
2
7

 x˛

7 � x˛

5 � c2x˛

1
2 � c7x � 2x˛

�2 � c3x˛

1
3 � c

2
3

 x˛

3
2 � c

�x˛

�1 � c
5
3

 x˛

3 � 4x � c2x˛

4 � 2x˛

2 � 3x � c2x˛

3 � 5x � c
1
5

 x˛

5 � c
1
4

 x˛

4 � c
1
3

 x˛

3 � cx˛

2 � x � c

Exercise 2Chapter 14

1 2 3 4 5 6

7 8 9 Q �
2

21
 p˛

7
2 �

8
33

 p˛

7
2 � 2y �

1
7

 t˛

7 �
3
5

 t˛

5 �
4
3

 t˛

3 �
818
105

y � 16x˛

1
2 � 46

y �
4
3

 x˛

3 � 6x˛

�1 �
509
6

y � x˛

4 � 2x˛

3 � 7x � 3y � �x˛

2 � 5xy � 4x˛

2 � 3x � 18y � 2x˛

2 � 3y � 6x � 4

Exercise 3Chapter 14

12 a ii b Line of intersection. c ii 13

14 a b (8, 5, 13) c e i ii iii

15 b c d 16 a b c d (6. 63, 3.50, 4.65)¢37
5

, 
4
5

, 
9
5
≤x � 2y � 9¢4, 

5
2

, 
13
2
≤13

221
r. 1i � 4j � 2k 2 � �9

4

221

12

214
PO � i � 2j � 4ki � j � k2x � 3y � 4z � 4 � 0r � 12i � 3j � 7k 2 � t˛13i � j � 3k 2

r � £
7
0

�4
≥ � l£

7
1
5
≥722

6
c � �2.r � 1�j � k 2 � l13i � 11j � k 2

1 l 2 a b c d

3 a b c d 4

5 a b c d 7

8 The direction normals are equal. Distance units.

9 b c Distance of to origin is units Distance of to origin is units Distance between and is units

10 Distance of to origin is units Distance of to origin is units Distance between and is units

11 is not contained in the plane. is contained in the plane.

12 Distance of plane from the origin is units.

13 Distance of plane from the origin is units. 14

15 b c Distance of to origin is units Distance of to origin is units Distance between and is units

16 a The line and the plane intersect. b The line and the plane are parallel. c The line is contained in the plane. d The line and the plane intersect.

17

23
P˛2P˛1

9

23
P˛2

8

23
P˛1r. 1i � j � k 2 � �9

r � 14i � 3j � 7k 2 � l12i � 2j � 5k 2
13

217
r. £

2
�3
�2
≥ �

�13

217

17

289
r. ¢ 8

289
 i �

5

289
 k≤ �

�17

289

r˛2r˛1r. 1i � k 2 � 1

55

265
P˛2P˛1

14

265
P˛2

41

265
P˛1

7

227
p2p1

1

227
p2

8

227
p1r. 1i � 5j � k 2 � 1

8

219

r. 113i � 4j � 11k 2 � 31
5

245
 i �

2

245
 j �

4

245
 k

�3
7

 i �
6
7

 j �
2
7

 k
4

242
 i �

1

242
 j �

5

242
 k

1

230
 i �

2

230
 j �

5

230
 k

r. £
�1
�3
7
≥ � 10�4x � 3y � 8z � 2115x � 13y � 8z � �384x � y � �6x � 2y � 7z � 9

r. 1i � 11j � 9k 2 � 16r. £
�15

3
11
≥ � �3r. 15i � 4j � 15k 2 � 42r. 15j � 2k 2 � �2r. ¢ �7

265
 i �

4

265
 k≤ � 0

4 e f 6 48.5° 7 a b

8 a b 74.2° c 13.9 units.a � �3

1�2, 1, 0 2r � £
1
2

�3
≥ � l£

3
1

�3
≥r � ¢56

25
 i �

29
25

 j≤ � l136i � 26j � 25k 2r � 18i � 14j 2 � l1�37i � 61j � 10k 2

1 i ii iii 73.5° 2 ii iii
1

230
 i �

2

230
 j �

5

230
 k

230
2

 units2r.¢ 3

2178
 i �

12

2178
 j �

5

2178
 k≤ �

7

2178

3

2178
 i �

12

2178
 j �

5

2178
 k

1 2 3 4 5

6 7 8 
ex

15
 � 10x˛

3
2 � sin x � c

1
3

 e˛

x �
5
2

 ln�x� � 7 cos x � c5e˛

x � 2 cos x � 3 ln�x� � c

8 cos x � 7e˛

x � c�6 cos x �
6
5

 x˛

5 � c5 ln�x� � sin x � c4e˛

x � cos x � c
1
4

 x˛

4 � 2 ln�x� � c

Exercise 4Chapter 14



18 19 20 21 22

23 24 25 26 27 28
1
6

 ln�2p˛

2 � 2p � 5�ln�e˛

2x � 1� � c1ln�p� 22�
1

913x˛

2 � 3x � 4 23
� c

1
3

 ln�3x˛

2 � 3x � 4� � c
15

128

1
6

 ln�3 tan 2x � 7� � c
1

21
 11 � 3 cos 2x 2

7
2 � c

2
15

 13x˛

3 � 6x � 19 2
5
2 � c

1
3

 ln�3 sin x � 12� � c
1
2

 ln�2e˛

x � 4� � c

Answers

707

Answers

706

Exercise 5Chapter 14

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 2x˛

3 �
2
3

 ln�3x � 2� � c
1
2

 ln�2x � 1� �
1

18
 13x � 4 26 � c

�
1
2

 e˛

�8x � 2 sin 2x � c�
1
3

 cos 3x � 2x˛

2 � c
3
2

 e˛

4x � cy � �3 ln�6 � t� � cy � �8 ln�4 � p � � c

y � 2 ln�3x � 5� � cy �
4
3

 ln�3x � 1� � cy � �
3
2

 12t � 1 2�1 � cy � �
2
3

 13x � 2 2�2 � cy � �
1
10

 13 � 2x 25 � c

y � �
1
8

 14x � 3 2�2 � cy �
1

28
 14x � 7 27 � cy �

1
18

 13x � 1 26 � cy � 2 ln�2x � 5� � cy �
1
8

 ln�8x � 7� � c

y �
1
2

 ln�2x � 3� � c�2e˛

�2x � c4x˛

2 �
1
2

 e˛

2x � c�
5
6

 e˛

6p � c
4
3

 e˛

6t � ce˛

4x � c
1
5

 e˛

5x � c

1
6

 e˛

6x � c�
5
2

 sin 2x � c2 cos 3x � c2 sin 4x � c�2 cos 

1
2

 x � c�
1
2

 cos 2x � c
1
6

 sin 6x � c�
1
5

 cos 5x � c

Exercise 6Chapter 14

1 3 2 38 3 20 4 0 5 6 7 201 8 216468 9 1490 10 11 0 12 13 21 14 15 312.6

16 0.490 17 0.0429 18 0.549 19 1.85 20 21 8.56 22 23 2 ln �2k � 1��
1
4

 cos p � 3p˛

2 �
1
4

�3.47

�200
1 � 3p

3
2
3

�
8
3

2
3

Exercise 7Chapter 14

1 32 2 3 50 4 5 2 6 6.39 7 5.55 8 0.619 9 22 10 1.69 11 0.825 12 2.19 13 27 14 10.4 15 2 16 2.27

17 18 9 19 20 1.48 21 22 23 24 a � 1k � 4�
1
2

 e˛

�2p �
1
3

 p˛

32
3

 ln 23p � 5
8
24

3
4
3

85
4

343
6

1 2 61 3 16 4 5 6 7 8 22.1 9 10 408 11 12 2 13 6 14 15.3
21
4

71
3

863
6

2401
16

253
12

85
4

64
3

1 2 3 4 5 6 7 36 8 6.43 9
160
3

407
4

125
6

1
3

1
2

1
8

1
6

Exercise 9Chapter 14

Exercise 8Chapter 14

x

y

0

10 1.60 11 1.85 12 3.08 13 14 3.92 15 16

17 18 18 19 7.45 20 3.62 21 4.53 22 3.21
256
3

32
3

8
3

5
2

1 2 3 4 5 6

7 8. 9 10 11 12

13 14 15 16 17
3

21cos x � 8 22
� cln�x˛

2 � 3x � 5� � c
1

12
 1x˛

2 � 2x � 4 26 � c�
1
3

 1cos 2x � 1 2
3
2 � c

1
24

 3 16e˛

2a � 7 22 � 1 4

1
10

 31 � 12 cos 0.5 � 1 25 41x˛

2 � 1 2
1
2 � c

1
12

 13 tan x � 4 24 � c
1
12

 14x˛

2 � 3 2
3
2 � c

1
3

 11 � x˛

2 2
3
2 � c

1
16

 3 12p˛

4 � 1 22 � 1 4

1
54

 1x˛

6 � 9 29 � c
1
4

 ln�8x � 9� � c2e˛

sin 2 � 2
1
32

 e˛

32x�7 � c
1
3

 sin¢3x �
p

4
≤ � c�cos¢u �

3p
4
≤ � c

Exercise 1Chapter 15

Exercise 2Chapter 15

1 2 3 4 5 6 7 0.0203

8 9 1 0 11 12 13  

14 15 16 17 0.0623 18 sin�1¢p � 3

23
≤ � sin�1¢23

3
≤1

3
 sin�1¢x � 1

223
≤ � c4 sin�1¢2x � 3

7
≤ � c

2

211
 tan�1¢2x � 3

27
≤ � c

1
6

 tan�1¢3x � 1
2
≤ � c5 cos�1¢x � 2

3
≤ � c

1
3

 tan�1¢x � 3
3
≤ � c

1
8

 tan�1 a
x � 1

2
b � csin�11x � 1 2 � c

23
3

 sin�1 x23 � c

23
3

 tan�1
 

p23

3
�
p23

18
2 sin�1

 

x

222
� c3 tan�1

 

