SEQUENCES

A sequence is a mathematical function whose domain is the set of integers. In the Calculus option, we are concerned with the limit of a sequence to determine whether or not it converges or diverges

The limit of a sequence is defined as follows: Let L be a real number. The limit, $\lim _{n \rightarrow \infty} a_{n}=L$, if for each $\varepsilon>0$, there exists $M>0$ such that $\left|a_{n}-L\right|<\varepsilon$, whenever $n>M$. Sequences that have limits are said to converge, whereas sequences that do not have limits diverge.

THEOREM: Let f be a function of a real variable such that $\lim _{x \rightarrow \infty} f(x)=L$. If $\left[a_{n}\right]$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then $\lim _{n \rightarrow \infty} a_{n}=L$.

EXAMPLE: By the theorem above, if $a_{n}=\left(1+\frac{1}{n}\right)^{n}, \lim _{n \rightarrow \infty} a_{n}=e$, because $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$.
EXAMPLE: Show that the sequence whose nth term is $a_{n}=\frac{n^{2}}{2^{n}-1}$ converges.
$f(x)=\frac{x^{2}}{2^{x}-1}$ is indeterminate. Using L'Hôpital's rule, $f^{\prime}(x)=\frac{2 x}{2^{x}(\ln 2)}$ is also indeterminate. $\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}-1}=\lim _{x \rightarrow \infty} \frac{2 x}{2^{x}(\ln 2)}=\lim _{x \rightarrow \infty} \frac{2}{2^{x}(\ln 2)^{2}}=0$. Therefore, by the theorem above, $a_{n}=\frac{n^{2}}{2^{n}-1}$ converges.

SQUEEZE THEOREM FOR SEQUENCES

If $\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} b_{n}$ and there exists and integer N such that $a_{n} \leq c_{n} \leq b_{n}$, for all $n>N$, then $\lim _{n \rightarrow \infty} c_{n}=L$.

For example, show that $c_{n}=(-1)^{n} \frac{1}{n!}$ converges and find its limit.

$$
\begin{gathered}
n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdots n=24 \cdot 5 \cdot 6 \cdot \cdots \cdot n \text { and, } \\
2^{n}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot \cdots \cdot 2=16 \cdot 2 \cdot 2 \cdot \cdots \cdot 2
\end{gathered}
$$

For $n \geq 4,2^{n}<n$! so, $\frac{-1}{2^{n}} \leq(-1)^{n} \frac{1}{n!} \leq \frac{1}{2^{n}}$. Therefore, by the Squeeze Theorem,

$$
\lim _{n \rightarrow \infty}(-1)^{n} \frac{1}{n!}=0
$$

ABSOLUTE VALUE THEOREM

For the sequence $\left[a_{n}\right]$, if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

MONOTONIC SEQUENCE: A sequence is monotonic if its terms are nondecreasing, $a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots$ or if its terms are nonincreasing, $a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots$.

BOUNDED SEQUENCE:

1. A sequence is bounded above if there is a real number, M such that $a_{n} \leq M$ for all n. The number M is called the upper bound of the sequence.
2. A sequence is bounded below if there is a real number, N such that $a_{n} \leq N$ for all n. The number N is called the lower bound of the sequence.
3. A sequence is bounded if it is bounded above and below.

BOUNDED MONOTONIC SEQUENCE: If a sequence is bounded and monotonic, then it converges.

EXAMPLES:

1. The sequence $a_{n}=\frac{1}{n}$ is bounded and monotonic, therefore it converges.
2. The divergent sequence $b_{n}=\frac{n^{2}}{(n+1)}$ is monotonic but not bounded. It is bounded below.
3. The divergent sequence $a_{n}=(-1)^{n}$ is bounded but not monotonic.