x
3

� ccos�1
 

x
6

� csin�1
 

x
5

� c
1
3

 tan�1
 

x
3

� c

Exercise 3Chapter 15

1 2 3 4 5

6 7 8 9

10 11 12 13
1
3

 sin3 p �
1
5

 sin5 p�
1
6

 cos3 2x �
1
10

 cos5 2x � c
1
4

 tan4 x �
1
6

 tan6 x � c
1

64
 18x � sin 4x 2 � c

1
6

 tan3 3x �
1
3

 ln�cos 3x� � c�cos x �
4
3

 cos3 x �
6
5

 cos5 x �
4
7

 cos7 x �
1
9

 cos9 x � c
1

32
 112x � 8 sin 2x � sin 4x 2 � c

x
2

�
sin 4x

8
� c

x
2

�
sin 4x

8
� c

1
2

 tan 2p � p�cos x �
2
3

 cos3 x �
1
5

 cos5 x � c�
1
2

 cos 2x �
1
6

 cos3 2x � csin x �
1
3

 sin3 x � c

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22

23 24 25 26 27 28

29 30 31 32 33
1
5

 1sin2 x � 3 25 � c21�x˛

2 � 4x � 5 2
1
2 � c2 sin�1¢x � 2

3
≤ � c22 tan�1¢x � 1

22
≤ � c

1
2

 ln�x˛

2 � 2x � 3� � c

1
32

 148x � 4 sin 4x � sin 8x 2 � c21e˛

x � 2 2
1
2 � cln�e˛

x � 2� � c
1

21cot x � 3 22
� c�

1
4

 cos4 x � c
1
12

 11 � x˛

3
2 28 � c

2e˛

1�cot 
x
2 � c

1
10

 1sin 2x � 3 25 � c
1

14
 1x˛

2 � 6x � 8 27 � c
3
4

 tan�1 2x � csin�1 3x � c
1
4

 ln�x˛

4 � 3� � c

1
2

 ln�x˛

2 � 2x � 3� � cln �x˛

2 � 4� � c
1
3

 ln�3x � 1� � c
2x

ln 2
� c

1
4

 e˛

4x�1 � c�
2
3

 cos13x � a 2 � c

�
1
2

 tan¢p
3

� 2x≤ � c
1
4

 ln�3 � 4 cos x� � ctan�1 2x � c
3
4

 sin¢4x �
p

2
≤ � c

�2
3

 11 � x 2
3
2 � 211 � x 2

1
2 �

1
1 � x

� c

13 � 5x 2
3
2

30
� c

�3

412x � 1 22
�
11 � 2x 2

3
2

3
� c�21 � 2x � c

12 � 7x 24

28
� c

1x � 2 25

5
� c

1 2 3 4 5

6 7 8 9 10 11

12 13 14

15 16 17 18

19 20 21

22 23
8
3n

 tan�12x˛

n � 1 � c
�16

1 � tan 2x
� c

75
32

 Btan�1
 

4
25

 ¢5 tan 

p

2
� 3≤R �

75
32

 tan�1
 

12
25

1

25
 tan�1125 tan x 2 � c2 sin�1

 

p

2
� p cos¢sin�1

 

p

2
≤ � 2 sin�1

 

1
4

�
1
2

 cos¢sin�1
 

1
4
≤

1
2

 tan�1¢2 tan 
x
2
≤ � c

3
4

 3sin�1 x � 2x21 � x˛

2 4 � c
1
2

 tan�112 tan x 2 � c
x˛

2 � 4x � 8
x � 2

� c

215p � 2 2
3
2 115p � 4 2

375
�

41623
125

1x � 5 22

2
� 151x � 5 2 � 75 ln�x � 5� �

125
x � 5

� c
2627

3
 � 41p � 2 2

1
2 �

21p � 2 2
3
2

3

1 � 5x

101x � 3 25
� c

1 � 6x

2412x � 1 23
� c

1p � 2 2418p � 1 2 � 7

20

213x � 4 2
3
2 19x � 38 2

13
� ctan�1 x˛

2 � c
12x � 1 2

1
2 1x � 8 2

3
� c

12p � 1 2
1
2 1p � 1 2 � 2

3
2
15

 1x � 2 2
3
2 13x � 4 2 � c�21 � sin 2x � c

1
4

 ln�6x˛

2 � 4x � 13� � c
1x˛

2 � 3 26

12
� c

Exercise 4Chapter 15

Exercise 5Chapter 15

1 2 3 4 5

6 7 8 9 10
�e˛

�3x

27
 19x˛

2 � 6x � 2 2 � cx˛

3 ln 8x �
x˛

3

3
� c

x˛

3

9
 13 ln 3x � 1 2 � c

e˛

2x

4
 12x˛

2 � 2x � 1 2 � c�x˛

2 cos x � 2x sin x � 2 cos x � c

1p � 1 210

110
 1p � 10 2 �

1
11

�x cos 2x
2

�
sin 2x

4
� c

x˛

5

25
 15 ln x � 1 2 � c

e˛

2x

4
 12x � 1 2 � cx sin x � cos x � c

Exercise 6Chapter 15

Review ExerciseChapter 14

1 a b c d 2 a b

2 c 3 4 a b c
1
3

 e6x � 5 ln�x� � 4 cosx � c7 sinx � 4 ln�x� � c4ex � cosx � cy � �
3
2

 x2 � 8x � 2y �
3
8

 t2 �
1
2

 t
1
2 � c

y � p3 �
1
8

 p8 � cy � �
1
x

�
3
2

 x�4 � c�
1
6

 13 � 2x 23 � c�4x�2 � c3x3 � 2x2 � 5x � c
4
3

 x3 � 7x � c

5 a b c d e 6 c

7 a b c 3 sin2k 8 a b 36 c 9
3
2

 ln12p � 5 2
2
3

e5 � e2�
1
4

 p
1
2

382
25

4x
5
2

5
�

3
x

�
7
3

 e3x �
1
3

 13x � 4 2�4 � c
1
21

 13x � 2 27 � c ln�4x � 3� � c
1
2

2e2x � c3 sin2x � c

10 11 a 0.753 b 2.45 c 1.78 12 a b 24.3 13 a 13.3 b 1.93 14 30.2
9
2

407
4



1 2 3 4 5 0.307 6

7 8 9 a b 10 11 12 0.690

13 a (0,1) is a maximum b d 14 1 15 b i ii iii c
np
9

 1n � 1 2
6p
9

4p
9

2p
9

p

2
� 1y � 0

�
a
b

 ln13 � b sin x 2 � k
1
2

 arctan¢x � 3
2
≤ � k

1
10

y �
ex
2

�
e˛

�2x

4
 12x˛

2 � 2x � 1 2 � ka � 1.07

a � 25, b � 2, sin�1 a
x � 2

5
b � cx arctan x �

1
2

 ln�1 � x˛

2� � k
1k˛

2 � 4 2
3
2

325

4
15

 ¢x � 2
2
≤

3
2¢3x � 4

30
≤ � ke � e˛

k � 1

Answers

709

11 12 13 14 15

16 17 18 19

20
1

41n � 1 22
 3 12p � 1 2n�112np � 1 2 � 2n � 1 4

e˛

ax

a˛

2 � b˛

2
 1a sin bx � b cos bx 2 � c

x˛

n�1

1n � 1 22
 3 1n � 1 2  ln x � 1 4 � c

e˛

x

5
 1sin 2x � 2 cos 2x 2 � c

e˛

2x

13
 12 sin 3x � 3 cos 3x 2 � c

e˛

3x

10
 1sin x � 3 cos x 2 � ce˛

2x1x � 1 2 � cx tan�1 x �
1
2

 ln�1 � x˛

2� � cx sin�1 x � 11 � x˛

2 2
1
2 � c

e˛

x

2
 1cos x � sin x 2 � c

Answers

708

1 2 3 4

5 6 7 8

Exercise 8.

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31 32 33

34 35 36 37

38 39 40

41 42 43 
x˛

3

4
�

x˛

4
�

13 ln�2x � 1�
� c

x˛

3

3
�

x˛

2

2
� x � 2 ln�x � 1� � cln23x˛

2

2
� 2x � 3 2 � 2214

7
 tan�1¢214

14
 13x � 2 2≤ � c

�211 � x˛

2 2
1
2 � sin�1 x � c

3
16

 ¢2x � 4 sin 
x
3

� sin 

2x
3
≤ � c

1
3

 tan3 x �
1
5

 tan5 x � c

1
4

 ¢x �
sin 4ax

4a
≤ � c

2
3

 tan3
 

x
2

� 2 tan 
x
2

� x � c�4 cos 
x
4

�
8
3

 cos3
 

x
4

�
4
5

 cos5
 

x
4

� c
sin 2x

2
�

1
6

 sin3 2x � c

x
2

�
sin 6x

12
� c

u

2
�

sin 2u
4

� c
1
4

 tan4 x � c�
1
3

 cos3 x � c
1
3

 sin3 x � c
e˛

ax

a˛

2 � 4
 1a sin 2x � 2 cos 2x 2 � c

x tan�1
 

1
x

�
1
2

 ln�x˛

2 � 1� � cx ln�2x � 1� � x �
1
2

 ln�2x � 1� � c�2x˛

2 cos 

x
2

� 8x sin 
x
2

� 16 cos 
x
2

� c
e˛

�2x

4
 1sin 2x � cos 2x 2 � c

x sin¢x �
p

6
≤ � cos¢x �

p

6
≤ � c

e˛

3x

9
 13x � 1 2 � c

�1
x

 1ln�x� � 1 2 � c2x � 2 �
22
2

 tan�1
 

B

x � 2
2

� c

3
2

 tan�1 x˛

2 � c�
1
4

 cot¢sin�1
 

x
2
≤ � c

223
3

 tan�1£tan 

x
2

23

≥ � cx 11 � x˛

2 2
1
2 � sin�1 x � c

tan�1 e˛

x � c
�15p � 1 2

101p � 3 25
�

1
80

413x � 4 2
3
2

135
 19x � 8 2 � cx �

25
x � 5

�10 ln�x � 5��
25

x � 5
� c

11 � x 28

36
 17 � 8x 2 � c2 sin�1¢x � 4

5
≤ � ctan�1 21x � 1 2 � c

1

1n � 1 2  cos�n�1 x
� c2e˛

x˛

2�x�5 � c221 � sin x � c

1
2

 tan¢2x �
p

3
≤ � c2 tan�1 2x � c

1
3

 ln�3x˛

2 � 1� � c
1
3

 18x˛

3
2 � 81x � 1 2

3
2 � 11 � 3x 24 2 � c

sin 3x
3

�
cos 2x

2
� c

x˛

2

2
� 3x � 10 ln�x � 3� � cx � 7 ln�x � 4� � c21�x˛

2 � 6x � 4 2
1
2 � sin�1¢x � 3

25
≤ � cln�x˛

2 � 4x � 6� �
22
2

 tan�1¢x � 2

22
≤ � c

2 ln�x˛

2 � 4x � 8� �
1
2

 tan�1¢x � 2
2
≤ � c

1
2

 ln�x˛

2 � 3� �
523

3
 tan�1

 

x23
3

� c
3
2

 ln�x˛

2 � 4� � 2 tan�1
 

x
2

� c�11 � x˛

2 2
1
2 � sin�1 x � c

Exercise 7Chapter 15

Exercise 8Chapter 15

Exercise 9Chapter 15

1 2 3 4 5 6 0.0791

7 8 0.169 9 10 11 12

13 14 15 16 17 16.5

18 19 20 21 22

23 2.44 24 2.10 25 26 27 28

29 30 1.44 31 32 33 1 34 35 36 1.50

37 38 0�
1
4

 ln�cos 2x� � c

�0.0280
pa˛

4

16
x cos�1 2x �

21 � 4x˛

2

2
� c

�11 � 3a 2

31a � 1 23
�

1
3

2

25
 tan�1¢25 tan 

x
2
≤ � c

1
2

 sin�1 2x � 221 � 4x˛

2 � c
1
5

 tan5 x �
1
7

 tan7 x � c
1x
25

 12x˛

2 � 70 2 � c
e˛

�3x

10
 1sin x � 3 cos x 2 � c

x˛

5

25
 15 ln 2x � x 2 � csin�11x � 1 2 � c

x
ln 4

 1ln x � 1 2 � csin�1¢x � 2

233
≤ � c

�3x˛

2

4
 cos 2x �

3x
4

 sin 2x �
3
8

 cos 2x � c

�0.142
1

32
 112 � 8 sin 2x � sin 4x 2 � c

3
4

 tan�1¢x � 3
4
≤ � c

�11 � 5x 2

2512 � 5x 22
� c

�
1
b

 ln2a � b cos p

a � b
2�1

4
 12e˛

x � 1 2�2 � c
1
2

 sin�1
 

2x
5

� cln�x˛

2 � 1� � 3 tan�1 x � c
�e˛

�2x

4
 12x˛

2 � 2x � 1 2 � c

�cosec 4x � c
12x˛

7
3

7
�

192x˛

23
12

23
�

32x˛

3
2

3
� c

1
4

 e˛

4x�5 � c
2
9

 13x � 5 2
3
2 � c

1x � 3 24

4
� c

Exercise 10Chapter 15

1 0.215 2 4.48 3 0.148 5 9.42 6 7 10 11 12 5.66 13 11.7 14 3.03
12a � 1 2

3
2 13a � 1 2 � 4

15
4 � e˛

3

2
0.227a˛

21
4

 14 � x˛

2 2
1
2

Review Exercise Chapter 15

Exercise 1Chapter 16

1 2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 y � 2x tan�1 x � ln�1 � x˛

2� � x � 5y �
12x � 1 26

120
� 2x �

239
240

y � �
3
4

 cos¢4x �
p

4
≤ � 2y �

1
2

 ln�4x˛

2 � 3� �
1
2

 ln 19y � x cos x_4 sin x �
kx˛

3

6
�

cx˛

2

2
� dx � e

y �
x˛

4

24
 ln x �

13x˛

4

288
�

kx˛

2

2
� cx � dy � �ln�cos x� � kx � c

y �
4

45
 13x � 2 2

5
2 � kx � c

y �
1
8

 14x � sin 4x 2 � ky � �
1
3

 11 � 15x˛

2 2
1
2 � ky �

3
2k

 e˛

2kx
3 B1 �

3
2k
R � cy � �ln�1 � sin x� � k

y � �x cos x � sin x � ky � �
2
3

 11 � x˛

2 2
3
2 � ky �

13x � 7 25

15
� ky �

x˛

3

3
� cos x � k

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

16 17 18
1
3

 sin�1 3s �
t˛

2

2
�

1
2

u3

3
�

e˛

2t

5
 12 sin t � cos t 2 �

p3

24
�

1
5

1
2

 ln�2y˛

2 � 3� �
3
8

 ln�4x˛

2 � 1� �
1
2

 ln 131 �
3
8

 ln 3

�cot y � ln x � 1 � ln 4
3
2

 y˛

2
3 �

�e˛

�2x

2
�

3
2

�
1

2e˛

2
ln y �

�13 � x 25

5
� ln 4 �

1
5

ln�y� �
3
2

 ln�x˛

2 � 2x� � ky � ln¢�e˛

�2x

2
� k≤v˛

2 �
sin 2at

2a
� t � k3y˛

3 �
13x � 1 211

11
�
13x � 1 22

2
� k

s˛

3 � 31t sin�1 t � 11 � t˛

2 2
1
2 � k 2ln y � 4 sin�1

 

x
2

� ke˛

�y � �¢5
6

 ln x � k≤y˛

4 � 2x˛

2 ln x � x˛

2 � k

y � ln�cos x � sin x� � k
1
2

 ln�3 � 2y� � �
1
3

 ln�4 � 3x� � ktan�1 y �
1
2

 ln�x� � k
y˛

2

2
� �ln�cos x� � k

Exercise 2Chapter 16

Exercise 3Chapter 16

1 2 3 4 5

6 a 6 c 7 8

9 r � 4t ln t � 4t � 24 � 20 ln 5

V � �4 cos ¢t �
p

4
≤ � 6y �

Bx˛

4

24A
�

Bx˛

3

12A
�

Bx
24A

y � tan1x � k 2 � xtan�1 z � x � k
dz
dx

� 1 �
dy

dx

tan y � tan x � k
y˛

3

3
� ln�1 � x˛

3� � 9x �
�� sin nt

n˛

2
� kt � cx �

�2t˛

3

6
� kt � cy � �ln�cos x� � k

1 2 a 2 b 2 c 2 d 3 26.6m

4 a 4 b 5 6

7 8 9 a 10 b 11 a 2.60 11 b c 108m

12 a 12 b 13 Yes v S

g

k
v �

g

k
�

g

ke˛

kt
,

2p
�

v �
2
�

v � 220e˛

�2.60te˛

8 � 137
4

7 

3
4

 ms�1v � ;

C

12s � 1 25 � 223

5
v � ;

D

2se˛

2s � e˛

2s � 9
2

v � ;

B
2 � 2 cos ¢s �

p

4
≤s � �

t˛

2

2
� t � 2 ln� l � 1 � � 14

p

3
 sscondsv �

sin 3t
3

, s � �
cos 3t

9
�

11
18

�29900 ms �
�3t˛

5

10
� 10t�6134 ms�1v �

�3t˛

4

2
� 10 s �

t˛

4

3
�

t˛

2

2
 v �

4t˛

3

3
� t

Exercise 5Chapter 16

8



1 a b c d

e

x

iy

z3

z4

z3 � z4 � 1 � 4i

z3 � z4

x

iy

z4 z1

z1 � z4 � 6 � i

z1 � z4

x

iy

z3

z2

z2 � z3 � �2 � 7i

z2 � z3
x

iy

z1

z3

z1 � z3

z1 � z3 � �3 � i

Answers

711

Answers

710

1 a 176 1 b 107 1 c 57.4 1 d 8.90 1 e 104 1 f 2060 1 g 327 1 h 1.23 1 i 1.08 1 j 274 2 a 2 b 5.98 2 c 0.592

2 d 0.622 2 e 113 2 f 0.965 2 g 12.8 3 4 145 5 1940 6 84.2 7 5cm, 8196 cm22pa˛

5

5

8p

Exercise 6Chapter 16

x

y

(0, 1)

(1, 0)(�1, 0)

y � | x2 � 1 |

9 10 11

12 a b. 
p

4
 1p � 2 sin�1 a � 2a21 � a˛

2 2
1
4

 12 sin�1 x � 2x21 � x˛

2 2 � k

�4n cos1n � 1 2pp2b˛

249p
16

3.35 , 
p

2

1 a 18i b 38i c 112i d 60i 2 a 12i b 15i c d 3 a 240i b c 45i d 96i e f 35 g

4 a b 2 c d 5 a 9 b 6 a 9i b c d 1 e 1 �
3
4

 i�
1
2

 i�
5
3

�
7i
3

 �1�16i
5
2

 i�
15
2

�90i�72i�32�52i�24i

Exercise 1Chapter 17

Exercise 2Chapter 17

1 a b c d e 2 a b c d

3 a b c d e 306 f g h i

3 j k 4 a b c

4 d e f g h i j

5 a b c d 6 a b c

6 d e f g h i

6 j k 7 a b c

7 d e f

7 g h i

7 j 8 a b c

8 d e f

8 g h i 9 a

9 b c d e 10 a b

10 c d e f

11 a b c d 12

13 3, 14 a 3, b 2, 15 16 17

18 19 20 21
88 � 966i

25
p � �

3
5

, q �
9
5

3 � i23
2

z˛1 �
26 � 2i

17
, z˛2 �

21 � i
17

348 � 115i
13

�8 � 2i, �8 � i
�214 � 735 i

53
�1 � 3i, �1 � 3i�1 � 2i, �1 � 2i1 � i

x˛

4 � 10x˛

3 � 42x˛

2 � 82x � 65 � 0x˛

2 � 2ax � a˛

2 � b˛

2 � 0x˛

2 � 14x � 85 � 0x˛

2 � 8x � 25 � 0x˛

2 � 4x � 53 � 0

x˛

4 � 10x˛

3 � 20x˛

2 � 90x � 261 � 0x˛

3 � 8x˛

2 � 25x � 26 � 0x˛

3 � 3x˛

2 � 7x � 5 � 0x˛

2 � 8x � 25 � 0

x˛

2 � 6x � 10 � 0x˛

2 � 4x � 13 � 0x �
�3; i295

4
x �

�3; i26
3

x �
�3; i251

2
x �

�1; i23
2

x � �3 ; i0.541 � 0.0416i, �0.541 � 0.0416i1.59 � 1.42i, �1.59 � 1.42i0.704 � 0.369i, �0.704 � 0.369i

0.734 � 0.454i, �0.734 � 0.454i1.92 � 1.30i, �1.92 � 1.30i3.85 � 1.69i, �3.85 � 1.69i

2.12 � 0.707i, �2.12 � 0.707i1.10 � 0.455i, �1.10 � 0.455i1 � 4i, �1 � 4iRe1z 2 �
x

1 � y˛

2
�

12
25

, Im1z 2 � �
xy

1 � y˛

2
�

9x
25

Re1z 2 � �128, Im1z 2 � �12823Re1z 2 � cos 

2p
3

, Im1z 2 � sin 

2p
3

Re1z 2 � �597, Im1z 2 � 122

Re1z 2 � 0, Im1z 2 � �
2xy

x˛

2 � y˛

2
Re1z 2 �

2a

4 � b˛

2
�

12

16 � a˛

2
, Im1z 2 � �

ab

4 � b˛

2
�

3a

16 � a˛

2
Re1z 2 �

72
65

, Im1z 2 � �
61
65

Re1z 2 �
117
145

, Im1z 2 �
41

145
Re1z 2 � �

53
185

, Im1z 2 � �
89
185

Re1z 2 � 27, Im1z 2 � �8x � �
33

169
, y �

2591
169

x � �3, y � 1

x � �
72
25

, y �
29
25

x � y � ;

B

15
2

x � �21, y � 20x � �
5

17
, y � �

14
17

x � �6, y � �3x � 5, y � 12

x � 0, y � �3x � 8, y � 0x � 15, y � �7�8432 � 5376i�237 � 3116i�11 � 2i�4

x˛1y˛

2 � 3x˛

2 � 2ixy 2

x˛

2 � y˛

2

12x � 5y 2 � i˛15x � 2y 2

x˛

2 � y˛

2
�

3
2

�
i
2

3 � 4i
5

2x˛

2 � y˛

2 � 3ixy

4x˛

2 � y˛

2
6 � 2i

�10 � 33i
29

7 � 26i
29

�15 � 10i
13

3 � i
5

1�m˛

3 � 18m˛

2 � 12m � 24 2 � i˛13m˛

3 � 6m˛

2 � 36m � 8 2m˛1m˛

2 � 3n˛

2 2 � i˛13m � n 2

x˛

2 � y˛

2 � 2ixy117 � 44i1 � 70ia˛

2 � b˛

2115 � 111i7 � 2i47 � 35i�4 � 19i

7 � 13i�20 � 10i13 � 2i3 � 5i�7 � 11i14 � 21i7 � i18 � 28i8 � 16i

Exercise 3Chapter 17

x

iy

z4 z1

z1 � z4 � �4 � 3i

z1 � z4

2 a b c

2 d e f

3 a b c d e f 2e˛

i 
p
28e˛

0i282e˛

�1.46i253e˛

1.85i5e˛

�2.21i422e˛

i 
p
4

6¢cos 

p

2
� i sin 

p

2
≤101cos 0 � i sin 0 2241 3cos1�0.896 2 � i sin1�0.896 2 4

226 3cos12.94 2 � i sin12.94 2 428 Bcos¢�3p
4
≤ � i sin¢�3p

4
≤R2¢cos 

p

3
� i sin 

p

3
≤

4 a b c d e f g

4 h 5 a b c d

6 a b

6 c 7 a i ii iii iv

7 b i ii iii iv v vi

7 vii viii
8 a and b

10 11 b 12 b i 16 ii 10

x

iy

106z1 � 39z2

�14 � 25i

10 � 67i

106z1 � 39z2

z � 1 � 0i, 
�1 � i23

2
, 

�1 � i23
2

z˛1 � �
1

53
�

23
53

 i, z˛2 �
4

13
�

7
13

 i

x

iy

z3
z4

x

iy

z2 � 2 � 3i

z1 � 3 � 5i

r � 150, u � 0.763r � 2.5, u � �1.33

r � 7.5, u � �2.22r � 5, u � �2.50r � 2.5, u � 1.17r � 26, u � �0.129r � 325, u � �1.46r � 65, u � 1.04

z˛4 � 2e˛

i 
p
3z˛3 � 25e˛

�0.284iz˛2 � 5e˛

2.21iz˛1 � 13e˛

�1.18iRoot 1 r � 27, u � 0.714  Root 2 r � 27, u � �0.714

Root 1 r � 25, u � 1.11  Root 2 r � 25, u � �1.11Root 1 r � 2.65, u � 2.17  Root 2 r � 2.65, u � �2.17

r � 4 

2370
5

, u � 1.41r � 2370, u � 0.487r � 2701, u � 1.38r � 2313, u � 0.8251.67 � 4.03i

1523
2

�
15
2

 i�
25
2

� i 

215
2

�
322

2
�

322
2

 i3.74 � 1.00i522 � 5i22�
215

2
� i 

25
2

1 � i23

9 a

9 b �z˛1z˛2� � 214, arg1z˛1z˛2 2 � �3.07, 2 z˛1

z˛2
2 �
B

7
2

, arg¢z˛1

z˛2
≤ � 1.64

z˛1 � 27 3cos1�0.714 2 � i sin1�0.714 2 4z˛2 � 22Bcos¢3p
4
≤ � i sin¢3p

4
≤R

14 a b 1.68 radians

15 a 15 b c No.r �
3
2

, u � 1.23

1 3cos10.841 2 � i sin10.841 2 4 , 1 3cos1�0.841 2 � i sin1�0.841 2 4

�

12

4

3

c Rotation of radians clockwise.
p

2



10 c i ii iii 11 b

x

iy

B
2

A
4

C

2�
3

2�
3

1, 
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1 a b c d e

1 f g h i j

2 a b c d e f

3 a b c d e f

3 g h i j 4 a b

4 c d

4 e f

g

5 a b c d

6 a b 7 a

7 b Real part is Imaginary part is 9 b 10

11  a b 12

15 a b

15 c

2
4

8

16

32 64

128
2�
72�

7

2�
7

2�
7

2�
7

2�
7

2�
7

z˛1
7 � 1281cos 0 � i sin 0 2 z˛1

6 � 64Bcos¢�2p
7
≤ � i sin¢�2p

7
≤R,  z˛1

4 � 16Bcos¢�6p
7
≤ � i sin¢�6p

7
≤R, z˛1

5 � 32Bcos¢�4p
7
≤ � i sin¢�4p

7
≤R

z˛1
3 � 8¢cos 

6p
7

� i sin 

6p
7
≤z˛1

2 � 4¢cos 

4p
7

� i sin 

4p
7
≤, z˛1 � 2¢cos 

2p
7

� i sin 

2p
7
≤

Product � 4, Sum � �2
4

25
z˛2 � 5 3cos1�0.927 2 � i sin1�0.927 2 4

�
1
2

� i 

23
2

tan¢�15p
16
≤, tan¢�7p

16
≤, tan¢ p

16
≤, tan¢9p

16
≤�21523215.

2Bcos¢p
3
≤ � i sin¢p

3
≤R1.85 � 0.765i, �0.765 � 1.85i, 0.765 � 1.85i, �1.85 � 0.765i16Bcos¢p

2
≤ � i sin¢p

2
≤R

2�
9

2�
9
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9

2�
9
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9
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9

2�
9
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92�

9
1

1

1
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1

1

1
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1

1
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3
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1

1

1

1
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3

1

1 1

 2
1
6Bcos¢13p

36
≤ � i sin¢13p

36
≤R, 21

6Bcos¢25p
36
≤ � i sin¢25p

36
≤R2

1
6Bcos¢ p

36
≤ � i sin¢ p

36
≤R,

 2
1
6Bcos¢�11p

36
≤ � i sin¢�11p

36
≤R, 2

1
6Bcos¢�35p

36
≤ � i sin¢�35p

36
≤R, 21

6Bcos¢�23p
36
≤ � i sin¢�23p

36
≤R,�0.132 � 1.67i, �1.62 � 0.389i

1.54 � 0.640i, 1.09 � 1.27i, �0.872 � 1.42i, 1.45 � 0.354i, �0.354 � 1.45i, 0.354 � 1.45i, �1.45 � 0.354i

1.69 � 0.606i, �0.322 � 1.77i, �1.37 � 1.16i2
1
6 Bcos¢7p

12
≤ � i sin¢7p

12
≤R2

1
6 Bcos¢�3p

4
≤ � i sin ¢�3p

4
≤R, 21

6 Bcos¢� p
12
≤ � i sin¢� p

12
≤R,

0.644 � 1.55i, �0.644 � 1.55i2 �3i, � 2 � 3icos 

p

12
� i sin 

p

12
cos 

3
4

 p � i sin 

3
4

 pcos 

3
4

 p � i sin 

3
4

 pcos 

1
6

 u � i sin 

1
6

 u

cos 3u � i sin 3ucos 11u � i sin 11ucos u � i sin ucos 3u � i sin 3ucos 

5
2

 u � i sin 

5
2

 ucos 8u � i sin 8u

1cos u � i sin u 2�
1
81cos u � i sin u 2�21cos u � i sin u 2�

1
461cos u � i sin u 2�341cos u � i sin u 2

1
21cos u � i sin u 27

cos¢ p
10
≤ � i sin¢ p

10
≤cos¢3p

4
≤ � i sin¢3p

4
≤cos¢�p

2
≤ � i sin¢�p

2
≤cos 0 � i sin 0

1
324

 Bcos¢�1
3

 u≤ � i sin¢�1
3

 u≤R
cos 

1
2

 u � i sin 

1
2

 ucos1�9u 2 � i sin1�9u 2
1

243
 3cos1�5u 2 � i sin1�5u 2 4cos 25u � i sin 25u10241cos 10u � i sin 10u 2
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Exercise 4Chapter 17

15 d Rotate anticlockwise. Enlargement scale factor 2.

16 b c

17 c d a �
1
32

, b �
3
16

, c �
15
32

, d �
5

16
z˛

6 � 6z˛

4 � 15z˛

2 � 20 �
15

z˛

2
�

6

z˛

4
�

1

z˛

6

cos¢�2p
3
≤ � i sin¢�2p

3
≤cos¢p

3
≤ � i sin¢p

3
≤, cos¢�p

3
≤ � i sin¢�p

3
≤

2p
7

1 2 3 4 4 5 b 4294967296 6 7

8 Real part Imaginary part 9 10 a b �z˛

2� � 4, arg1z˛

2 2 �
2p
3

�z� � 2, arg1z 2 �
p

3
23�

x˛

2y � y˛

3 � y

x˛

2 � y˛

2
�

x˛

3 � xy˛

2 � x

x˛

2 � y˛

2
,

x˛

3 � 5x˛

2 � 10x � 12 � 0x � �
47
65

, y � �
1

65
a � �2, b � 5k � �2r � 214.8, u � 2.06
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11 c

2�
3

2�
3

2�
3

1

1

1

cos 0 � i sin 0, cos 

2p
3

� i sin 
2p
3

, cos¢�2p
3
≤ � i sin¢�2p

3
≤

11 d Each side has length Area of triangle 12 a b

13 d i ii 6 14 15  a i c

16 a i 1 ii c 17 18 a b

19 a c d 21 a b

21 c 123, 223 2 , 1�23, �223 2

2 � i, �2 � ix � �1, y � z � 2£
3 0 0
0 3 0
0 0 3

≥1, 
�1 � i23

2
, 

�1 � i23
2

k � ;221
10k � i˛1k˛

2 � 21 2

k˛

2 � 49
�z� � 5, 

p

3
� arg1z 2 � 1.98, �2 � Re1z 2 �

5
2

3
2

�
323

2
 i

2p
3

2322
20

cos3 u � 3 cos u sin2 u � i˛13 cos2 u sin u � sin3 u 2z � 5 � i, � � 6 � ia � 32, b � �32, c � 6

a � �
17
4

�
31i
4

, b � �
17
4

�
31i
4

a � �
5
3

, b �
16
9

�
323

4
23.

Answers are given when asked to form a conjecture

Exercise 3Chapter 18

1 2 3 4 Any value 

5 sum of the first n odd 6 7 n˛

2 � 4n˛

2 � 2n � 2numbers � n˛

2

	 21pa
n

r�1
4r � 7 � n˛12n � 5 2a

n

r�1
3r � 2 �

1
2

 n˛17n � 3 2D˛

n � ¢1 2n � 1
0 2n ≤

Review ExerciseChapter 18

8 16 M˛

n � ¢n � 1 �n
n 1 � n

≤1n � 1 2 ! � 1

1 a Continuous b Discrete c Continuous d Continuous 2 3

4 b 81-90 c 78.2 5 16.7 6 a 1.58m. b There is no information about the ages or gender of the students. 7 0.927

8 a People below this height are not allowed on the ride. b Mean � 1.79 m

mode � Bluemode � 4., median � 4, mean � 4.15
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4 f

4 g
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iy

0

�2 � i

2 � i
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B



1 i a b ii a b

1 iii a b iv a b

2 Graph 3 Daniel Graph, Paul Graph, 

4 5 x � 16.6, s � 1.44s � 33.5New mean � 46.2, x � 40.2, s � 29.1, 

median � 198.5, range � 71median � 185.5, range � 167IQ � 3

x � 0.724, s � 0.189Q˛1 � 0.62, Q˛2 � 0.755, Q˛3 � 0.845x � 44500, s � 14300Q˛1 � 34000, Q˛2 � 45500, Q˛3 � 57250

x � 238, s � 60.2Q˛1 � 183, Q˛2 � 263, Q˛3 � 298x � 9.8, s � 1.79Q˛1 � 8.3, Q˛2 � 9.9, Q˛3 � 11.9
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Grade 8
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median � 13,

Spanish test marks
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10

20

18 22 26 30 34 38 42

40

60

80

100

C
um

ul
at

iv
e 

fr
eq
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nc

y

Age

Age of mothers giving birth

120

140

160

estimate median � 25

11 estimate 

12 estimate 10th

13 estimate 35th 95th percentile � 54 mpercentile � 38 m,Q˛1 � 35m, Q˛2 � 42m, Q˛3 � 48m,

percentile � 19Q˛1 � 20, Q˛2 � 20.5, Q˛3 � 21.25,

Q˛1 � 12, Q˛2 � 21, Q˛3 � 24

1 a b c d e

2 The two sets have a similar spread as for both sets. The average age for set B is less as the median is 18 and the median for set A is 19.

3 Box and whisker plots. Medicine Law Law students rated the lecturing higher but there was a greater
spread of opinion among this group.

Rating

Medicine

Law

1 32 5

1 42 3 5

IQ � 2, median � 3.IQ � 1, median � 2.

IQ � 3

Q˛2 � 40, IQ � 3Q˛2 � 176, IQ � 89Q˛2 � 67, IQ � 39Q˛2 � 59.5, IQ � 6.5Q˛2 � 10, IQ � 8
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4 a 2.28 b 3.74 c 33.4 d 5.50 e 9.17 5 6.31 6

7 a b x � 110, s � 16.2Q˛2 � 105, IQ � 28

x � 501, variance � 2.61
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1 a Continuous b Discrete c Continuous d Continuous 2 Red 3 4 1.49

5 6 a b 17.5 c 40.9

12 5133.5 39.5 60

20

40

60
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y

Height

Height of students
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1.
20

 �
 x

 �
 1

.3
0

1.
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 1

.7
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70

 �
 x

 �
 1
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0

x � 76.0, s � 16.4
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7 estimate 8 a b

9 After bonus, 

10 a 29.9 b 0.0336 11 a b 12 a 31.3 b 9.84

13 a 156 b x � 44 minutes

IQ � 11median � 135

x � �296, s � �46.70x � �264, s � �41.70.

x � 1.63, s � 1.51Q˛2 � 1, IQ � 1Q˛1 � 16, Q˛2 � 23, Q˛3 � 27
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1 a b c 2 a b c d 3 a b c d e 0 4 a 0.48

4 b Because the probability of either a novel or a mathematics book is 1. 5 No. 6 a b 7 8 a b

7 c d e 9 a b c d 1 e f g 0 10 a b c d e f g

11 a 0.1 b 1 c 0.5 12 13 14 0.72 15 a b c d e

15 f Because it is not possible to have one die showing a 5 and for the sum to be less than 4. 16

17 a b c 1 The events are mutually exclusive because it is not possible to have an even number that is prime.

18 a Events X and Y are not mutually exclusive because 2 fish of type A and 2 fish of type B fit both.

18 b Events X and Z are not mutually exclusive because 2 fish of type A, 1 fish of type B and 1 fish of type C fit both. c Events Y and Z are mutually
exclusive because the event Y does not allow a fish of type C and event Z does.

19 0.15 20 a b
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1 a b 2 a b c 3 a b c d

4 a b c 5 a b c 6 0.0768 7 a
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1
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2
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2
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1
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1
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1
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5
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1 720 2 16065 3 24 4 60 5 10080 6 604800 7 241920 8 201600 9 a 36 b 6 c 12 d 24 10 70 11 a 90720 b 5040

11 c 2520 12 a 40320 b 5040 c 2520 13 a 4989600 b 1270080 14 a 5040 b 4320 c 720 15 a 42 b 10 16 a 9000000

16 b Increases by 16000000 17 a 831600 b 176400 c 151200 18 119 19 1 20 a 4 b 16 c 24 d 62 21 a 60 b 30

22 a 28 b 28 c 35 23 a 120 b 90 24 756756 25 70 26 210 27 3185325 28 33
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Exercise 3Chapter 20

1 a 0.3 b 0.5 2 a b c d e f

3 a b 0.12 c 0.32 d 0.3 e 0.118 4 a b c d
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1 a 100 b c d 2 a 362880 b i ii c 3 a 15 b 4 a 360 b c 5 a 3838380

5 b c 6 a 10440 b c 7 a 16 b i ii iii 8 a 3150 b c d 9 a 720 b
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Review ExerciseChapter 20

1 a b Events are not independent since and 

Events are not mutually exclusive because Events are exhaustive since 

2 a 0.995 b 3 3 a 151200 b 10080 4 a b 0.0670 c 5 6 62 7 a 453600

7 b 90720 c 362880 8 9 a 15 b c 10 0.888 11 a 30240 b 30238 c 126 d 32 12 13 a 360

13 b 216 14 0.048 15 a 20160 b c 16 a b i
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18 a b 20 a 0.549 b 0.369 c 0.439

21 a 0.581 b 0.0918 c 0.0663

n � 1
3n � 1
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7
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1 a b 3 c 1 2 a b 0.424 3 a 0.225 b 3 or 4 c 17.5 4 a 20 b 12.4 c 42.2 5 a 0.191 b 0.246

6 a 0.176 b 0.905 c 7 d 6.5 e 0.0158 7 a b 8 a 0.175 b 0.141 9 a 0.160 b 4 c 0.271 d 0.0808

10 a  0.0173 b  22 11 a i ii b i ii c ii iii

12 a 0.0105 b 0.0226 c 1 d 10 e 0.00116 13 30 14 a 0.222 b 0.939 c 0.104 d 0.00370 e 0.332 f 0.0145 g 0.995

15 a b c

15 d This is a distribution that deals with events that either occur or do not occur, i.e. there are two complementary outcomes. We are usually told the
number of times an event occurs and we are given the probability of the event happening or not happening.

15 e i ii iii iv 0.994 v

15 e vi 0.545, 0.0488 vii 0.969 16 a

16 b Gain of 20.3 Euros c 59.5 d 305 17 18 b i ii
8

11
5
8

Standard deviation �
B

n
4

Mean �
n
2

P˛1X � r 2 � nC˛r ¢12≤
n

E˛1X 2 �
123
49

a �
1
7

,

4C˛ju
j11 � u 24� j

6u211 � u 22 � 4u411 � u 2 � u4
6u211 � u 22 � 4u411 � u 2 � u4Var˛1X 2 � 4u11 � u 2E˛1X 2 � 4u,4C˛ku

k11 � u 24�k

P˛1E˛1¨E˛2 2 � P˛1E˛1 2 � P˛1E˛2 2P˛1A˛1´A˛2 2 � P˛1A˛1 2 � P˛1A˛2 2P˛1A>B 2 �
P˛1A¨B 2

P˛1B 2

6797
1296

575
1296

73
648

1
81

1
9

48
25

12
25

l � 2.99
1
10

Answers
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6 a b 7 a b

8 a b
125
126

5
32

249
252

Answers

718

X 0 1 2 3
120
504

270
504

108
504

6
504

P˛1X � x 2

X 0 1 2 3
1

64
9
64

27
64

27
64

P˛1X � x 2

Y 0 1 2 3 4
5

126
40

126
60

126
20

126
1

126
P˛1Y � y 2

Y 0 1 2 3 4
1

39
8

39
84

195
56
195

2
39

P˛1Y � y 2

X 1

0.3 0.7P˛1X � x 2

�1 X 1 3
0.15 0.25 0.6P˛1X � x 2
�1 Y 0 2 4 6

4
10

1
10

1
10

4
10

P˛1Y � y 2

Exercise 2Chapter 21

1 a b c d

2 3 a b 4 a b

5 6 7

x � 3E˛1X 2 �
x � 3

4
E˛1X 2 �

441
91

c �
12
91

E˛1X 2 �
1
2

E˛1X 2 � 2.6b � 0.1E˛1X 2 � 3.06b � 0.28E˛1X 2 � 3.35b � 0.15E˛1X 2 � 4.7b � 0.3

8 9 10 a 2.05 b 5.45 c 3.10 d 8.15 11 a 3 b 14 c 7 d 8

12 a b c 6 d 0.986 13 a 7 b c 14 a b c 15 a b 2.53 c 1.65

16 17 a b c 1.44

18 a can be a probability density function

19 a 0, 1, 2, 3, 4 b c

20 a 10, 11, 12, 13, 14 b c d

21 a b c d E˛1Y 2 �
8
7

, Var˛1Y 2 � 1.63
3

196
E˛1X 2 �

4
7

, Var˛1X 2 � 0.816
1

14

25
81

E˛1X 2 � 12, Var˛1X 2 �
16
15

Variance � 1.06Mean �
2
3

Standard deviation � 1.05Mean �
110
35

26
7

1
2

E˛1Y 2 �
28
15

, Var˛1Y 2 � 0.780

1
14

24
49

15
7

9
7

35
6

329
6

5.8
691
400

E˛1X 2 � 1E˛1X 2 �
25
9

X 0 1 2 3 4

0
1
24

4
24

4
24

15
24

P˛1X � x 2

X 10 11 12 13 14
6
90

24
90

30
90

24
90

6
90

P˛1X � x 2

Exercise 3Chapter 21
1 a 0.27 b 0.532 c 0.0556 2 a 0.201 b 0.833 c 0.834 3 a 0.208 b 0.0273 c 0.973 d 0.367 4 0.751 5 a 2.4 b 1.44 c 2

6 a 2.4 b 1.68 c 2 7 a b 0.445 c 1 or 2 8 a 0.00345 b 0.982 c 0.939 9 a 0.0872 b 0.684

9 c 0.684 d 0.847 10 a b 0.0284 c 0.683 d 0.163 11 a 0.238 b 0.0158 12 a 0.245 b 0.861 c 0.997

13 a 0.060 b 0.00257 c 0.998 d 0.24 e 0.978 14 a 10 b 2.74 c 0.416 15 a b 16 16 a 0.0258 b 0 c d 4

16 e 0.00258 f 0.00858 17 a b 2 c 0.204 d 0.148 e 0.042 18 a b 0.156

18 c d 0.961 19 a 8 b 0.822 c 8 d 0 0.0108
8
3

X ~ Bin¢8, 
1
3
≤Variance � 1.81Mean � 2.1

1
3

4
7

3.52 � 10�5

q �
3
4

p �
1
4

,n � 7,

1 a 0.244 b 0.423 c 0.353 d 3 2 a 0.134 b 0.151 c 0.554 d 6 3 a 0.125 b 0.332 c 0.933 d 10

4 a 1.68 b 0.0618 c 0.910 5 a 2.48 b 0.213 c 0.763 d 0.404 6 a 2.69 b 0.0799 c 0.136 d 0.505 e 0.944

7 a 2.10 b 0.0991 c 0.0204 d 0.350 8 a 7.62 b 0.996 9 a 1 b 0.981 10 a 0.905 b 0.00468 c 0.000151

11 a 0.874 b 0.191 c 0.223 d 0.0426 12 a 0.0804 b 0.751 c 2 d 0.119 e 0.173 13 a 0.0149 b 0.223

14 a 0.0183 b 0.215 c 0.975 d e 0.849 f 0.0262 15 a 0.0324 b 0.992 c 0.112 d 0.868 e 0.654

16 i a 0.345 b 0.753 c d 41 or 42 ii 0.111 17 a 0.195 b 0.785 c 0.152 d 0.166 e 8

18 a 0.0486 b 0.0499 c 0.00363 d 0.0000314

Mean � 42 Variance � 42

Mean � 80 Variance � 80

Exercise 4Chapter 21

Review ExerciseChapter 21

x 3 4 5
369
1296

175
1296

65
1296

P˛1X � x 2

Amount 30 25 15 12 18 25 40
received
in Euros
X

0.00137 0.0165 0.0823 0.248 0.329 0.263 0.0878P˛1X � x 2

Exercise 1Chapter 22

1 a b c d 2 a b c 0.0625 d 0.9975

3 a b c 0.707 d 0.634

x

y

1

�2

�
4

y � �2 cos x

k � 22

c � 5.46
27
32

1
2

k � 1

x

y

y � 1 � x
4

3
4

1
4

1 3 x

y

y �    � 1x
2

2

1.73

5.46

x

y

1.08

(1.15, 1.54)

2

y �    x (4 � x2)2
1

4 a b c 0.306 d 0.621k � 1.08

5 a b c 0.494 d 0.375

t

y

5

y �         (2 � t)
1345

6

y �        t2
269
3

15

0.279

0.0758

0.0312

3
269



1 a b c 2 a b c 3 a b 0.530 4 a b c 1.97 d 4 e

5 a b 2.25 c d 2.38 6 a b 0.368 7 a b 0.571 c 0.141 d e 0.830

8 a b 0.616 c 0.178 d 0.546 e 0.384 9 a b c 0.115 d 0.0209 10 a 1 b 0

10 c 0.273 12 a i 7.71 ii 0.947 b 0.318 13 a b 0.148 c 0.00560 14 ak �
e˛

2

31e˛

2 � 1 2

0 6 x 6 0.421�2 6 x 6 2k � 1.56

p

6
k � 1c �

1
e

27
80

k �
1
9

15
32

23
6

k �
1
16

c � 0.755
4

ln 3
�

4

1ln 3 22
2

ln 3
1

ln 3
2
9

4
3

k �
1
2

Answers
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Exercise 2Chapter 22

x

y

y �              (x � 60)2
72000

1

60

0.05
14 b c 12.4 15 a b 0.15 c d 0.305 

2

23
k �

3
8

c � 0,2135

1 a 0.775 b 0.589 c 0.633 d 0.0392 e 0.9234 f 0.0973 g 0.203 h 0.562 i 0.841 j 0.5392 2 a 0.121 b 1.53

3 c d e 1.69 f g 0.999 h 1.56 i 0.509 j 0.813 3 a 0.00332 b 0.901 c 0.00332 d 0.968

4 a 0.0912 b 0.997 c 0.952 d 0.122 e 0.125 5 a 0.106 b 0.809 c 0.998 d 0.101 e 0.0964 6 a 0.275 b 0.00139
6 c 0.683 d 0.0279 7 a 0.840 b 0.0678 c 0.683 d 0.997 8 a 40.6 b 38.9 c 41.9 d 39.2 9 a 93.9 b 84.6 c 86.6

9 d 82.2 10 a 5.89 b 13.7 c 18.1 d 4.18 11 Upper quartile Lower quartile 12 0.935 13 0.912 14 0.0443

15 0.939 16 0.134

Z � �0.674Z 	 0.674

�0.485�0.678�0.396

Exercise 3Chapter 22

Exercise 4Chapter 22

1 15.1 2 75.6 3 30.5 4 39.0 5 6.81 6 7.81 7 14.1 8 11.2 9 10

11 12 a b 0.432 13 11.7m � 23.6, s � 6.13m � 290, s � 11.1

m � 46.3, s � 4.26m � 11.6, s � 4.53

1 a 0.453 b 2.29 kg 2 a 10.6% b 3 a 0.309 b 0.227 c 0.440 4 a 0.106 b 0.734 c 0.599 d 0.159

4 e 0.606 f 0.292 5 a 440 b 82.3 kg 6 7 0.886 8 a 5 b 57.4 9 a 7.93 b 48.9

9 c 7 10 11 a 0.235 b 564g c 114 12 a 19.0 b 117 c 98.2 13 a 90.9% b 94.7 14 0.338

15 a b 0.423 16 a b 0.587 17 a 126 b 280g 18 a 1.43 b 0.0146 19 4.14

20 a 32.8 b 0.161 21 0.00123 22 23 a 4.82 b 0.0173m � 59.3, s � 18.6

m � 28.5, s � 21.49194 � X � 303

m � 74.6, s � 11.4

¢m � s, 
1

s22ep
≤, ¢m � s, 

1

s22ep
≤

m � 589g, n � 600g

1 a b 0.996 2 a 0.0668 b 142 cm c d 0.121 e 0.332 3 a 0.946 b 0.798

3 c 0.000109 d 0.99989 4 5 a 89.6% b 11.4 c 3.96% d 0.00110 6 a 0.0327 b 8.00 c Day 1: 2620. Day 2: 2610. 7 b 0

�3

0.637

�3
1�

2 

1
2

q � 140 cm, r � 180 cmm � 34.5, s � 3.93

Review ExerciseChapter 22

Exercise 5Chapter 22

7 c 0.268 d 0.350 e 0.348 8 a b c 0.323

9 a 1.63 c 0.434 d $6610 10 a b 12.6% c Model is not perfect. d i

10 d ii iii 10 e f Either the events are not independent or the distribution is not continuous6 0.4398
125

36
125

8
125

x � 0m � 28.6, s � 14.3

E˛1X 2 � p, Var˛1X 2 � 2.93
1
4

11 a i ii 1.24 b ii 1.29 c 1.63 12 a i 1.355 ii 110.37 b 13 a b 0.6

13 c 0.24 d 9000 cents. 14 0.783 15 b c d 0.290 e 0.0243 f 0.179E˛1X 2 �
e
2

� 1, Var ˛1X 2 � 1 �
e
3

�
e˛

2

4
e˛

1
4 � e˛

1
2 �

1
4

 e

4
81

A � 108.63, B � 112.11E˛1X 2 �
1
12 	

 2

0 

x˛18x � x˛

3 2  dx
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Abel, Niels Henrik (1802–1829), 86
absolute value function, 70–2
acceleration, 259–63, 459–63
addition

on Argand diagrams, 486–7
complex numbers, 476–7, 486–7
imaginary numbers, 474
matrices, 269–70
vectors, 315–17

al-Karaji, Abu Bekr ibn Muhammad ibn al Husayn (c.953–c.1029), 509
al-Khwarizmi, Muhammad ibn Musa, 35
algebra

origin of term, 35
see also calculus

algebraic division, 435–6
algebraic long division, 100–3
Ancient Greeks, 1

calculus, 183
angles

between lines and planes, 366
between two lines, 351
between two planes, 366
between two vectors, 325–6
double, 174–5
finding, 8–9
related, 24–7

anti-differentiation, 373–4, 405–11
see also integration

arccos functions, 32
arcsin functions, 32
arctan functions, 32, 159
area

above and below x-axis, 395–401
between curves and y-axis, 397–8
between two curves, 395–401
parallelograms, 333
triangles, 10, 333–4
under curves, 441–4

Argand, Jean-Robert (1768–1822), 484
Argand diagrams, 484–97, 501

addition on, 486–7
multiplication by i on, 487–8
subtraction on, 486–7

argument, complex numbers, 488–92
arithmetic sequences, 131–3

nth term, 133
sum of first n terms, 133–5

associativity, matrices, 274
asymptotes

horizontal, 70, 73, 204
oblique, 204, 205–8
vertical, 19, 73, 204

‘at least’ problems, 576–80
augmented matrices, 289
averages, 529

from grouped frequency tables, 532–3
see also central tendency; mean; median; mode

Babylonians, 1, 35
Banach, Stefan (1892–1945), 337
Banach space, 337
bar Hiyya ha-Nasi, Abraham (1070–1136), 35
bases, 109

change of, formula, 118–19
natural, 117–18, 217

Bayes’ theorem, 576–82
for two events, 576

Bernoulli, Jakob (1654–1705), 373, 403
Bernoulli, Johann (1667–1748), 373, 403
Bernoulli, Margaretha, 403
Bernoulli, Nicolaus (1623–1709), 403
binomial coefficients, 509
binomial distributions, 609–19, 633

expectation, 613–16
variance, 613–16

binomial theorem, 152–6, 509
proof, 517–18

Bolzano, Bernard (1781–1848), 305
bow-tie diagrams, 25
box and whisker plots, 539–41
Brahmagupta (598–668), 35

calculators
constants, 556
development, 58
graphing, 190, 193
integration on, 388–90
logarithms on, 117–20
polynomials with, 103–5
probability on, 654–8
row operations, 298–300
statistics on, 555–8

calculus
differential, 183–216
early studies, 373
see also differentiation; integration

Cartesian equations
of planes, 355–6
of straight lines, 342–3

Cartesian form, of complex numbers, 484
CAS (computer algebra systems), 58
catenaries, 39
Cavalieri, Bonaventura (1598–1647), 183
central limit theorem, 634
central tendency, 537

measures, 529, 543, 548, 549
see also averages

chain rule, 221–4
change, rates of, 183–4, 254–9
change of base formula, 118–19
Chia Hsien (fl. 1050), 130
China, Han Dynasty, 268
circles

problems, 1–6
sectors, 2–3
segments, 2–3

Index



definition, 183
exponential functions, 224–9
functions of functions, 221–4
implicit, 234–8
introduction, 183–216
inverse trigonometric functions, 238–41
logarithmic functions, 224–9
methods, 217–45
optimization problems, 246–53
problems, 243–4
product rule, 229–31
quotient rule, 231–4
rules, 187–9
standard results, 242–3
trigonometric functions, 218–20
undoing, 373–4

direct proofs, 510
direct reverse method, 405–11
direction vectors, 338
discrete data, 529

frequency tables, 530–3
discrete probability distributions, 595–632
discrete random variables, 596–9
discriminant, 40
dispersion, measures of, 548–54
displacement, 259–63, 459–63
distributivity

matrices, 274–5
scalar products, 322
vector products, 329

divergent series, 138
division

algebraic, 435–6
algebraic long, 100–3
complex numbers, 478
imaginary numbers, 475–6
of polynomials, 88–90
synthetic, 86, 88–9

domain, functions, 59
dot plots, 548
double angle formulae, 169–72

applications, 173–6
double angles, in trigonometric equations, 174–5

e, 117, 217, 224
elements, 269
elimination

Gaussian, 268, 289
simultaneous equations, 293

equal complex numbers, 478–80
equal vectors, 311
equality, matrices, 269
equations

exponential, 120–4
of planes, 353–63
of straight lines, 338–45
trigonometric, 27–31
see also Cartesian equations; differential equations; parametric equa-
tions; polynomial equations; quadratic equations; simultaneous equa-
tions; trigonometric equations; vector equations

Euler, Leonhard (1707–83), 217, 224
Euler form, complex numbers, 492–3
events, 561–2

independent, 569–75
exact values, trigonometric ratios, 7–8
expectation, 600–9

binomial distributions, 613–16

continuous probability density functions, 639–43
functions, 603
Poisson distributions, 624–6

expected value, 600
explicit expressions, 131
exponential decay, 111
exponential equations, 120–4
exponential expressions, for trigonometric 
functions, 108
exponential form, complex numbers, 492–3
exponential functions, 109–11

differentiation, 224–9
integration, 379
inverse, 112
see also logarithmic functions

exponential graphs, 109–11, 125–7
exponential growth, 110
exponents, 109
expressions

explicit, 131
implicit, 131

factor theorem, 91–3
factorial notation, 146–52
factorization, quadratic equations, 39–40
falling point of inflexion, 195, 198
Fermat, Pierre de (1601–65), 183
first order differential equations, 446
fluxions, 473
formulae

compound angle (addition), 163–8, 169
half angle, 173
see also double angle formulae

Fourier, Jean Baptiste Joseph (1768–1830), 528
fractions, decimal notation for, 108
free vectors, 307–9
French Revolution, 86
frequency diagrams, 537–47

see also cumulative frequency diagrams
frequency distributions, 534–5

see also binomial distributions; normal distributions;
Poisson distributions; probability distributions

frequency tables, 529–37
discrete data, 530–3
grouped, 532–3

functional analysis, 337
functional notation, 187, 217
functions, 58–85

absolute value, 70–2
co-domain, 59
composite, 62–4
concavity, 197
definitions, 59
domain, 59
expectation, 603
finding from graphs, 98–100
images, 59–60
many–one, 58
notation, 59
one–many, 58
one–one, 58
piecewise, 70
polynomial, 87–90
range, 59
rational, 79–82
sketching, 205, 209–15
special, 69–73

Index
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class intervals, 531
modal, 532

class width, 531
co-domain, functions, 59
coefficients

binomial, 509
polynomials, 93–5

coincidence, lines, 347
column vector notation, 306
columns, 269
combinations, 147–9, 582–9

and probability, 589–92
common difference, 131, 138
common ratio, 136
commutativity

matrices, 272–3
scalar products, 322
vector products, 328–9

completing the square, 42–7
complex numbers, 473–508

addition, 476–7, 486–7
argument, 488–92
Cartesian form, 484
conjugate, 478
definition, 476
division, 478
early studies, 473
equal, 478–80
Euler form, 492–3
exponential form, 492–3
imaginary parts, 476
modulus, 488–92
modulus-argument form, 488–92
multiplication, 477
notation, 488–93
polar coordinate form, 492
real parts, 476
roots of, 500–6

square, 479–80
unity, 502–3

subtraction, 476–7, 486–7
zero, 478
see also imaginary numbers

complex roots, 52
polynomial equations, 481–2
quadratic equations, 480

composite functions, 62–4
compound angle (addition) formulae, 163–8, 169
computer algebra systems (CAS), 58
concavity, functions, 197
conditional probability, 567–9
conjectures, forming and proving, 522–6
conjugate complex numbers, 478
connected rates of change, 254–9
constant of integration, 374–7

general solution, 377
particular solution, 377

constants, calculator operations, 556
continuous data, 529

frequency tables, 533–4
continuous probability density functions

applications, 639–52
expectation, 639–43
median, 647–9
mode, 646–7
variance, 643–6

continuous probability distributions, 633–71

continuous random variables, 634–9, 654
contradiction, proof by, 510
contrapositive, proof by, 510
convergent series, 138
cosecant functions, 20

differentiation, 220
cosine functions

differentiation, 219–20
even powers of, integration, 414–16
integration, 379
odd powers of, integration, 416–19

cosine ratio, 7
cosine rule, 12–14
cotangent functions, 20

differentiation, 220
cumulative frequency diagrams, 541–4

early, 528
percentile estimation, 543–4
quartile estimation, 543–4

curves
area between two, 395–401
area under, 441–4
sketching, 204–9

data
transformations, 556
types of, 529
see also continuous data; discrete data

de l’Hôpital, Guillaume (1661–1704), 403
de Moivre, Abraham (1667–1754), 473, 633
de Moivre’s theorem, 497–506

proof, 516
decimal notation, for fractions, 108
decimals, recurring, 141
definite integrals, 382
definite integration, 382–5
degrees, and radians, 2
derivatives, 185
derived functions, graph sketching, 209–15
determinants, 268, 279–86

general results, 283–4
diagrams

bow-tie, 25
box and whisker plots, 539–41
dot plots, 548
frequency, 537–47
tree, 569–73, 609–10
Venn, 563, 564, 567
see also Argand diagrams; cumulative frequency diagrams;
graphs; pie charts

differential calculus, 183–216
notation, 187

differential equations, 446–8
applications, 446
first order, 446
linear, 447
second order, 446
solutions

by direct integration, 448–51
by separating variables, 452–7
general, 447
particular, 448
types of, 447–8
verification, 457–8

differentiation
applications, 246–67
by first principles, 184–6

Index
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Leibniz, Gottfried Wilhelm (1646–1716), 183, 187, 373, 403, 473
limits, 185

concept of, 139–40
integrals, 382, 386–7

linear differential equations, 447
linear inequalities, 47–9
lines, 337–72

angle between two, 351
coincident, 347
intersecting, 346–53, 363–8
parallel, 346–53
skew, 346–53
see also straight lines

local maxima, 196, 246
local minima, 196, 246
logarithmic functions, 112

differentiation, 224–9
see also exponential functions; natural logarithmic functions

logarithmic graphs, 112–14, 125–7
logarithms

on calculators, 117–20
interpreting, 113
invention, 108
Napierian, 117
rules, 114–17

long division, algebraic, 100–3
lower tail, 657

magnitude, vectors, 309–10
Malthus, Thomas (1766–1834), 447
many–one functions, 58
mathematical induction, 509–27

early studies, 509
introduction, 510–16
method, 510–15
proofs, 516–21

matrices, 268–304
addition, 269–70
associativity, 274
augmented, 289
commutativity, 272–3
definitions, 269
determinants, 279–86
distributivity, 274–5
early studies, 268
equality, 269
identity, 273
multiplication, 271–2
non-singular, 279
operations, 269–78
post-multiplication, 273
pre-multiplication, 273
simultaneous equation solving, 287–302
singular, 279
subtraction, 269–70
zero, 273–4
see also inverse matrices

maxima
global, 196
local, 196, 246

maximum turning points, 195, 198
mean, 529, 532–3, 652

finding, 660–2
population, 549
sample, 549

median, 529, 532, 539, 549
continuous probability density functions, 647–9

Menelaus of Alexandria (c.70–140), 1
mid-interval values, 532
Mien, Juliusz (1842–1905), 337
minima

global, 196
local, 196, 246

minimum turning points, 195, 198
modal class intervals, 532
mode, 529, 532

continuous probability density functions, 646–7
modulus, complex numbers, 488–92
modulus-argument form, complex numbers, 488–92
multiplication

by i on Argand diagrams, 487–8
complex numbers, 477
imaginary numbers, 474–5
matrices, 271–2
vectors, 321–35
see also scalar multiplication

Napier, John (1550–1617), 108, 117, 120
Napierian logarithms, 117
Napier’s analogies, 108
Napier’s bones, 108
natural base, 117–18, 217
natural logarithmic functions, 117–18, 217, 379

differentiation, 226–8
natural numbers, set of, 59
negative vectors, 311–12
nested schemes, 87
Newton, Sir Isaac (1643–1727), 108, 183, 187, 373, 473
Nine Chapters on the Mathematical Art
(c.200–100 BC), 268
non-singular matrices, 279
normal distributions, 633–4, 652–60

applications, 662–5
and probability, 654–8
standard, 660

normals, equations of, 191–2
notation

complex numbers, 488–93
decimal, 108
differential calculus, 187
factorial, 146–52
functional, 187, 217
functions, 59
geometrical, 187
integral, 387, 634
sequences, 131
sets, 562–3
sigma, 143–6, 387, 516, 531, 634
vectors, 306–7

nth term, 131
arithmetic sequences, 133
geometric sequences, 136

numbers
irrational, 224
sets of, 59
see also complex numbers; imaginary numbers

oblique asymptotes, 204, 205–8
ogives see cumulative frequency diagrams
Omar Khayyam (1048–1131), 130
one–many functions, 58
one–one functions, 58
operations

matrices, 269–78
see also row operations
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transformations, 76–82
see also continuous probability density functions;
exponential functions; inverse functions; logarithmic
functions; quadratic functions; reciprocal function;
trigonometric functions; wave functions

functions of functions, differentiation, 221–4

Gaussian elimination, 268, 289
general solution, 377
geometric sequences, 136–8

nth term, 136
sum of first n terms, 137

geometric series, 136–8
applications, 142
convergent, 138
divergent, 138
sum of n terms, 140

geometrical notation, 187
Gerstner, František Josef (1756–1832), 305
global maxima, 196ˆ
global minima, 196
gradients, 183–5, 197

finding, 190
of tangents, 190–3

graph sketching, derived functions, 209–15
graphing calculators, 190, 193
graphs

characteristics, 73, 204
drawing, 73–6
exponential, 109–11, 125–7
finding functions from, 98–100
inverse functions, 67–9
logarithmic, 112–14, 125–7
tan x, 19
tangent functions, 19
see also diagrams; trigonometric graphs

gravitation, theory of, 108
Greeks see Ancient Greeks
grouped frequency tables, averages from, 532–3

half angle formulae, 173
Han Dynasty, 268
Hipparchus (c. 190 BC–c. 120 BC), 1
histograms, 537–8
horizontal asymptotes, 70, 73, 204

identities
Pythagorean, 159–63, 169
trigonometric, 159–63

identity matrix, 273
images, functions, 59–60
imaginary numbers, 474–6

addition, 474
division, 475–6
multiplication, 474–5
powers of, 474–5
subtraction, 474
see also complex numbers

implicit differentiation, 234–8
implicit expressions, 131
independent events, 569–75
indices see powers
indirect proofs, 510
induction see mathematical induction
inequalities, 35–57

linear, 47–9
quadratic, 49–51

infinite series, sum of, 138–42
infinite sum, 140
inflexion

falling point of, 195, 198
points of, 201–4
rising point of, 195, 198

integers, sets of, 59
integral notation, 387, 634
integrals, 374

definite, 382
limits, 382, 386–7
origin of term, 373

integration
algebraic division, 435–6
anti-chain rule, 380–2
as anti-differentiation, 373–4, 405–11
applications, 446–72
area between two curves, 395–401
areas above and below x-axis, 391–5
by parts, 428–33
by substitution, 422–8
on calculators, 388–90
cosine functions, 379
definite, 382–5
direct reverse method, 405–11
early studies, 403
exponential functions, 379
geometric significance of, 385–91
initial conditions, 377–8
introduction, 373–402
and inverse trigonometric functions, 411–14
methods, 403–45

selection criteria, 421, 438–41
polynomials, 379
products, 406–7
quotients, 406, 408–10
reciprocal function, 379
sine functions, 379
splitting the numerator, 434–5
standard results, 379–80, 403–4
trigonometric functions, 379

powers of, 414–20
see also constant of integration

intercept form, quadratic functions, 41–2
intercepts, 204

y-intercept, 73, 374
interquartile range, 548
intersecting lines, 346–53, 363–8
intersecting planes, 363–8
inverse functions, 64–7

graphs, 67–9
inverse matrices, 279–86

applications, 294–5
general results, 281–2

inverse trigonometric functions, 32–4
differentiation, 238–41
and integration, 411–14

irrational numbers, 224

Jia Xian (fl. 1050), 130

Kepler, Johannes (1571–1630), 108
kinematics, 454–5
Kochina, Ira, 446
Kochina, Nina, 446

Lagrange, Joseph-Louis (1736–1813), 86
Laplace, Pierre-Simon (1749–1827), 633–4
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ratios
common, 136
see also trigonometric ratios

real numbers, set of, 59
reciprocal function, 69–70

integration, 379
sketching, 211–12

recurring decimals, 141
related angles, 24–7
remainder theorem, 91
rising point of inflexion, 195, 198
Roberval, Gilles de (1602–75), 183
roots, 73

of complex numbers, 479–80, 500–6
quadratic equations, 51–5
see also complex roots

row operations
applications, 295–8
on calculators, 298–300

rows, 269
Ruffini, Paolo (1765–1822), 86
Ruffini’s rule, 86
rules

chain, 221–4
cosine, 12–14
differentiation, 187–9
logarithms, 114–17
powers, 109
product, 229–31
quotient, 231–4
Ruffini’s, 86
sine, 10–12

sample mean, 549
samples, 529
scalar multiplication, 270

vectors, 310–11
scalar products, 321

commutativity, 322
distributivity, 322
vectors in component form, 323–4

scalars, 306
vector multiplication, 310–11

secant functions, 20
differentiation, 220
powers of, integration, 419–20

second order differential equations, 446
sectors, 2–3
segments, 2–3
semi-interquartile range, 548
separating variables, 452–7
sequences, 130–58

applications, 142–3
definition, 130
notation, 131
see also arithmetic sequences; geometric sequences

series
applications, 142–3
convergent, 138
divergent, 138
early studies, 403
infinite, 138–42
see also geometric series

set notation, 562–3
sets, of numbers, 59
SHM (simple harmonic motion), 447

sigma notation, 143–6, 387, 516, 531, 634
simple harmonic motion (SHM), 447
simultaneous equations

elimination, 293
substitution, 293–4
in three unknowns, 291–302
in two unknowns, 287–91

sine functions
differentiation, 218–19
even powers of, integration, 414–16
integration, 379
odd powers of, integration, 416–19

sine ratio, 7
sine rule, 10–12
singular matrices, 279
sketching, functions, 205, 209–15
skew lines, 346–53
solids of revolution

volume, 463–70
about y-axis, 466–8

special functions, 69–73
splitting the numerator, 434–5
spread, 548, 549, 550
square roots, complex numbers, 479–80
standard deviation, 549–51

finding, 660–2
standard form, quadratic functions, 41
standard normal distributions, 660
standard results

differentiation, 242–3
integration, 379–80, 403–4

stationary points, 193–201, 204
finding, 194–5
nature of, 195–200
types of, 195, 198

statistical inference, 549
statistics, 528–60

on calculators, 555–8
definitions, 529

Steinhaus, Hugo (1887–1972), 337
straight lines

Cartesian equations of, 342–3
equations of, 338–45
gradients, 183–5
parametric equations of, 340–2
vector equations of, 338–40

substitution
integration by, 422–8
simultaneous equations, 293–4

subtraction
on Argand diagrams, 486–7
complex numbers, 476–7, 486–7
imaginary numbers, 474
matrices, 269–70
vectors, 318–19

sum to infinity, 140
synthetic division, 86, 88–9

tangent functions
differentiation, 220
graphs, 19
powers of, integration, 419–20

tangent ratio, 7
tangents

equations of, 190–1
gradients of, 190–3
on graphing calculators, 193
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optimization problems, 246–53
outcomes, 561

parabolas, 37
parallel lines, 346–53
parallel vectors, 312, 322, 328
parallelogram law, 316
parallelograms, area, 333
parametric equations

of planes, 356–60
of straight lines, 340–2

particular solution, 374–7
parts, integration by, 428–33
Pascal, Blaise (1623–62), 130
Pascal’s triangle, 130, 149–51, 152, 509
p.d.f.s see probability density functions (p.d.f.s)
pendulums, 447
percentiles, 539

estimation, 543–4
periodicity, 18–19
permutations, 147–9, 582–9

and probability, 589–92
perpendicular vectors, 313, 322, 328
pie charts, 537

early, 528
piecewise function, 70
planes, 337–72

angle between two, 366
Cartesian equations of, 355–6
definition, 353
equations of, 353–63
intersecting, 363–8
parametric equations of, 356–60
vector equations of, scalar product form, 353–5, 356–60

Playfair, William (1759–1823), 528
Plowa, Franciszka, 337
Plowa, Maria, 337
points see stationary points; turning points
points of inflexion, 201–4

falling, 195, 198
rising, 195, 198

Poisson distributions, 595, 619–28
expectation, 624–6
variance, 624–6

Poisson, Siméon-Denis (1781–1840), 595–6
polar coordinate form

complex numbers, 492
products, 493–5
quotients, 493–5

Polubarinova-Kochina, Pelageia Yakovlevna (1899–1999), 446
polynomial equations

complex roots, 481–2
solving, 95–7

polynomial functions, 87–90
polynomials, 86–107

calculators with, 103–5
coefficients, 93–5
degree of, 87
division of, 88–90
integration, 379
values of, 87–8

population, 529
population dynamics, 447
population mean, 549
position vectors, 307–9
positive integers, set of, 59

powers, 87
of imaginary numbers, 474–5
rules, 109
of trigonometric functions, 414–20

probability, 561–94
on calculators, 654–8
and combinations, 589–92
conditional, 567–9
introduction, 561–7
and normal distributions, 654–8
and permutations, 589–92

probability density functions (p.d.f.s), 598, 652
see also continuous probability density functions

probability distributions
continuous, 633–71
discrete, 595–632

product rule, 229–31
products

integration, 406–7
polar coordinate form, 493–5
see also scalar products; vector products

proof by contradiction, 510
proof by contrapositive, 510
proofs

direct, 510
indirect, 510
mathematical induction, 516–21
see also mathematical induction

Ptolemy (c.83–161), 1
Pythagorean identities, 159–63, 169

quadratic equations, 35–57
complex roots, 480
early studies, 35
factorization, 39–40
formula, 40–1
roots, 51–5
solving, 39–41

quadratic functions, 41–7
completing the square, 42–7
intercept form, 41–2
overview, 35–9
standard form, 41
turning point form, 42

quadratic inequalities, 49–51
quartiles, 539

estimation, 543–4
quintic equation, 86
quotient rule, 231–4
quotients

integration, 406, 408–10
polar coordinate form, 493–5

radians, 1–2
and degrees, 2

radicals, 86
random variables

continuous, 634–9, 654
discrete, 596–9

range, 548
functions, 59
interquartile, 548
semi-interquartile, 548

rates of change, connected, 254–9
rational functions, 79–82
rational numbers, set of, 59
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Tartaglia, Nicolo (1499/1500–1557), 130
terms, nth, 131, 133, 136
theorems

central limit, 634
factor, 91–3
remainder, 91
see also Bayes’ theorem; binomial theorem; de Moivre’s theorem

tied vectors, 307–9
topological vector spaces, 337
transformations

data, 556
functions, 76–82

tree diagrams, 569–73, 609–10
trials, 561
triangle law, 315–16
triangles

area, 10, 333–4
problem solving, 14
solving, 9–17

trigonometric equations, 27–31
double angles in, 174–5

trigonometric functions, 17–24, 32, 159
differentiation, 218–20
exponential expressions for, 108
integration, 379
powers of, integration, 414–20
reciprocal, 20
see also cosecant functions; cosine functions; cotangent functions;

inverse trigonometric functions; secant functions; sine functions; tangent
functions
trigonometric graphs, 17–24

composite, 21–3
trigonometric identities, 159–63
trigonometric ratios, 7–9

exact values, 7–8
trigonometry, 1–34, 159–82

origins, 1
turning point form, quadratic functions, 42
turning points, 73

maximum, 195, 198
minimum, 195, 198
see also maxima; minima

unit vector notation, 306–7
unit vectors, 312
upper tail, 657

variables
rates of change, 254–9
separating, 452–7
see also random variables

variance, 551–3, 600–9, 652

binomial distributions, 613–16
continuous probability density functions, 643–6
Poisson distributions, 624–6

vector equations
of planes, 353–5
of straight lines, 338–40

vector products, 321, 328–30
applications, 333–4
commutativity, 328–9
distributivity, 329
vectors in component form, 330–2

vector spaces, topological, 337
vectors, 337–72

addition, 315–17
angle between two, 325–6
direction, 338
early studies, 305
equal, 311
free, 307–9
geometric approach, 315–21
magnitude, 309–10
multiplication, 321–35
negative, 311–12
notation, 306–7
parallel, 312, 322, 328
perpendicular, 313, 322, 328
position, 307–9
scalar multiplication, 310–11
scalar product of, 323–4
subtraction, 318–19
techniques, 305–36
tied, 307–9
unit, 312
vector product of, 330–2
zero, 312

velocity, 259–63, 459–63
Venn diagrams, 563, 564, 567
vertical asymptotes, 19, 73, 204
volume

solids of revolution, 463–70
about y-axis, 466–8

wave functions, 176–81
method, 177–80

x-axis, areas above and below, 391–5

y-intercept, 73, 374
Yang Hui (c.1238–98), 130

zero complex numbers, 478
zero matrix, 273–4
zero vectors, 312
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